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Abstract Using geometric methods borrowed from the theory of Kleinian groups, we inter-
pret the parabola theorem on continued fractions in terms of sequences of Möbius transfor-
mations. This geometric approach allows us to relate the Stern–Stolz series, which features
in the parabola theorem, to the dynamics of certain sequences of Möbius transformations
acting on three-dimensional hyperbolic space. We also obtain a version of the parabola the-
orem in several dimensions.

Keywords Conical limit points · continued fractions · hyperbolic geometry · Möbius
transformations · parabola theorem · Stern–Stolz series
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1 Introduction

The object of this paper is to discuss the parabola theorem on continued fractions using
the geometry of Möbius transformations. The parabola theorem is about infinite complex
continued fractions (henceforth described more briefly as continued fractions) which are
quantities

K(an|bn) =
a1

b1 +
a2

b2 +
a3

b3 + · · ·

,

where the coefficients ai and b j are complex numbers, and none of the coefficients ai are 0.
Let tn(z) = an/(bn + z) and Tn = t1 ◦ · · · ◦ tn (in future we just write Tn = t1 · · · tn). The con-
tinued fraction K(an|bn) is said to converge if the sequence Tn(0) converges within the
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2 Ian Short

extended complex plane. Excepting Section 4, we will assume that b j = 1 for j = 1,2, . . . ,
in which case tn(z) = an/(1+ z) and the continued fraction will be denoted by K(an|1).

The first version of the parabola theorem was proven by Scott and Wall in [19]. Shortly
after, more general versions were found by Leighton and Thron [13] and Paydon and Wall
[17]. The theorem was extended by some of these authors in a number of subsequent papers
including [14,21], and the statement of the theorem from [21] is recast in the books by Jones
and Thron [11, Thm. 4.42] and Lorentzen and Waadeland [15, Thm. 3.43]. It is this version
of the parabola theorem that we work with. Let Pα be the region given by

Pα =
{

z ∈ C : |z|−Re[ze−2iα ]6 1
2 cos2

α
}
,

where −π/2 < α < π/2, shown in Fig. 1.1, which is bounded by a parabola.

The parabola theorem Suppose that an ∈ Pα and an 6= 0 for n = 1,2, . . . . Then the odd and
even sequences T2n−1(0) and T2n(0) of the continued fraction K(an|1) both converge. They
converge to the same limit, and hence K(an|1) converges, if and only if the series∣∣∣∣ 1

a1

∣∣∣∣+ ∣∣∣∣a1

a2

∣∣∣∣+ ∣∣∣∣ a2

a1a3

∣∣∣∣+ ∣∣∣∣a1a3

a2a4

∣∣∣∣+ ∣∣∣∣ a2a4

a1a3a5

∣∣∣∣+ · · ·
diverges.

− 1
4

2α

Pα

Fig. 1.1 The parabolic region Pα =
{

z ∈ C : |z|−Re[ze−2iα ]6 1
2 cos2 α

}

Inspired by the philosophy set out by Beardon in [3], our aim is to understand in detail
what the conditions of the parabola theorem say about the sequence of Möbius transforma-
tions Tn by using properties of Möbius transformations that are often employed in the theory
of Kleinian groups. In particular, we wish to determine the behaviour of the sequence Tn not
only at distinguished points such as 0 or ∞, but on the whole of the extended complex plane.
To do this, we use the topological group structure of the group of Möbius transformations
and the isometric action of this group on three-dimensional hyperbolic space. This approach
gives insight into the parabola theorem and allows us to make precise statements about con-
vergence. Another strength of the geometric approach is that it generalises easily to several
dimensions, although for simplicity we state our results in the complex plane. Only at the
very end of the paper do we discuss the parabola theorem in higher dimensions.
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Our strategy is to split the parabola theorem in two, and deal with the condition an ∈ Pα ,
and convergence of the series∣∣∣∣ 1

a1

∣∣∣∣+ ∣∣∣∣a1

a2

∣∣∣∣+ ∣∣∣∣ a2

a1a3

∣∣∣∣+ ∣∣∣∣a1a3

a2a4

∣∣∣∣+ ∣∣∣∣ a2a4

a1a3a5

∣∣∣∣+ · · · , (1.1)

separately. To understand the significance of the condition an ∈ Pα , we use a recent version
of the Hillam–Thron theorem, a theorem that was originally proven in [7]. The type of
argument we use for this part of the parabola theorem is well known to continued fraction
theorists, so we describe it only briefly, in Section 3.

The main result of this paper (Theorem 1.1, below) is about the significance of the
series (1.1), which is known as the Stern–Stolz series. It converges only if the sequence
a1,a2, . . . grows sufficiently quickly. When an is large the map tn(z) = an/(1+ z) is close
to the map sn(z) = an/z, in a sense that will later be made precise. Thus it will be shown
that if the Stern–Stolz series converges, then we can understand the behaviour of the maps
Tn using the simpler maps Sn = s1 · · ·sn.

Theorem 1.1 (to follow) gives a host of equivalent conditions involving the maps Sn and
Tn. Let us summarise the terminology used in that theorem. We denote the upper half-space
model of three-dimensional hyperbolic space by H3 (this is the upper half of R3) and we
denote the hyperbolic metric on H3 by ρ . We identify the ideal boundary of H3 with the
extended complex plane C∞ in the usual way. The closure H3 of H3 in R3 ∪{∞} consists
of H3 together with its ideal boundary C∞. The chordal metric χ is a complete metric on
H3; it is the metric inherited from the Euclidean metric on the unit ball by stereographic
projection. The group of Möbius transformations acts on C∞, and it can also act on H3. In
fact, it is the full group of conformal isometries of H3. We can measure the distance between
two Möbius transformations using the supremum metric χ0, which is given by

χ0( f ,g) = sup
z∈C∞

χ( f (z),g(z)).

