
Open Research Online
The Open University’s repository of research publications
and other research outputs

A Catalog of Bad Smells in Design-by-Contract
Methodologies with Java Modeling Language
Journal Item
How to cite:

Viana, Thiago (2013). A Catalog of Bad Smells in Design-by-Contract Methodologies with Java Modeling
Language. Journal of Computing Science and Engineering, 7(4) pp. 251–262.

For guidance on citations see FAQs.

c© 2013 The Korean Institute of Information Scientists and Engineers

Version: Version of Record

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.5626/JCSE.2013.7.4.251

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.5626/JCSE.2013.7.4.251
http://oro.open.ac.uk/policies.html

Copyright 2013. The Korean Institute of Information Scientists and Engineers pISSN: 1976-4677 eISSN: 2093-8020

Regular Paper
Journal of Computing Science and Engineering,

Vol. 7, No. 4, December 2013, pp. 251-262

A Catalog of Bad Smells in Design-by-Contract Methodologies
with Java Modeling Language

Thiago Viana*

Coordenaçao de Sistemas de Informaçao, Instituto Federal de Pernambuco, Recife, PE, Brasil

tamnv@recife.ifpe.edu.br

Abstract
Bad smells are usually related to program source code, arising from bad design and programming practices. Refactoring

activities are often motivated by the detection of bad smells. With the increasing adoption of Design-by-Contract (DBC)

methodologies in formal software development, evidence of bad design practices can similarly be found in programs that

combine actual production code with interface contracts. These contracts can be written in languages, such as the Java

Modeling Language (JML), an extension to the Java syntax. This paper presents a catalog of bad smells that appear dur-

ing DBC practice, considering JML as the language for specifying contracts. These smells are described over JML con-

structs, although several can appear in other DBC languages. The catalog contains 6 DBC smells. We evaluate the

recurrence of DBC smells in two ways: first by describing a small study with graduate student projects, and second by

counting occurrences of smells in contracts from the JML models application programming interface (API). This API

contains classes with more than 1,600 lines in contracts. Along with the documented smells, suggestions are provided for

minimizing the impact or even removing a bad smell. It is believed that initiatives towards the cataloging of bad smells

are useful for establishing good design practices in DBC.

Category: Human computing

Keywords: Java Modeling Language; Bad smells; Design-By-Contract; Refactoring

I. INTRODUCTION

Bad smells naturally arise in source code, usually as a

consequence of ad hoc evolution. These smells consist of

symptoms that convey likely problems, even though the

program is working correctly. Examples of bad smells in

object-oriented programs that motivate refactorings [1]

stem from classes or methods that are too long to classes

using more members from other classes than its own

members (Feature Envy [1]). Refactoring activities are

often motivated by the detection of bad smells.

Design-by-Contract (DBC) [2] establishes a method

for building software by explicitly specifying what each

function in a module requires in order to correctly oper-

ate, and also specifying what it provides to the caller

(contracts). They constitute a collection of assertions—

mainly invariants and pre- and post-conditions for meth-

ods—that precisely describe what methods require and

ensure with respect to client classes. Although DBC is a

built-in development method for the Eiffel programming

language [3], contracts can also be written with exten-

sions to general-purpose languages, such as the Java

Modeling Language (JML) [4].

With the increasing adoption of DBC methodologies in

Received 24 July 2013, Accepted 12 August 2013

*Corresponding Author

Open Access http://dx.doi.org/10.5626/JCSE.2013.7.4.251 http://jcse.kiise.org
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Journal of Computing Science and Engineering, Vol. 7, No. 4, December 2013, pp. 251-262

http://dx.doi.org/10.5626/JCSE.2013.7.4.251 252 Thiago Viana

formal software development, evidence of bad design

practices can similarly be found in programs that com-

bine actual production code with contracts. If these prob-

lems are not addressed properly, they may hinder the

quality benefits of DBC development, such as encapsula-

tion, maintainability, and readability.

In this paper, we present a catalog of bad smells that

may appear during DBC practice. Six smells were cata-

logued for this paper; and are described in detail. Smells

include symptoms like long specifications with several

alternative behavior cases (Long Specs), private fields

exposed in public contracts (Open Doors), excessive

accesses to fields that represent internal data (Field

Obsession), and complex predicates that easily become

very difficult to read and understand (Illogical Con-

tracts). This work considers JML as a language for speci-

fying contracts [5]. Smells are described over JML

constructs, although several can appear in other DBC lan-

guages. Along with names and symptoms, actions are

suggested to eliminate or minimize the effect of these

smells. It is believed that initiatives towards cataloging

bad smells are useful for establishing good design prac-

tices in DBC.

