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Introduction:  Noble gases observed in Martian 

meteorites stem from a complex set of sources: Martian 

interior [1], Martian atmosphere [2], a ‘crush’ compo-

nent [3], fractionated Martian atmosphere [1], cosmic 

irradiation [4] and (fractionated) terrestrial air contam-

ination [5]. Disentangling those sources and the path-

ways of incorporation of the Martian fractionated noble 

gas component has the potential to reveal environmen-

tal conditions on Mars throughout its history, but espe-

cially during Noachian times through the oldest of the 

Martian meteorites - ALH84001 - and in the mid-

Amazonian through the nakhlites.   

Fractionation of noble gases under natural condi-

tions is a multi-step process that can involve dissolu-

tion into a fluid, adsorption onto a mineral surface, and 

incorporation into a crystal. Each step might involve 

fractionation (e.g., [6]). In addition, impact metamor-

phism is known to incorporate noble gases in a non-

fractionating way [7]. Understanding the processes and 

their contribution to the final signatures found will en-

able disentangling terrestrial contamination from Mar-

tian signatures - and understanding the Martian signa-

tures themselves. We present experimental results from 

mineral alteration under diagenetic conditions that al-

low tracking the noble gas incorporation alongside the 

mineralogical changes and fluid characteristics in a 

well-defined setting.  
 

Table 1. Chemical composition of the phases used 

in the experiments. Ol=forsterite, Pyx=augite, 

Plag=andesine, BS = blasting sand, referred to as 

glass. Our runs contained a variation of combinations 

from pure minerals 1:1 mixtures and mixtures of three 

or all four phases. In this abstract we mainly focus on 

olivine and plagioclase from mixtures.  
 

 Ol Pyx Plag BS 

SiO2 41.8 52.1 63.4 31.84 

Al2O3  2.4 21.6 4.43 

TiO2  0.6  0.33 

FeO 7.1 9.5 0.06 55.03 

CaO 0.1 19.1 2.3 1.48 

MgO 56.7 14.6  0.78 

Na2O  0.3 8.6 0.38 

K2O   3.8 1.23 

Experimental:  We conducted experiments in the 

Mars brines experimental apparatus at NASA Ames 

[8,9]. Here we present data from the short 1 month 

experiment with mineral mixtures composed of olivine, 

pyroxene and plagioclase (Tab. 1), and a three month 

experiment with mineral mixtures composed of the 

same minerals but added ‘blasting sand’, which is a 

glass of fayalitic composition and serves as Martian 

analogue Fe
2+

-source (Tab. 1). 50 g of each mineral or 

mineral mixture was immersed in 100 ml purified water 

at 35 °C under a synthetic Martian atmosphere (98 % 

CO2, 2 % Ar, 30 ppm Kr and 8 ppm Xe (
40

Ar/
132

Xe = 

9236, 
84

Kr/
132

Xe = 7.93)). We studied the mineralogi-

cal changes in the samples through SEM (FEI Quanta 

650 with EDS IXRF Systems 550i) and Raman (Hori-

ba/Jobin Yvon LabRam HR Evolution; Excitation 

Wavelength:  532 nm) investigations at SwRI San An-

tonio, and details of the clay formation in olivine 

through FIB-TEM (JEOL 2100, 200 kV) at University 

of Leicester. Mineral chemistry of unreacted minerals 

was obained on a Cameca SX 100 at the OU (Tab. 1). 

Results:  We investigate three parameters of our 

experimental products: the alteration mineralogy, the 

fluid chemistry and the noble gas composition.  

Mineralogy.  Mineralogical changes include etch 

pits, compositional changes and the formation of al-

teration phases. Compositional changes of mineral sur-

faces vary with the co-dissolving minerals. Comparing 

olivines on their own to olivines in mixtures with py-

roxene and plagioclase show significant differences, 

most of which can be explained by the ion activity sup-

plied by co-dissolving minerals in the mixtures (Fig. 1). 