Let j = (0,0,1). A point p in C∞ is said to be a backward limit point of a sequence
F1,F2, . . . of Möbius transformations if there is a subsequence of F−1

1 ( j),F−1
2 ( j), . . . that

converges to p in the chordal metric. A backward limit point p is a conical limit point
of F1,F2, . . . if there is a geodesic γ in H3 with one end-point at p and a subsequence of
F−1

1 ( j),F−1
2 ( j), . . . that lies within a bounded hyperbolic distance of γ and converges to

p in the chordal metric. The sequence F1,F2, . . . is said to be a rapid escape sequence if
∑n exp[−ρ( j,Fn( j))] converges. These are familiar concepts from Kleinian group theory.
They will be explained in more detail later on.

Theorem 1.1 The following are equivalent:

(i)
∣∣∣∣ 1
a1

∣∣∣∣+ ∣∣∣∣a1

a2

∣∣∣∣+ ∣∣∣∣ a2

a1a3

∣∣∣∣+ ∣∣∣∣a1a3

a2a4

∣∣∣∣+ ∣∣∣∣ a2a4

a1a3a5

∣∣∣∣+ · · · converges;

(ii) ∑n χ0(TnS−1
n ,Tn+1S−1

n+1) converges;

(iii) ∑n χ (Tn(0),Tn+2(0)) converges, and the sequences T2n−1(0) and T2n(0) converge to
two distinct values;

(iv) ∑n ρ
(
TnS−1

n ( j),Tn+1S−1
n+1( j)

)
converges;

(v) Sn is a rapid escape sequence, and ∞ is its only backward limit point;
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(vi) Tn is a rapid escape sequence, and ∞ is its only backward limit point and its only
conical limit point.

Further, if (i)–(vi) hold, then there are distinct points p and q such that T2n−1 → p and
T2n→ q locally uniformly on C, and T2n−1(∞)→ q and T2n(∞)→ p.

The equivalence of (i) and (iii) has been proven already by Lane and Wall [12] in a direct
algebraic fashion. Our shorter proof uses geometric properties of Möbius transformations.

Theorem 1.1 shows that if the Stern–Stolz series converges, then the sequences Sn and
Tn have extremely strong convergence properties, even though the sequence Tn(0) itself does
not converge.

As a consequence of Theorem 1.1, we obtain the following version of the parabola
theorem.

Theorem 1.2 Let H be a half-plane that contains 0, but does not contain −1, even in its
closure. Suppose that tn(H)⊆ H for n = 1,2, . . . . If the Stern–Stolz series∣∣∣∣ 1

a1

∣∣∣∣+ ∣∣∣∣a1

a2

∣∣∣∣+ ∣∣∣∣ a2

a1a3

∣∣∣∣+ ∣∣∣∣a1a3

a2a4

∣∣∣∣+ ∣∣∣∣ a2a4

a1a3a5

∣∣∣∣+ · · ·
converges, then there are distinct points p and q such that T2n−1 → p and T2n → q locally
uniformly on C, and T2n−1(∞)→ q and T2n(∞)→ p. If the Stern–Stolz series diverges then
Tn converges locally uniformly on H, and almost everywhere on C∞, to a single point.

It is well known (and will be shown in the next section) that the condition tn(H) ⊆ H
in this theorem is equivalent to the condition that the coefficients an lie within a parabolic
region such as that shown in Fig. 1.1. The more substantial difference between Theorem 1.2
and other statements of the parabola theorem, including the one given earlier, is that Theo-
rem 1.2 contains detailed information about the behaviour of the sequence Tn. Some of the
new features of this theorem could be extracted from existing accounts of the parabola the-
orem; however, other accounts tend to focus on the continued fraction K(an|1) rather than
describing in detail the dynamics of the sequence Tn.

In Section 6 we provide an example to show that when the Stern–Stolz series diverges,
the sequence Tn may diverge on an uncountable, dense subset of C∞ \H.

2 A geometric explanation of the parabolic region

Let Hα be the half-plane given by

Hα =
{
− 1

2 + eiα z : Re[z]> 0
}
,

and recall that Pα denotes the parabolic region{
z ∈ C : |z|−Re[ze−2iα ]6 1

2 cos2
α
}
.

The following theorem, illustrated by Fig. 2.1, is well known (see, for example, [15, Thm. 3.43]).

Theorem 2.1 The Möbius transformation tn(z) = an/(1+ z) satisfies tn(Hα) ⊆ Hα if and
only if an ∈ Pα .
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− 1
2

tn

α

Hα

− 1
4

2α

an

Pα

Fig. 2.1 tn(Hα )⊆ Hα if and only if an ∈ Pα

Theorem 2.1 allows us to apply the Hillam–Thron theorem to help prove the parabola
theorem in the usual manner, as we shall see in the next section. Here we give a new geomet-
ric proof of Theorem 2.1, which illuminates some of the features of the parabola theorem
needed later, and, using only a few basic properties of Möbius transformations, it gets us off
to an undemanding start.

Let H be an open Euclidean half-plane that contains 0, but does not contain −1, even in
its closure. The boundary line ∂H must cut the real axis somewhere between −1 and 0. If it
cuts at −1/2 then H is one of the half-planes Hα , but there is no need for us to assume that.
Let t(z) = a/(1+ z), where a 6= 0. Denote by u the inverse point of −1 in the boundary line
∂H. This is the image of −1 under reflection in ∂H. Inverse points of lines and circles are
preserved by Möbius transformations, which implies that t(u) is the inverse point of t(−1)
in t(∂H). Now, we know that t(−1) = ∞, which implies that t(∂H) is a Euclidean circle
with centre t(u). We also know that t(∂H) contains the point t(∞) = 0.