The recurrence of the catalogued bad smells are evalu-

ated in two ways: first by describing a small study with

graduate student projects, and second by counting occur-

rences of smells in library classes from the JML models

application programming interface (API). This API offers

classes that support specifications in JML, many of

which present rather complete specifications. The API

contains classes with approximately 1,600 lines of con-

tracts. One class was chosen for each category by sam-

pling: out of 113 classes and interfaces, a representative

subset of six files was picked. The analyses showed at

least one type of bad smell in every exemplar, with a total

of seven distinct smells. Despite the focus of this API

being verification rather than DBC, it is assumed that

they will be read and manipulated by developers, so

detecting the presence of bad smells is desirable.

Discussions about related work and conclusions are

included into Sections VI and VII, respectively. The con-

tributions of this paper are summarized as follows.

● A catalog of DBC code smells with JML as the target

contract language (Section IV).
● Evaluation of bad smells in student projects, and

classes from the JML models API (Section V).

II. JAVA MODELING LANGUAGE

The JML is a behavioral interface specification lan-

guage [4] tailored to Java. JML serves to describe contracts

with static information that appears in Java declarations

and how they act. JML specifications are written in the

form of special annotation comments that are inserted

directly into the source code of programs. These comments

must begin with an at-sign (@) and can be written in two

ways: by using //@ ... or /*@ ... @*/. The following

fragment shows contracts for a class Person [5].

The model modifier introduces specification-only fields,
which are also called model fields. A model field should

be thought of as an abstraction of a set of concrete fields

used in the implementation of this type and its subtypes

[6]. In the class Person, there are two model fields,

name and weight, representing the concrete attributes
_name and _weight via the represents clause,
respectively.

The invariant clause defines predicates that are
true in all visible states of the objects of a class. The

invariant in the example has public visibility and estab-

lishes that the value of the attribute _name is different
from an empty string, and that the value of _weight is
greater than or equal to zero.

JML uses the requires clause to specify the obliga-
tions of the caller of a method regarding what must be

true to call a method. For instance, the precondition of the

method addKgs insists on the added value to be greater

than zero. A postcondition specifies the implementor’s

obligation regarding what must be true at the end of a

method, just before it returns to the caller. In JML, the

ensures clause introduces a postcondition. In the
example, it asserts that the value of the attribute _weight
at the end of the method addKgs is equal to the value of
the expression \old(weight + kgs). The value of an
expression in the pre-state of a method can be referred

to by using the \old operator.
The assignable clause gives a frame axiom for a

specification. Only the locations named and their associa-

tions can be assigned during method execution. In the

method addKgs, it is stated that only weight is change-

A Catalog of Bad Smells in Design-by-Contract Methodologies with Java Modeling Language

Thiago Viana 253 http://jcse.kiise.org

able. The JML modifier purely indicates that the method

does not have any side effects and can hence appear in

specifications.

III. MOTIVATING EXAMPLE

In this section, the importance of finding bad smells

is expressed, as are the kinds of problems bad smells

may bring to DBC/JML developers. As an example,

consider a document editing system for LaTeX-based [7]

papers. The system allows papers to be written in col-

laboration using a Web-based interface. The internal struc-

ture includes classes, such as Document, Section,
and Author, among others. A simplified UML class dia-

gram is shown in Fig. 1.

This diagram shows that a Document can be written by

1 main Author and can have contributions from 0 or

many other Authors. The diagram also shows that a Doc-

ument can have many versions. Also, a Document is

composed of Sections, and each Section can have 0 or

many Commands (such as links or buttons), Figures, or

Tables.

Focusing the investigation on the Document class,
version control is a system requirement. Versions can be

defined as a list of objects in the first document object.

This can be implemented as a private field in Java.

In order to specify a contract for users of this class,

developers may introduce invariants over Document
objects. A plausible invariant is to avoid states in which a

document appears more than once in the list of versions.

Following the DBC approach, the invariant is visible to

other objects, so it can be specified with a JML public

invariant. As long as versions is a private field, JML

offers a modifier that allows the field to appear in public

invariants called spec_public, as shown in the next
fragment.

The contract for Document is syntactically correct
and provides the desired constraint. However, careful

analysis raises a number of issues with encapsulation.

● As contracts are part of the public interface, clients

will use them as a basis for development. In this case,

clients rely on implementation details for the class, as

the ArrayList field is visible.
● The contract relies on a private field when using the

Document class. This scenario may cause classes to
be harder to change, without affecting other classes.

Alternative designs can be applied to avoid encapsula-

tion issues, with the same practical issues. The JML lan-

guage allows developers to hide the internal details of a

class from a contract and its clients. Model fields can be

used for this purpose, representing a more abstract view

of class data, as they can be freely viewed by clients. The

implementation for the model field must be provided by

concrete, possibly private fields. The represents clause
allows for the expression of functional abstractions between

a model and concrete fields. Model field types can be

defined as immutable objects provided by the JML mod-

els API [8], which provides classes that emulate mathe-

matical objects (including sets, bags, and sequences). These

types are appropriate for abstract fields. In this example,

the JMLEqualsSet class is used, which implements a

set of values.