Olivine dissolves incongruently [10], with Mg being 

leached first and an SiO2-rich layer forming on the sur-

face. This is observed in our experiments (Fig. 1). Fur-

ther changes depend on the nature of the mineral mix in 

the reaction vessel. Ca and Al are enriched on surfaces 

of olivines in mixed mineral reactions. Al-enrichment 

is especially prominent in the olivine + plagioclase run, 

indicating phyllosilicate formation with Al from the 

plagioclase on the surface of the olivine. Interestingly, 

Fe is leached from the olivine’s surface, if no other Fe-

bearing mineral is present, but no change is observed, 

if pyroxene as another Fe-source is present (Fig. 1). 

1889.pdf47th Lunar and Planetary Science Conference (2016)



Pyroxene

N
a

2
O

M
g

O

A
l2

O
3

S
iO

2

C
a

O

F
e

O

w
t.
-%

 o
x
id

e

0

10

20

30

40

50

60

unreacted pyroxene

pyroxene reacted with water

Olivine

N
a

2
O

M
g

O

A
l2

O
3

S
iO

2

C
a

O

F
e

O

w
t.
-%

 o
x
id

e

0

10

20

30

40

50

60

unreacted olivine

olivine reacted in water

olivine and Plagioclase reacted in water

olivine + pyroxene + plagioclase reacted in water  
Fig. 1. Chemical changes at mineral surfaces of 

Run 1.  
 

The reactions of pyroxenes are similar. If pyroxene 

dissolves on its own, Mg is depleted at the surface, but 

in the presence of olivine an enrichment is observed. 

The chemical changes are consistent with our Ra-

man observations of additional SiO2 bonds at the min-

eral surfaces, which we attribute to the formation of a 

silica layer, and Ca-Mg-carbonate formation.  

Investigation of visible phyllosilicate veinlets in ol-

ivine from M18 supports the changes observed in the 

chemistry. Numerous alteration veins were identified in 

the olivine (Mg# = 0.93).  These are up to 20 mm wide 

in anastomosing networks. The veins contain clay-like 

silicate material with lesser amounts of iron oxide.  The 

clay has ~46-54 wt% SiO2 and 40-49 wt% MgO, 2-9 

wt% FeO (average Mg# = 0.95). HR-TEM analysis 

showed a largely amorphous nature to the clay but with 

crystalline patches.  These have lattice spacings of 3.8 Å 

and are consistent with a serpentine structure where the 

combined tet-oct repeating unit is ~7.6 Å. 

Fluids.  The surface chemical and mineralogical 

changes are in direct connection to the fluid composi-

tions observed. Most notably, Fe and Al are below 

detection limit in all solutions, which supports the ob-

servation of oxide and phyllosilicate precipitation. Si is 

highest in the pure olivine sample fluid, which also has 

the highest Mg-concentration. This indicates dissolu-

tion, but also limited precipitation of secondary phases 

compared to mineralogically mixed samples. 

A preliminary look at the noble gases.  Noble gases 

will be measured at the Lunar and Planetary Laborato-

ry, using stepwise heating protocols and a cold trap to 

separate the heavy noble gases. Preliminary data, pre-

sented here, were obtained at The Open University 

using a MAP215 mass spectrometer and infrared-laser 

stepwise heating protocols, but no cold trap. The step-

wise heating allows separation of adsorbed air, more 

tightly bound noble gases, as might be incorporated 

into etched surfaces or within alteration mineral for-

mation, and noble gases sited within crystals, e.g., ra-

diogenic 
40

Ar in feldspars. We note that the plagioclase 

has about a factor of 2 more 
40

Ar and a factor of 3 

more 
132

Xe than the olivine, but only slightly more 
84

Kr. We therefore assume that the differences are not 

due to different surface areas, but the higher 
40

Ar stems 

from radiogenic 
40

Ar, and the higher Xe might be the 

result of differences in surface adsorption or secondary 

mineral formation. We will measure in more detail to 

disentangle those processes, which can include adsorp-

tion but also incorporation into the newly formed sur-

face, as has been modeled by [11].  

 
Fig. 2. Stepwise heating noble gas measurements 

of olivine (top) and plagioclase (bottom) from run 1.  
 

Conclusions: Systematic changes in mineral sur-

face chemistry show that SiO2 is generally enriched on 

dissolving mineral surfaces, but all other element en-

richments or depletions depend on the environment. 

Most interestingly, the alteration on olivine from the 

dissolution of pure olivine has led to the formation of 

Mg-rich serpentine and iron oxide veins in just one 

month of alteration.  
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