The half-plane H and its image disc t(H) are shown in Fig. 2.2.

t

t(H)
−1 0

u

t(u)

H

Fig. 2.2 The disc t(H) is contained within the half-plane H
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The radius of t(H) is |t(u)− 0| = |t(u)|. Since the centre of t(H) is t(u) it follows that
t(H)⊆ H if and only if t(u) lies in the set

{z ∈ C : |z|6 d(z,∂H)} ,

where d denotes the Euclidean metric. This is a region bounded by a parabola with focus 0
and directrix ∂H. Since t(u) = a/(1+u), we have proved the following theorem.

Theorem 2.2 The Möbius map t(z) = a/(1+ z) satisfies t(H)⊆ H if and only if the coeffi-
cient a lies in the parabolic region

P = (1+u){z ∈ C : |z|6 d(z,∂H)} .

The parabolic region P has focus 0 and directrix (1+u)∂H.
Let us now show that this theorem implies Theorem 2.1. We can write H in the form

s+ eiαK, where K is the right half-plane, and −1 < s < 0 and −π/2 < α < π/2. Let τ

denote the reflection in ∂H, which is given by

τ(z) = s+ e2iα (s− z̄) .

Then u = τ(−1), and so

1+u = 1+ τ(−1) = 2(s+1)eiα cosα.

Also, for z ∈ H,

d(z,∂H) = 1
2 |z− τ(z)|= Re[(z− s)e−iα ] = Re[ze−iα ]− scosα.

Therefore

P = 2(s+1)eiα cosα
{

z ∈ C : |z|6 Re[ze−iα ]− scosα
}

=
{

z ∈ C : |z|−Re[ze−2iα ]6−2s(s+1)cos2
α
}
.

When s =−1/2, so that H is the half-plane Hα =− 1
2 + eiαK, we find that

P =
{

z ∈ C : |z|−Re[ze−2iα ]6 1
2 cos2

α
}
,

which is the parabolic region Pα . Therefore Theorem 2.2 does indeed imply Theorem 2.1.
Notice that the expression −2s(s+1) takes its maximum value, namely 1/2, when s =

−1/2. This shows that, for a given angle α , Pα contains the parabolic region{
z ∈ C : |z|−Re[ze−2iα ]6−2s(s+1)cos2

α
}
,

no matter the value of s. This explains why the original statement of the parabola theorem
given near the beginning of the introduction cannot be improved by allowing s to take values
other than −1/2.

Let us finish this section with some remarks on related geometric constructions that
arise in the theory of continued fractions. We have seen that a Möbius transformation t(z) =
a/(1+ z) satisfies t(H) ⊆ H if and only if a belongs to a parabolic region P. Suppose now
that H is a Euclidean disc instead of a half-plane. It is only possible for t to map H within
itself if−1 /∈H. Given this condition, it can be shown that t(H)⊆H if and only if a belongs
to a region bounded by a Cartesian oval, and there is a corresponding theorem in contin-
ued fraction theory called the oval theorem, which was first proven by Lorentzen (formerly
known as Jacobsen) and Thron in [9].

Another possibility is that H is the complement of a Euclidean disc, which contains 0 in
its interior. In this case, t(H) ⊆ H if and only if a belongs to another region bounded by a
Cartesian oval. This case has received little if any attention.
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3 The Hillam–Thron theorem

In this section we explore the ramifications of the condition an ∈ Pα from the parabola
theorem further. Theorem 2.1 tells us that an ∈ Pα if and only if tn(z) = an/(1+ z) satisfies
tn(Hα)⊆ Hα . We also know that tn maps −1 to ∞ and ∞ to 0. The point −1 lies outside the
closure Hα of Hα , ∞ lies on the boundary ∂Hα of Hα , and 0 lies inside Hα .

More generally, consider a sequence fn of Möbius transformations that satisfies fn(D)⊆
D, fn(c) = b, and fn(b) = a for n = 1,2, . . . , where D is an open disc in C∞, and a, b, and c
are three points with a ∈ D, b ∈ ∂D, and c /∈ D. These properties are illustrated in Fig. 3.1.
The sequence tn is of this type, as we can see by choosing a= 0, b=∞, c=−1, and D=Hα .

c b a

fn

D

Fig. 3.1 The map fn satisfies fn(D)⊆ D, fn(c) = b, and fn(b) = a

The next theorem shows that, given such a collection of maps fn, the sequence Fn =
f1 · · · fn has strong convergence properties. This theorem uses the chordal metric χ on C∞,
which is the metric inherited from the Euclidean metric on the unit sphere by stereographic
projection. We could instead use the spherical metric on the unit sphere, which is additive
along geodesics, but the chordal metric is simpler algebraically. It is given by

χ(z,w) =
2|z−w|√

1+ |z|2
√

1+ |w|2
, χ(z,∞) =

2|z|√
1+ |z|2

,

where z,w 6= ∞.

Theorem 3.1 Suppose that D is an open disc and a, b, and c are three points with a ∈ D,
b ∈ ∂D, and c /∈ D. Suppose also that f1, f2, . . . is a sequence of Möbius transformations
that satisfies fn(D) ⊆ D, fn(c) = b, and fn(b) = a for n = 1,2, . . . . Let Fn = f1 · · · fn. Then
∑n χ(Fn(a),Fn+2(a)) converges. Furthermore, F2n−1 converges locally uniformly on D, and
almost everywhere on C∞, to a point p, and F2n converges locally uniformly on D, and
almost everywhere on C∞, to a point q.

The first assertion of the parabola theorem, that the odd and even sequences T2n−1(0)
and T2n(0) both converge, follows immediately from Theorem 3.1.