A concrete definition for this model field must be pro-

vided by the class developer. Here, a JMLEqualsSet
object is built from the elements in the concrete _versions
list. The following represents clause illustrates this
approach, with a model method. Model methods provide

a useful abstraction for procedures and functions that will

only be used within JML contracts. In this case, the

method copies every element from the concrete list to the

mathematical set, so the model field can be evaluated.Fig. 1. Online document editing system.

Journal of Computing Science and Engineering, Vol. 7, No. 4, December 2013, pp. 251-262

http://dx.doi.org/10.5626/JCSE.2013.7.4.251 254 Thiago Viana

In this particular scenario, the method may be overkill,

with a very operational way of filling the mathematical

set. It would be hard to write and maintain such code for

numerous methods. This clause can be refactored to a

better solution by using methods from the JML models

API itself (the getVersions method).

Regarding method contracts, in the class Section,
the beginEdition method locks the section for edit-

ing by request by a given author. The preconditions state

that the section is unlocked, and the requesting author is

included as an author for the given document (which can-

not be null). As a postcondition, the contract guarantees

that the section is locked after the call.

The repetitive use of fields in the specification can be

observed, even though the correct behavior is provided.

As creating a model field for each concrete field clutters the

class, an alternative can be found for better encapsulating

internal details. A good option is using a public getter

method (and if one does not exist, it could be created).

In this example, several correct contract parts can be

considerably improved for DBC contexts. These “bad

smells” are catalogued in this work, so that efforts

towards effective DBC development can take advantage

of tool support for detecting these smells, and refactor-

ings can then be more effectively employed.

IV. A CATALOG OF BAD SMELLS IN DBC
DEVELOPMENT

In this section, a catalog of bad smells in contracts that

result from DBC development is provided. As shown in

the example, smells are not necessarily hazardous, but

they show evidence of possible errors and hard-to-change

programs. For a more concise and uniform explanation of

bad smells and for ease of identification, a specific for-

mat for smell descriptions was adopted. The format used

for the catalog was inspired by code smells from Wake’s

book on refactoring [9]. Smells are described with the

following properties.

● Brief Description: Description emphasizing the

problems behind the smell.
● Symptoms: Clear signs of the described bad smells

in contracts and code.
● Example: Example of the bad smell, using the sys-

tem described in Section III.
● Causes: Likely ways of having this smell present in

the program.
● What to do: Ideas on how to refactor the program for

eliminating or minimizing the impact of the smell

(although this is not the focus in this paper).
● Example Solution: A possible refactored program.
● Payoff: Advantages in avoiding these smells in terms

of general quality of DBC development.
● Contraindications: Situation in which removing the

smell may not be desirable.

Focused was centered on JML as a contract language,

so smells are in principle specific to particular JML con-

structs. Still, they are likely to appear in similar con-

structs in other contract languages (JML, Eiffel, Spec#

[10], among others). Six smells are described in detail:

Open Doors, Field Obsession, Illogical Contracts, Com-

plexity Magnetism, Long Specs, and Specification Over-

kill. The set of DBC smells catalogued so far are

presented in Table 1.

A. Bad Smell: Open Doors

1) Brief Description

Contracts that expose private data, threatening encap-

sulation.

2) Symptoms

Indication is given with direct access to private or protected

A Catalog of Bad Smells in Design-by-Contract Methodologies with Java Modeling Language

Thiago Viana 255 http://jcse.kiise.org

fields (or methods) in public contracts. In JML, it is made

explicit with the spec_public or spec_protected
modifiers. The forall operator represents a universal quan-

tifier, with three components separated by semicolons:

variable declaration, variable delimitation, and Boolean

expression with the predicate.

3) Example

4) Causes

Developers need a way to specify which components

of internal data must be modified in method contracts or

invariants that have visibility that is less restricted than

data. Also, this can be caused by a lack of abstraction

when specifying methods.

5) What To Do

In cases where fields must be used to indicate state

changes and contracts, a model field can be created, rep-

resenting a hidden concrete field. The contracts must then

be changed to use the model field, replacing accesses to

the concrete field. However, if many fields are used in

contracts, developers should consider using query meth-

ods instead (see Section IV-B). Regarding methods,

model methods can be used, in which code delegates the

call to concrete methods.

6) Solution to the Example

7) Payoff

Encapsulation is promoted, even in the presence of

contracts. Removing this smell tends to bring abstraction

to contracts, which is highly desirable in DBC.

8) Contraindications

Excess model fields tend to increase the complexity of

contracts. In this case, query methods should be a better

option. In some fields, however, query methods might not

be usable due to some encapsulation requirement in the

application. In this case, the contracts should be revised,

as they could possibly not expose these particular fields.

B. Bad Smell: Field Obsession

1) Brief Description

There are an excessive number of direct field accesses

in contracts, making these contracts more sensitive to

changes in internal data.

2) Symptoms

Excess direct access to several fields from a class in

contracts.