Theorem 3.1 is a corollary of the following version of the Hillam–Thron theorem, which
is [20, Thm. 4.1] paraphrased. This procedure of deducing a result such as Theorem 3.1 from
a version of the Hillam–Thron theorem is standard within the continued fractions literature;
the only original part of Theorem 3.1, which we need later, is the statement about almost
everywhere convergence.
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Theorem 3.2 Suppose that D is an open disc, u is a point in D, v is a point that lies outside
D, and g1,g2, . . . is a sequence of Möbius transformations with gn(D) ⊆ D and gn(v) = u
for n = 1,2, . . . . Then the sequence Gn = g1 · · ·gn satisfies

(i) ∑n χ(Gn(u),Gn+1(u)) converges;
(ii) Gn converges locally uniformly on D to a point p;

(iii) Gn converges everywhere but on a set of Hausdorff dimension at most 1 to p.

We can now prove Theorem 3.1.

Proof (of Theorem 3.1) Recall that f1, f2, . . . is a sequence of Möbius transformations that
satisfies fn(D) ⊆ D, fn(c) = b, and fn(b) = a for n = 1,2, . . . . Let gn = f2n−1 f2n. Then
gn(D) ⊆ f2n−1(D) ⊆ D and gn(c) = f2n−1(b) = a. It follows from Theorem 3.2 that the
series ∑n χ(F2n(a),F2n+2(a)) converges and F2n converges locally uniformly on D, and ev-
erywhere on C∞ but on a set of Hausdorff dimension at most one, to a point p. A similar
argument can be applied to F2n−1. The result follows, because sets of Hausdorff dimension
one have Lebesgue measure 0. ut

As the proof indicates, each assertion about almost everywhere convergence in Theo-
rem 3.1 can be replaced by a stronger assertion about convergence on a set whose comple-
ment has Hausdorff dimension at most one. The same can be said of Theorem 1.2. There is
an example in Section 6 that shows that Fn may diverge on an uncountable, dense subset of
C∞ \D.

We conclude this section by discussing other theorems of a similar nature to Theo-
rem 3.1. Suppose that we continue to assume that the sequence fn satisfies fn(D) ⊆ D,
fn(c) = b, and fn(b) = a, but adjust the configuration of a, b, c, and D. A few possibilities
are shown in Fig. 3.2.

c b a

fn
D

c
b

a

fn
D

c b a

fn
D

Fig. 3.2 Each map fn satisfies fn(D)⊆ D, fn(c) = b, and fn(b) = a

The left-hand configuration arises in the oval theorem, which was referred to near the
end of the previous section. There are other theorems corresponding to the other configu-
rations: some trivial, and some no less significant, from this perspective, than the parabola
theorem.

4 The Stern–Stolz series

For this section only we consider more general continued fractions of the form K(an|bn),
where the coefficients bn need not necessarily equal 1. Our goal is to understand the geo-
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metric significance of the Stern–Stolz series∣∣∣∣b1
1
a1

∣∣∣∣+ ∣∣∣∣b2
a1

a2

∣∣∣∣+ ∣∣∣∣b3
a2

a1a3

∣∣∣∣+ ∣∣∣∣b4
a1a3

a2a4

∣∣∣∣+ ∣∣∣∣b5
a2a4

a1a3a5

∣∣∣∣+ · · · , (4.1)

which features heavily in the continued fractions literature. Roughly speaking, we will show
that the series measures how close TnS−1

n is to a Möbius transformation. Here, as usual,
tn(z) = an/(bn + z) and Tn = t1 · · · tn, and sn(z) = an/z and Sn = s1 · · ·sn.

Let us first go over some of the theory of Möbius transformations, which can be found
in [2,18]. Using the Poincaré extension, the group M of Möbius transformations acts on
the upper half-space model H3 of three-dimensional hyperbolic space. Each Möbius trans-
formation is a conformal isometry of H3, and every conformal isometry of H3 arises in this
fashion. Let j = (0,0,1). A useful formula for the hyperbolic metric ρ on H3 is

sinh2 1
2 ρ(u,v) =

|u− v|2

4(u · j)(v · j)
, (4.2)

where u · j is the scalar product of u and j (that is, if u = (u1,u2,u3) then u · j = u3).
We also make use of the metric of uniform convergence χ0 on M , given by

χ0( f ,g) = sup
z∈C∞

χ( f (z),g(z)).

The metric space (M ,χ0) is complete, and it is a topological group. The metric χ0 is right-
invariant. It is not left-invariant; however, given a Möbius transformation h, we can define
M(h) = exp[ρ( j,h( j))], and then

1
M(h)

χ0( f ,g)6 χ0(h f ,hg)6 M(h)χ0( f ,g) (4.3)

for all Möbius maps f and g.
The rest of this section is devoted to proving the following theorem, which itself will

later be used to prove Theorem 1.1.

Theorem 4.1 The following are equivalent:

(i)
∣∣∣∣b1

1
a1

∣∣∣∣+ ∣∣∣∣b2
a1

a2

∣∣∣∣+ ∣∣∣∣b3
a2

a1a3

∣∣∣∣+ ∣∣∣∣b4
a1a3

a2a4

∣∣∣∣+ ∣∣∣∣b5
a2a4

a1a3a5

∣∣∣∣+ · · · converges;

(ii) ∑n χ0(TnS−1
n ,Tn+1S−1

n+1) converges;

(iii) ∑n χ (Tn(0),Tn+2(0)) converges, and the sequences T2n−1(0) and T2n(0) converge to
two distinct values;

(iv) ∑n ρ
(
TnS−1

n ( j),Tn+1S−1
n+1( j)

)
converges.

Further, if (i)–(iv) hold, then there is a Möbius transformation g such that χ0(Tn,gSn)→ 0
as n→ ∞.

For continued fractions of the form K(an|1), this theorem gives part of Theorem 1.1.
For continued fractions of the form K(1|bn), this theorem gives [5, Thm. 1.7].