3) Example

For the setSections method, the contract includes

precondition and postcondition and includes the JML

assignable clause, which indicate frame conditions

(variables that may possibly be assigned values). The

invariant refers to fields and sections.

4) Causes

In general, this smell happens when developers avoid

using methods, perhaps fearing long specifications. This

can also happen regardless of concrete or model fields.

Table 1. Catalog of Design-by-Contract smells

Name Brief description

Open Doors Contracts that expose private data

Field Obsession Many direct accesses to variables in

contracts

Illogical Contracts Contracts with logics that gets too

hard to understand

Complexity Magnetism Complex definition of model fields

Long Specs Unnecessary heavyweight style

Specification Overkill Excess of redundant specifications

Journal of Computing Science and Engineering, Vol. 7, No. 4, December 2013, pp. 251-262

http://dx.doi.org/10.5626/JCSE.2013.7.4.251 256 Thiago Viana

5) What To Do

Mainly, solutions must include the use of query (acces-

sor) methods. In Eiffel, for instance, field accesses auto-

matically behave as query methods. JML does not offer

this feature, since it would demand changes in the seman-

tics of the programming language (Java).

6) Solution to the Example

7) Payoff

Besides adding abstraction to contracts, this solution

usually makes the contract easier to understand.

8) Contraindications

The contract can get considerably long if too many

fields are accessed. In this scenario, contracts can be

rewritten with improvements by using auxiliary model

methods (see Section IV-C).

C. Bad Smell: Illogical Contracts

1) Brief Description

Contracts defining predicates with logics that become

too hard to understand.

2) Symptoms

The bad smell Illogical Contracts is identified by long

specifications where a chain of Boolean predicates is pre-

sented. Long and chained Boolean predicates are hard to

read and understand, especially when universal quantifi-

cations are used.

3) Example

In the Document class, there may be an invariant stat-

ing that the sections for older versions of a document

must be present in the later versions. In JML, this must be

written as two universal quantifications.

4) Causes

Some complex specifications may be required. This

might be more common in JML, as it follows Java syntax

with extensions, which makes Boolean predicates ver-

bose. Abstraction in this scenario is a challenge.

5) What To Do

Declaration of JML-pure Boolean methods that repre-

sent predicates. In JML, pure methods are required to

have no side effects. The methods are used in contracts as

auxiliary predicates. In this context, naming is important

for improving readability.

6) Solution to the Example

In JML, auxiliary predicates can be declared as model

methods.

7) Payoff

The solution helps raising abstraction in contracts,

making them easier to read and edit.

8) Contraindications

In some situations, it may be necessary to create too

many methods, which can make the specification longer

than the original. Therefore, it is sensible to revise the

contracts in order to find better ways to rewrite complex

statements (which is not always possible). In addition, if

predicates become substantially complex due to the

application domain, separation and comments in natural

language can be used, especially if the contracts will not

be subject to tool-assisted verification. For instance, JML

allows for predicates in natural language, although they

are not considered for reasoning.

A Catalog of Bad Smells in Design-by-Contract Methodologies with Java Modeling Language

Thiago Viana 257 http://jcse.kiise.org

D. Bad Smell: Complexity Magnetism

1) Brief Description

Model fields with complex definitions in represents
clauses.

2) Symptoms

When using abstract model fields, the represents
clause may become very complex. This scenario hinders

readability and maintainability, especially for class imple-

menters (clients should not have access to represents).

3) Example

In this case, the versionsSet model field has a

complex definition, which is encapsulated in a model

method. This method copies each element of the concrete

ArrayList to the abstract set.

4) Causes

This situation arises depending on how hard it is to

abstract from concrete data. Also, the complexity of spe-

cific data structures is critical (for example, collection

manipulation from Java).

5) What To Do

For simple collections, the JML model API offers meth-

ods like convertFrom. The mathematical toolkit of the

language should support this solution. In cases that result

in complex model methods that abstract away details from

internal data, other auxiliary methods can be extracted

(analogous to the Extract Method refactoring [1]).

6) Solution to the Example

7) Payoff

Contracts become easier to write and understand by

implementers. Abstraction in general is higher. Despite

this example, a variation of this smell can happen in the

opposite situation: a one-line definition of represents
can become too complex. In this case, the model method

should be included.

E. Bad Smell: Long Specs

1) Brief Description

Unnecessary heavyweight style in DBC applications,

covering every possible behavior for methods.

2) Symptoms

In JML, developers may use two styles of contracts

(specification cases): heavyweight or lightweight. For the

first style, in contrast to the latter, JML expects that

developers only omit parts of the specification when the

default is appropriate, specifying behavior completely.

This is indicated by the clauses normal_behavior and
exceptional_behavior. An excess of heavyweight
contracts obstructs good DBC development, decreasing

abstraction and readability.

3) Example

In the contract, the also keyword indicates the com-

plementarity of specification cases. The signals_only
and signals constructs define the Java exceptions pos-
sibly thrown by the method in exceptional behavior.