Define, for each positive integer n,

λ2n−1 =
a2a4 · · ·a2n−2

a1a3 · · ·a2n−1
, λ2n =

a1a3 · · ·a2n−1

a2a4 · · ·a2n
. (4.4)
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Then ∑n |bnλn| is the Stern–Stolz series. Observe that

S2n−1(z) =
1

λ2n−1z
, S2n(z) = λ2nz, S−1

2n−1(z) =
1

λ2n−1z
, S−1

2n (z) =
z

λ2n
.

Let τn(z) = z+bnλn for n = 1,2, . . . , and let σ(z) = 1/z.

Lemma 4.1 We have

Sn−1tnS−1
n =

{
στnσ if n is odd,
τn if n is even.

Proof Let βn(z)= z+bn. Then tn = snβn. Therefore Sn−1tnS−1
n = SnβnS−1

n . It is now straight-
forward to check the odd and even cases separately. ut

We now give a pair of lemmas that will be used to handle statement (ii) of Theorem 4.1,
which involves the metric χ0. We denote the identity Möbius transformation by I.

Lemma 4.2 Let τ(z) = z+µ . Then

χ0(τ, I) =

{
2 if |µ|> 2,

8|µ|
4+|µ|2 if |µ|6 2.

Proof Observe that

χ0(τ, I) = sup
z∈C

2|µ|√
1+ |z|2

√
1+ |z+µ|2

.

If |µ| > 2 then this supremum attains the value 2 (the largest possible value of χ0) at
z = − 1

2 µ(1+
√

1−4/|µ|2). If |µ| 6 2 then the supremum can be obtained by finding the
minimum of (1+ |z|2)(1+ |z+µ|2) over C. The minimum occurs at z =−µ/2, and we omit
the details. ut

Recall that τn(z) = z+bnλn and σ(z) = 1/z. The map σ is a chordal isometry because,
acting on the unit sphere, it is a rotation by π that interchanges the north and south poles. It
follows that χ0(σ f ,σg) = χ0( f ,g) for any Möbius maps f and g.

Lemma 4.3 We have χ0(SnT−1
n ,Sn−1T−1

n−1) = χ0(τn, I).

Proof Using right-invariance we obtain

χ0(SnT−1
n ,Sn−1T−1

n−1) = χ0(Sn,Sn−1tn) = χ0(I,Sn−1tnS−1
n ).

When n is even the result follows immediately from Lemma 4.1. When n is odd, Lemma 4.1
tells us that χ0(I,Sn−1tnS−1

n ) = χ0(I,στnσ). Since χ0 is right-invariant, and σ is a chordal
isometry, it again follows that χ0(I,Sn−1tnS−1

n ) = χ0(I,τn). ut

Next we give a pair of lemmas that will be used to handle statement (iv) of Theorem 4.1,
which involves the hyperbolic metric ρ . Recall that j = (0,0,1).

Lemma 4.4 Let τ(z) = z+µ . Then 2sinh 1
2 ρ(τ( j), j) = |µ|.

Proof This follows immediately from the hyperbolic metric formula (4.2). ut

On H3, the map σ(z) = 1/z acts as an inversion in the unit sphere followed by a reflec-
tion in the plane x2 = 0. In particular, σ fixes the point j.
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Lemma 4.5 We have ρ(TnS−1
n ( j),Tn+1S−1

n+1( j)) = ρ(τn( j), j).

Proof Using left-invariance we obtain

ρ(TnS−1
n ( j),Tn−1S−1

n−1( j)) = ρ(tnS−1
n ( j),S−1

n−1( j)) = ρ(Sn−1tnS−1
n ( j), j).

When n is even the result follows immediately from Lemma 4.1. When n is odd, Lemma 4.1
tells us that ρ(Sn−1tnS−1

n ( j), j) = ρ(στnσ( j), j). Since ρ is left-invariant, and σ( j) = j, it
again follows that ρ(Sn−1tnS−1

n ( j), j) = ρ(τn( j), j). ut

Next, we develop some preparatory results for dealing with statement (iii) of Theo-
rem 4.1. We need the cross ratio [a,b,c,d] of four points a, b, c, and d in C∞. It is given
by

[a,b,c,d] =
(a−b)(c−d)
(a− c)(b−d)

,

where the usual conventions are adopted if one of the points a, b, c, or d is ∞. It is well
known that if g is a Möbius transformation then

[g(a),g(b),g(c),g(d)] = [a,b,c,d].

Remember that tn(z) = an/(bn + z) and Tn = t1 · · · tn.

Lemma 4.6 We have
Tn(0)−Tn−2(0)
Tn(0)−Tn−1(0)

=
bn

an
T−1

n−1(∞).

Proof The result follows by expanding the identity

[tn(0),∞,0,T−1
n−1(∞)] = [Tn(0),Tn−1(∞),Tn−1(0),∞]

and observing that Tn−1(∞) = Tn−2(0). ut

Recall the sequence λn defined by (4.4).

Corollary 4.1 We have

Tn(0)−Tn−2(0)
Tn(0)−Tn−1(0)

=−λn−1λnT−1
n−1(∞)T−1

n (∞)+1.

Proof Notice that

T−1
n (∞) = t−1

n (T−1
n−1(∞)) =−bn +

an

T−1
n−1(∞)

.

Therefore
bn

an
T−1

n−1(∞) =− 1
an

T−1
n−1(∞)T−1

n (∞)+1.

The result follows, because λn−1λn = 1/an. ut

We need one final lemma, on the convergence of series.

Lemma 4.7 Suppose that zn is a sequence of complex numbers such that ∑n |znzn+1− 1|
converges. Then z2n−1 converges to a non-zero limit z, and z2n converges to 1/z.
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Proof As the sum ∑n |z2nz2n+1− 1| converges, we see that the product z2z3 · · ·z2n+1 con-
verges to a non-zero value, and as the sum ∑n |z2n−1z2n − 1| converges, we see that the
product z1z2 · · ·z2n converges to a non-zero value. Thus z2n+1 converges to a non-zero num-
ber z, and z2n→ 1/z because znzn+1→ 1. ut

Finally we can prove Theorem 4.1.