4) Causes

Sometimes, it is required that specifications be repli-

cated, with the intention of specifying complex contracts.

Also, developers may wish to document every situation

in which exceptions are thrown.

5) What To Do

In DBC, lightweight contracts are much more desir-

able, as both clients and implementers should often refer

to contracts as documentation. In this scenario, excep-

Journal of Computing Science and Engineering, Vol. 7, No. 4, December 2013, pp. 251-262

http://dx.doi.org/10.5626/JCSE.2013.7.4.251 258 Thiago Viana

tional behaviors should be removed, omitting exceptional

situations that are not relevant for implementing the pro-

gram. Also, the normal_behavior clause can be
removed.

6) Solution to the Example

7) Payoff

More importantly, better readability and maintainability

of contracts. In avoiding heavyweight specifications in

DBC, another benefit arises in that developers eliminate

the risk of introducing specification mistakes by acci-

dently defining overlapping specification cases (superpo-

sition of preconditions that do not make clear which one

is valid for a given state).

8) Contraindications

When JML is applied in complete tool-assisted verifi-

cation or test-case generation, covering all specification

cases is critical. In this scenario, this is certainly not con-

sidered a bad smell.

F. Bad Smell: Specification Overkill

1) Brief Description

Excess of redundant specifications.

2) Symptoms

Repeated use of redundant clauses, such as ensures_
redundantly or requires_redundantly, which
means that the contract was already valid in the given

context, usually for documentation purposes. Even differ-

ent predicates with the same semantic are allowed.

3) Example

4) Causes

This bad smell may appear to be caused by needs for

repeating specifications with the intention of explaining

something complex. But, in other contexts, this can

expose a lack of attention to the existing predicates.

5) What To Do

Mostly, redundant clauses can be removed, because the

redundancy might show the existence of an unnecessary

specification. In some cases, a good revision of predi-

cates is enough. Also, it is better to use the simplest

forms of the specifications, because if it is possible to re-

explain something more simply, it is always best to use

this simpler explanation in a single turn.

6) Solution to the Example

7)Payoff

The specification becomes clearer and more easily

understood. Inconsistencies are avoided as redundancy is

removed.

8) Contraindications

In a number of situations, the use of ensures_
redundantly is justified as a good way to explain
complex contracts. In these cases, it is important to look

for ways to leave contracts in the simplest form possible.

There is still an alternative of removing Smell Section

IV-C.

V. EVALUATION

With the goal of finding evidence of bad smells

appearing in contracts, an attempt was made to detect

their characterization in systems with considerable use of

contracts. First, graduate students in medium-sized

projects were observed, and an account of the experience

is provided in Section V-A. The students had little experi-

ence with formal methods. In another experiment, con-

tracts written by more experienced developers were

analyzed for similar smells. Some classes annotated with

contracts from the JML models API were used, and Sec-

tion V-B shows the results.

A. JML Student Projects

The first idea of gathering bad smells initially developed

from observing five graduate student projects for JML-

A Catalog of Bad Smells in Design-by-Contract Methodologies with Java Modeling Language

Thiago Viana 259 http://jcse.kiise.org

based subjects at the University of Pernambuco (Brazil)

in the Systems Specification and Verification course. Tar-

geting diverse application domains, students had to write

contracts and code from previously elicited requirements,

during three small iterations. Requirements were mod-

eled using Alloy [11] as a formal specification language.

In the first iteration, it was observed that students com-

plained mostly about the JML syntax, since they had

never experienced the language or DBC, but the source

code did not present noticeable issues regarding encapsu-

lation and readability. Some projects did not properly

apply model fields for implementing abstract concepts,

so the Open Doors smell was often found in initial ver-

sions of these projects.

In later iterations, students had to evolve previously writ-

ten contracts in order to accommodate modifications from

changing requirements. This scenario is commonly seen in

real project settings, so it is likely to occur if DBC is used

in such a context. Contract maintenance became more

difficult as the end of the projects drew near, and some

smells were more recurrent, such as Open Doors, Long

Specs, Field Obsession, and Illogical Contracts. Results

from these projects feature most smells from the catalog.

B. JML Models API Analysis

Greater evidence of how often the smells can appear in

applications was found when the JML models API source

code was analyzed [8]. Classes of this API offer an ample

spectrum of specifications. For instance, a single class,

JMLEqualsSequence, contains more than 1,600 lines

of specification code. The classes were developed by

experienced JML developers (some of whom are JML

pioneers), and they certainly constitute one of the richest

available sources of contracts, considering open source

systems. Currently, most well-designed DBC applica-

tions with JML employ classes from this API in con-

tracts, showing its substantial importance.