Proof (of Theorem 4.1) We begin by proving the final statement of Theorem 4.1. That state-
ment follows from (ii), because (ii) implies that the sequence TnS−1

n is a Cauchy sequence
in (M ,χ0), and hence there is a Möbius transformation g such that χ0(TnS−1

n ,g)→ 0. Then
right-invariance of χ0 implies that χ0(Tn,gSn)→ 0.

Next we show that the series ∑n χ0(TnS−1
n ,Tn+1S−1

n+1) converges if and only if the series
∑n χ0(SnT−1

n ,Sn+1T−1
n+1) converges. Suppose that ∑n χ0(TnS−1

n ,Tn+1S−1
n+1) converges. Using

(4.3) we have

χ0(SnT−1
n ,Sn+1T−1

n+1) = χ0(SnT−1
n Tn+1S−1

n+1,SnT−1
n TnS−1

n )

6 M(SnT−1
n ) χ0(Tn+1S−1

n+1,TnS−1
n ).

We have seen that TnS−1
n converges to a Möbius map g. Since (M ,χ0) is a topological

group it follows that SnT−1
n converges to g−1. Therefore the sequence M(SnT−1

n ) is bounded
above. Hence ∑n χ0(SnT−1

n ,Sn+1T−1
n+1) converges. This argument can be run in reverse, so

∑n χ0(TnS−1
n ,Tn+1S−1

n+1) converges if and only if ∑n χ0(SnT−1
n ,Sn+1T−1

n+1) converges.
Lemmas 4.2 and 4.3 tell us that ∑n χ0(SnT−1

n ,Sn+1T−1
n+1) converges if and only if the

Stern–Stolz series ∑n |bnλn| converges. The equivalence of (i) and (ii) follows immediately.
Lemmas 4.4 and 4.5 tell us that the series ∑n ρ(TnS−1

n ( j),Tn+1S−1
n+1( j)) converges if and

only if ∑n |bnλn| converges, which implies that (i) and (iv) are equivalent.
Next we show that (ii) implies (iii). Observe first that

χ(Tn(0),Tn+2(0)) = χ(Tn+1(∞),Tn+2(0)).

If n is odd then S−1
n+1(∞) = ∞ and S−1

n+2(∞) = 0, and if n is even then S−1
n+1(0) = ∞ and

S−1
n+2(0) = 0. Therefore χ(Tn+1(∞),Tn+2(0)) is less than

χ
(
Tn+1S−1

n+1(0),Tn+2S−1
n+2(0)

)
+χ

(
Tn+1S−1

n+1(∞),Tn+2S−1
n+2(∞)

)
.

Since both terms in this expression do not exceed χ0
(
Tn+1S−1

n+1,Tn+2S−1
n+2

)
we see that

χ(Tn(0),Tn+2(0))6 2χ0
(
Tn+1S−1

n+1,Tn+2S−1
n+2
)
.

Therefore ∑n χ(Tn(0),Tn+2(0)) converges. Recall from the start of this proof that TnS−1
n

converges to a Möbius map g. It follows that T2n−1(0)→ g(∞) and T2n(0)→ g(0), and these
two limits are distinct.

It remains to show that (iii) implies (i). We can assume, by adjusting b1 if necessary,
that the two distinct limits p and q of the sequences T2n−1(0) and T2n(0) are finite. Since
Euclidean and chordal metrics are locally equivalent, and ∑n χ(Tn(0),Tn−2(0)) converges,
we deduce that ∑n |Tn(0)−Tn−2(0)| converges. Furthermore, because |Tn(0)−Tn−1(0)| →
|p−q| we see that

∑
n

∣∣∣∣Tn(0)−Tn−2(0)
Tn(0)−Tn−1(0)

∣∣∣∣
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converges. Let zn = λnT−1
n (∞). Then, from Corollary 4.1, we find that ∑n |znzn+1−1| con-

verges. Hence, by Lemma 4.7, the sequence |zn| is bounded below by a positive constant M.
Next, from Lemma 4.6 we have that ∑n

∣∣∣ bn
an

T−1
n−1(∞)

∣∣∣ converges. Now

|bnλn|=
∣∣∣∣ bn

λn−1an

∣∣∣∣= ∣∣∣∣ 1
zn−1

∣∣∣∣ ∣∣∣∣bn

an
T−1

n−1(∞)

∣∣∣∣6 1
M

∣∣∣∣bn

an
T−1

n−1(∞)

∣∣∣∣ .
Therefore the Stern–Stolz series ∑n |bnλn| converges. ut

5 Proof of Theorem 1.1

Before we prove Theorem 1.1 let us revise a few concepts from the theory of Kleinian groups
that apply to continued fractions. These ideas, within the context of Kleinian groups, can be
found in [16].

Recall that j = (0,0,1). A sequence F1,F2, . . . of Möbius transformations is restrained if
the sequence Fn( j) accumulates only on the ideal boundary C∞ of H3. This terminology was
introduced by Lorentzen (formerly Jacobsen) and Thron in [10]. Our definition is taken from
[1] and [3, Sec. 7], and it differs from (but is equivalent to) Lorentzen’s original definition.
The sequence Fn is restrained if and only if ρ(Fn( j), j)→ ∞ as n→ ∞. Since ρ(Fn( j), j) =
ρ( j,F−1

n ( j)) it follows that F−1
n is also restrained. We are often interested in sequences

Fn for which Fn( j) converges to a point on the ideal boundary C∞ (in the chordal metric).
Such sequences are said to be generally convergent; they were first studied in the context of
continued fractions by Lorentzen in [8].