The API offers classes for abstract specifications, as

they emulate mathematical objects (such as sets, bags, and

sequences). It includes more than one hundred classes

and interfaces, all of which contain JML contracts. From

this API, Collection objects are equally divided in Object,

Value, and Equals collections. Object collections treat

components as object references, while Value collections

have values, for which any inserted object is cloned from

the original reference. Equals collections are hybrid,

using the Java equals methods. The API also offers

classes that represent Relations and Maps [6]. In the anal-

ysis, with the intent of analyzing a representative subset

of classes, one API class was chosen with no previous

inspection for each of the following categories.

● Basic type: JMLChar,
● Composite type: JMLString,

● Object collection: JMLObjectSet,
● Value collection: JMLValueBag,
● Equals collection: JMLEqualsSequence,
● Interface: JMLCollection,
● Relation: JMLEqualsToEqualsRelation.

These six classes are representative in the sense that

other classes present very similar specifications for dif-

ferent types, so the same smells are likely to be detected.

The results of manual detection of bad smells in the

selected classes are shown in Table 2. These numbers are

an interpretation of the analyzed specifications, under the

DBC perspective. Developers of the API aim at complete

mathematical specifications (which they call “equational

reasoning”), not DBC development. Still, developers must

inspect these specifications in order to gain deep under-

standing of the API services, so avoiding bad smells can

be relevant.

The number of detected bad smells is proportional to

the class size, which is not surprising, since smells are

more frequent in bigger contracts. In JML, due to its use

of Java expressions, more complex predicates tend to

become expressions that are several lines long. Further

on in the results, some of the catalogued smells were not

found. On the other hand, other smells are recurrent:

Long Specs, Illogical Contracts, and Open Doors. It is

believed that these smells and their variations are the

most commonly found in practice (the same result was

observed in students’ projects).

Among the selected classes, JMLValueBag happens
to exhibit more smells than any other. For instance, the

protected field size is made available to contracts by

spec_public. Fields in this class are constants since
the JML mathematical types are immutable [8].

Exemplars of Field Obsession are seen in method post-

conditions, such as with the getMatchingEntry. This
method, which declares non-pure methods that have no

assignable clause, also present the Purely Nothing smell.

Journal of Computing Science and Engineering, Vol. 7, No. 4, December 2013, pp. 251-262

http://dx.doi.org/10.5626/JCSE.2013.7.4.251 260 Thiago Viana

Instances of Long Specs and Specification Overkill are

found in some method contracts, as in convertFrom.

The intent with this evaluation was only to provide evi-

dence that smells are present in applications with con-

tracts in JML. Still, experiments must be carried out in

order to point out the most frequent smells and reason

about causes that lead to smells in DBC code.

VI. RELATED WORK

Fowler et al. [1] presented 22 bad code smells as indi-

cations that there are issues in code that can be solved by

refactoring. Among the bad smells presented, one of the

most commonly found in practice is Duplicate Code. All

the code smells are textually described along with varia-

tions of them. For each variation, there are suggestions of

refactorings to solve the smell. Wake [9] presented bad

smells by means of a standard format which introduces

the smell name, symptoms, and causes, and also indi-

cated what to do, the payoff, and contraindications. In

this paper, a similar structure has been adopted. More-

over, Wake classified code smells into categories accord-

ing to their relation to classes, regarding whether they can

occur within classes or between classes. In addition,

Wake added six bad code smells to the work by Beck and

Fowler.

Work that closely resembles bad smells for DBC can

be found in the book by Mitchell and McKim [12]. They

list principles that should be followed by DBC develop-

ers for achieving quality contracts. These principles

include spatial organization of contracts (by separating

queries from commands, or basic from derived queries),

as well as better ways to write precondition or postcondi-

tion (based on query methods), and guidelines for writing

effective invariants. It can be assumed that failure in ful-

filling these principles probably results in bad smells. In

the present catalog, it is believed that bad smells like

Illogical Contracts and Field Obsession result from a

lack of similar principles. Regarding the JML models

API, previous analysis has found errors in specifications

(as the case with JMLObjectSet [13]). It is believed that

bad smells can lead to errors if not addressed during evo-

lution activities.

Mantyla et al. [14] developed a taxonomy of bad code

smells, classifying the 22 code smells proposed by

Fowler into 7 higher-level categories, which describe

code that has grown so that it cannot be handled, unnec-

essary code that can be removed, and code that hinders

the software modification, among other characteristics.

Furthermore, they developed an empirical study that pro-

vides an initial correlation between code smells. For

instance, they observed in the software studied that the

Message Chains smells correlate with the opposite smell

Middle Man. A similar study with bad smells in DBC

would surely have correlations, like Long Specs and

Illogical Contracts.

Garcia et al. [15] defined architectural smells as a

commonly used architectural decision that negatively

impacts system quality. One of their causes can be the

applications of design abstraction at the wrong level of

modularity. As an example, the Scattered Functionality

smell is related to a system in which multiple components

realize the same high-level concern, but some of them

also are responsible for orthogonal concerns. This smell

indicates a violation of the separation of concern principle.