A backward limit point of a restrained sequence Fn is an accumulation point of the
backward orbit F−1

n ( j). That is, a point p in C∞ is a backward limit point of Fn if there is a
subsequence of F−1

1 ( j),F−1
2 ( j), . . . that converges to p in the chordal metric. The backward

limit set Λ(Fn) of Fn is the collection of all backward limit points. A forward limit point
of Fn is an accumulation point of the forward orbit F1( j),F2( j), . . . , although we have little
use for this definition. If F1,F2, . . . are all the elements of a Kleinian group then, because
groups are closed under taking inverses, backward limit points and forward limit points are
the same. This is why there is no distinction between backward and forward limit points in
the theory of Kleinian groups.

The point j has no special significance in the definitions so far, and we can replace it
with any other point in H3 without consequence. In particular, the set of accumulation points
of F−1

1 (w),F−1
2 (w), . . . is Λ(Fn) for any point w in H3. In fact, providing a point p in C∞ is

not a forward limit point of Fn, the set of accumulation points of F−1
1 (p),F−1

2 (p), . . . is also
Λ(Fn) (see, for example, [1, Thm. 3.5]).

A point p in C∞ is a conical limit point of the restrained sequence Fn if there is a hy-
perbolic geodesic γ with one end-point at p and a subsequence of F−1

1 ( j),F−1
2 ( j), . . . that

lies within a bounded hyperbolic distance of γ and converges to p in the chordal metric. El-
ementary hyperbolic geometry can be used to show that this definition is independent of the
choice of geodesic γ , and j can be replaced by any other point in H3. The conical limit set
Λc(Fn) of Fn is the set of all conical limit points of Fn. This set is contained in the backward
limit set of Fn. The conical limit set is important in continued fraction theory because of the
following theorem due to Aebischer [1, Thm. 5.2] .

Theorem 5.1 Let Fn be a restrained sequence of Möbius transformations and let p ∈ C∞.
Then χ(Fn( j),Fn(p))→ 0 if and only if p /∈Λc(Fn).
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We also record a corollary of this theorem [1, Prop. 5.3]. Remember that a sequence Fn
is generally convergent if Fn( j) converges in the chordal metric to a point on C∞.

Corollary 5.1 If Fn is a generally convergent sequence of Möbius transformations then,
providing it has more than one backward limit point, Fn diverges everywhere on its conical
limit set.

A sequence F1,F2, . . . of Möbius transformations is said to be a rapid escape sequence
if, for a point w in H3, the sum ∑n exp[−ρ(w,Fn(w))] converges. Once again, this definition
is independent of the particular point w chosen. We use the phrase “rapid escape” because
the forward orbit of a rapid escape sequence at a point w approaches the ideal boundary par-
ticularly quickly. Clearly, rapid escape sequences are restrained. The Hausdorff dimension
of the conical limit set of a rapid escape sequence does not exceed one (see [16, Cor. 9.3.2]).
That is the reason why we obtain convergence everywhere but on a set of Hausdorff dimen-
sion at most one in the proof of Theorem 3.1. This issue is covered in more detail in [20].
Rapid escape sequences, and the related concept of the critical exponent, play an important
role in Kleinian group theory (see [16]).

Lemma 5.1 Let Fn and Gn be two sequences of Möbius transformations such that Fn is
restrained and GnF−1

n converges uniformly to another Möbius transformation g. Then Gn is
also restrained and

(i) p is a backward limit point of Fn if and only if p is a backward limit point of Gn;
(ii) p is a conical limit point of Fn if and only if p is a conical limit point of Gn;

(iii) Fn is a rapid escape sequence if and only if Gn is a rapid escape sequence.

Proof Since GnF−1
n ( j) → g( j) it follows that the sequence ρ(GnF−1

n ( j), j) is bounded
above. But ρ(F−1

n ( j),G−1
n ( j)) = ρ(GnF−1

n ( j), j), so the sequence ρ(F−1
n ( j),G−1

n ( j)) is
bounded above. It is now immediate that Gn is restrained and (i), (ii), and (iii) hold. ut

Recall that sn(z) = an/z and Sn = s1 · · ·sn. Remember also the definition of λn given in
(4.4), and the formulas for S−1

n that follow that definition.

Lemma 5.2 If S−1
n ( j) has modulus greater than 1 then

exp
[
−ρ(S−1

n ( j), j)
]
= |λn|.

Proof If µ is a complex number with modulus greater than 1 then ρ(µ j, j) = log |µ|. Thus
exp[−ρ(µ j, j)] = 1/|µ|. Since S−1

n ( j) = j/|λn|, we see that exp
[
−ρ(S−1

n ( j), j)
]
= |λn|. ut

The sequence S−1
n ( j) is confined to the vertical geodesic from 0 to ∞. It follows that the

only possible backward limit points of Sn are 0 and ∞, and each of these points is a backward
limit point if and only if it is a conical limit point.

We need one final lemma on hyperbolic geometry (see [2, Thm. 7.9.1]).

Lemma 5.3 Let γ be a geodesic in H3 that lands at points a and b in C∞. Then

coshρ( j,γ) =
2

χ(a,b)
.

In particular,

exp[−ρ( j,γ)]>
χ(a,b)

4
.
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We can now prove Theorem 1.1.