Tsantalis et al. [16] presented the JDeodorant Eclipse

Table 2. Case study results

Classes from the API Approx. contract size (LOC) Detected smells

JMLChar 155 Long Specs

JMLString 105 Long Specs

JMLObjectSet 508 Open Doors, Specification Overkill, Long Specs

JMLValueBag 821
Open Doors, Field Obsession, Specification Overkill, Long Specs,

Illogical Contracts, Purely Nothing

JMLEqualsSequence 1,600 Long Specs, Illogical Contracts

JMLEqualstoEqualsRelation 645 Long Specs

JMLCollection 44 -

API: application programming interface, LOC: line of contract, JML: Java Modeling Language.

A Catalog of Bad Smells in Design-by-Contract Methodologies with Java Modeling Language

Thiago Viana 261 http://jcse.kiise.org

plug-in which identifies Type-Checking bad smells in

Java source code. They presented two cases of smells. In

the first, an attribute of a class acts as a type field; in the

second case, there is a conditional statement that casts a

reference from a superclass type to the actual subclass

type in order to invoke methods of a specific subclass.

The code smells are removed by application of the refac-

torings “Replace Type Code with State/Strategy” and

“Replace Conditional with Polymorphism” [1]. Follow-

ing a similar approach, it is believed that DBC smells can

be automatically detected as well.

Regarding smells that can appear when using languages

with modeling purposes, Correa et al. [17] defined OCL

[18] smells as constructions present in OCL expressions

that affect the understandability or maintainability of

OCL specifications. The Implies Chain OCL smell, for

example, corresponds to OCL expression in the form b1

implies (b2 implies b3), which can be solved by the appli-

cation of a refactoring Replace Implies Chain by a Single

Implication. Other OCL smells are associated, for exam-

ple, with expressions that are bigger than necessary (Ver-

bose Expression), or with the use of OCL operations to

give the type of objects on which the result of an expres-

sion depends (Type Related Conditionals). These smells

are mostly related to the DBC smell Illogical Contracts.

An experimental study was also presented to evaluate the

impact of smells and refactorings on the understandability

of OCL specifications. The study indicated the negative

impact of OCL smells. Cabot and Teniente [19] proposed

a set of equivalence transformation rules for OCL expres-

sions. They did not present OCL smells explicitly, but the

reason for defining the rules was that a designer may not

define constraints the best way according to intents like

understandability or efficiency. Reynoso et al. [20] investi-

gated the hypothesis that the structural properties of OCL

expressions affect the understandability and reduce

maintainability. They defined a suite of measures for the

structural properties of OCL expressions. In particular,

they investigated the relationship between object cou-

pling in OCL expressions and the understandability and

modifiability of these expressions. For instance, they

found that the number of classes used in navigations, and

the number of collection operations, influence under-

standability efficiency. The number and length of naviga-

tions influence modification tasks. They considered that

the results are empirical evidence that the coupling defined

in OCL expressions by means of navigations and collec-

tion operations is correlated with the maintainability of

OCL expressions.

VII. CONCLUSION

This paper has presented a catalog of bad smells that

recur in DBC development with JML. Bad smells are not

bugs, but might bring problems in the readability and

extensibility of contracts, offering opportunities for refac-

toring. The paper’s focus is not on refactoring, although

actions were suggested for removing bad smells as part of

their description.

The main source of bad smells in DBC was a number

of graduate student projects that involved writing con-

tracts at several development stages. In order to evaluate

the recurrence of these smells in more robust projects,

several classes from the JML models API were manually

analyzed. Currently, most well-designed DBC applications

with JML employ classes from this API in contracts,

showing its substantial importance. The most recurrent

smells were detected in the analyzed classes, showing

that they can happen in real development contexts.

From the catalogued smells, it can be concluded that

good DBC contracts are succinct and abstract. For effec-

tive DBC development, contracts must be a source of

readable information for implementers and clients. Most

importantly, they should not threaten encapsulation in the

specified program. Otherwise, good programming prac-

tices can be made useless if the associated contracts

expose internal data. Also, contract size is often an

important alarm for the need of simplification, as shown

in the results of the evaluation.

This catalog of DBC smells is the first step towards the

definition of techniques for refactoring programs with

contracts. Based on previous results [21, 22] in synchro-

nizing model and program refactorings, future work will

include the investigation of how refactored contracts

affect programs (and vice-versa). The work with bad

smells will point out targets for refactoring in the context

of DBC.

Regarding extensions of the bad smells catalog, further

steps will consider more advanced JML constructs (such

as refinement), in addition to issues related to behavioral

subtyping. Moreover, plans have been established to

build a tool support to automatically detect the smells and

to analyze other classes of the JML API.

REFERENCES

1. M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts,

Refactoring: Improving the Design of Existing Code, Bos-

ton, MA: Addison-Wesley, 1999.

2. B. Meyer, “Design by contract,” Advances in Object-Ori-

ented Software Engineering, D. Mandrioli and B. Meyer,

editors, New York, NY: Prentice-Hall, 1992, pp. 1-50.

3. B. Meyer, Eiffel: The Language, New York, NY: Prentice-

Hall, 1992.

4. L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry,

G.T. Leavens, K. R. M. Leino, and E. Poll, “An overview of

JML tools and applications,” International Journal on Soft-

ware Tools for Technology Transfer, vol. 7, no. 3, pp. 212-

232, 2005.

5. G. T. Leavens and Y. Cheon, “Design by contract with

JML,” ftp://ftp.cs.iastate.edu/pub/leavens/JML/jmldbc.pdf.

Journal of Computing Science and Engineering, Vol. 7, No. 4, December 2013, pp. 251-262

http://dx.doi.org/10.5626/JCSE.2013.7.4.251 262 Thiago Viana

6. G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D.

Cok, P. Muller, J. Kiniry, P. Chalin, D. M. Zimmerman, and

W. Dietl, “JML reference manual,” Technical Report, 2008.

7. L. Lamport, LATEX: A Documentation Preparation System:

User’s Guide and Reference Manual, Reading, MA: Addi-

son-Wesley, 1994.

8. G. T. Leavens, C. Ruby, and A. L. Baker, “Package org.jml-

specs.models,” http://www.eecs.ucf.edu/~leavens/JML-release/

javadocs/org/jmlspecs/models/package-summary.html.

9. W. C. Wake, Refactoring Workbook, Boston, MA: Addison-

Wesley, 2003.

10. M. Barnett, K. R. M. Leino, and W. Schulte, “The spec#

programming system: an overview,” in Proceedings of the

International Workshop on Construction and Analysis of

Safe, Secure, and Interoperable Smart Devices, Marseille,

France, 2004, pp. 49-69.

11. D. Jackson, Software Abstractions: Logic, Language and

Analysis, Cambridge, MA: MIT Press, 2006.

12. R. Mitchell and J. McKim, Design by Contract, by Exam-

ple, Boston, MA: Addison-Wesley, 2002.

13. A. Darvas and P. Muller, “Faithful mapping of model classes

to mathematical structures,” IET Software, vol. 2, no. 6, pp.

477-499, 2008.

14. M. Mantyla, J. Vanhanen, and C. Lassenius, “A taxonomy

and an initial empirical study of bad smells in code,” in Pro-

ceedings of the International Conference on Software Main-

tenance, Amsterdam, The Netherlands, 2003, pp. 381-384.

15. J. Garcia, D. Popescu, G. Edwards, and N. Medvidovic,

“Identifying architectural bad smells,” in Proceedings of the

13th European Conference on Software Maintenance and

Reengineering, Kaiserslautern, Germany, 2009, pp. 255-258.

16. N. Tsantalis, T. Chaikalis, and A. Chatzigeorgiou, “JDeodor-

ant: identification and removal of type-checking bad smells,”

in Proceedings of the 12th European Conference on Soft-

ware Maintenance and Reengineering, Athens, Greece,

2008, pp. 329-331.

17. A. Correa, C. Werner, and M. Barros, “An empirical study

of the impact of OCL smells and refactorings on the under-

standability of OCL specifications,” in Proceedings of the

ACM/IEEE 10th International Conference on Model Driven

Engineering Languages and Systems, Nashville, TN, 2007,

pp.76-90.

18. Object Management Group (OMG), UML 2.0 OCL Specifi-

cation, OMG Adopted Specification ptc/03-10-14, 2003.

19. J. Cabot and E. Teniente, “Transformation techniques for

OCL constraints,” Science of Computer Programming, vol.

68, no. 3, pp. 179-195, 2007.

20. L. Reynoso, M. Genero, M. Piattini, and E. Manso, “Does

object coupling really affect the understanding and modify-

ing of OCL expressions?” in Proceedings of the ACM Sym-

posium on Applied Computing, Dijon, France, 2006, pp.

1721-1727.

21. T. L. Massoni, R. Gheyi, and P. Borba, “An approach to

invariant-based program refactoring,” in Proceedings of the

3rd Workshop on Software Evolution through Transforma-

tions: Embracing the Change, Natal, Brazil, 2006.

22. T. Massoni, R. Gheyi, and P. Borba, “Formal model-driven

program refactoring,” in Proceedings of the 11th Interna-

tional Conference on Fundamental Approaches to Software

Engineering, Budapest, Hungary, 2008, pp. 362-376.

Thiago Affonso de Melo Novaes Viana

Thiago Affonso de Melo Novaes Viana has earned his Sc.D. in Education from UFPB in 2003, M.S. in Soft
Engineering from UPE in 2010, and B.A. in Computer Science from IFPE in 2008. He is a Professor in Computer
Science at Federal University of Pernambuco (Universidade Federal de Pernambuco, UFPE) from 2011.