Proof (of Theorem 1.1) The equivalence of (i)–(iv) follows from Theorem 4.1.
Let us show that (i) implies (v). If the Stern–Stolz series ∑n |λn| converges then λn →

0, so eventually |λn| < 1. Since |S−1
n ( j)| = 1/|λn| it follows that eventually |S−1

n ( j)| > 1,
and then Lemma 5.2 tells us that the sum ∑n exp

[
−ρ(S−1

n ( j), j)
]

converges. Also, because
S−1

n ( j)→ ∞, we see that ∞ is the only backward limit point of Sn.
Now we show that (v) implies (i). Because Sn is a rapid escape sequence it follows that

ρ(S−1
n ( j), j)→ ∞ (that is, Sn is restrained). Since ∞ is the only backward limit point of Sn

we deduce that S−1
n ( j)→ ∞ as n→ ∞. Therefore |S−1

n ( j)| > 1 for sufficiently large n, and
again we appeal to Lemma 5.2, this time to see that convergence of ∑n exp

[
−ρ(S−1

n ( j), j)
]

implies convergence of the Stern–Stolz series ∑n |λn|.
Next we show that (ii) and (v) imply (vi). We know that Sn is restrained, by (v), because it

is a rapid escape sequence. Furthermore, because S−1
n ( j) is constrained to lie on the vertical

geodesic between 0 and ∞, Sn has only a single backward limit point, and only a single
conical limit point, ∞. From Theorem 4.1, and using (ii), we know that TnS−1

n converges to
another Möbius transformation g. We can now apply Lemma 5.1 to deduce that Tn, like Sn,
is a rapid escape sequence with only a single backward limit point, and only a single conical
limit point, ∞.

Last we show that (vi) implies (iii). Let γ denote the hyperbolic geodesic between −1
and 0. Let wn denote the point on γ such that ρ(γ,T−1

n ( j)) = ρ(wn,T−1
n ( j)). Since Tn is

restrained, and it has only a single backward limit point ∞, we see that T−1
n ( j)→∞ as n→∞.

It follows that wn converges to the highest point on γ , namely (−1+ j)/2. In particular,
there is a positive constant K such that ρ(wn, j)< K for all positive integers n. Applying the
triangle inequality gives

ρ( j,T−1
n ( j))6 ρ( j,wn)+ρ(wn,T−1

n ( j))< K +ρ(γ,T−1
n ( j)).

Therefore, as the series ∑n exp[−ρ( j,T−1
n ( j))] converges, the series ∑n exp[−ρ(γ,T−1

n ( j))]
also converges. Hence ∑n exp[−ρ(Tn(γ), j)] converges. It follows from Lemma 5.3 that
the series ∑n χ(Tn(−1),Tn(0)) converges. Since Tn(−1) = Tn−2(0) we see that the series
∑n χ(Tn−2(0),Tn(0)) converges too. This implies that the sequences T2n−1(0) and T2n(0)
each converge. Suppose they converge to the same limit p. Then Tn(0)→ p and Tn(∞)→ p.
Moreover, because j lies on the geodesic between 0 and ∞ it follows that Tn( j)→ p. How-
ever, we know from Theorem 5.1 that χ(Tn( j),Tn(∞))9 0 as n→∞ because ∞ is a conical
limit point. This contradiction show that the limits of T2n−1(0) and T2n(0) are distinct.

It remains to prove the final assertion in Theorem 1.1. Recall that S2n−1(z) = 1/(λ2n−1z)
and S2n(z) = λ2nz, where |λn| is the nth term in the Stern–Stolz series. When ∑n |λn| con-
verges (statement (i)), and hence λn → 0, it follows that S2n−1 → ∞ and S2n → 0 locally
uniformly on C, and S2n−1(∞) = 0 and S2n(∞) = ∞. Now, we know from the final asser-
tion in Theorem 4.1 that there is a Möbius map g such that χ0(Tn,gSn)→ 0 as n→ ∞.
Therefore T2n−1→ g(∞) and T2n→ g(0) locally uniformly on C, and T2n−1(∞)→ g(0) and
T2n(∞)→ g(∞). ut

6 Proof of Theorem 1.2

Theorem 1.2 can easily be deduced from Theorems 1.1 and 3.1.
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Proof (of Theorem 1.2) Suppose first that the Stern–Stolz series converges. Then the final
assertion of Theorem 1.1 tells us that there are distinct points p and q such that T2n−1→ p
and T2n→ q locally uniformly on C, and T2n−1(∞)→ q and T2n(∞)→ p.

Suppose now that the Stern–Stolz series diverges. Theorem 3.1 tells us that T2n−1 and
T2n converge locally uniformly on H, and almost everywhere on C∞, to points p and q. That
theorem also says that ∑n χ(Tn(0),Tn+2(0)) converges. By comparing statements (i) and
(iii) of Theorem 1.1 we see that p = q. Therefore Tn converges locally uniformly on H, and
almost everywhere on C∞, to a single point. ut

It is interesting that many well-known concepts from continued fraction theory can be
interpreted using geometric properties of Möbius transformations. The geometric approach
often provides insight into continued fractions that is difficult to obtain from algebra alone.
We provide another example of this here, by constructing a convergent continued fraction
K(an|1) such that the sequence t1, t2, . . . satisfies tn(H)⊆H for n = 1,2, . . . and Tn diverges
on an uncountable, dense subset of the complement of H. This shows that the assertion about
almost everywhere convergence in Theorem 1.2 cannot be strengthened significantly.

For simplicity, let us choose H to be the half-plane given by Re[z] > −1/2, although
a similar construction works for other half-planes. Suppose that K(an|1) is a convergent
continued fraction such that tn(H)⊆ H for n = 1,2, . . . . The value of K(an|1) – that is, the
limit of the sequence Tn(0) – is necessarily contained in H (and it cannot be 0 or ∞). In fact,
it is known that every element in H \{0,∞} is the value of some such continued fraction (see,
for example, [15, Thm. 3.47]). This observation, which is implicit in our arguments below,
is key to our construction. We shortcut the usual proofs of the observation by considering
the dynamics of anticonformal Möbius transformations.

Choose any point q of H, and define t to be the anticonformal Möbius transformation
t(z) = a/(1+ z̄), where a = q+ |q|2. This has exactly two fixed points, namely q and τ(q),
where τ is the reflection in ∂H, given by τ(z) = −1− z̄. Each anticonformal Möbius map
with exactly two fixed points is conjugate to a map of the form z 7→ λ z̄, where λ > 1. One can
check that q is the attracting fixed point of t and τ(q) is the repelling fixed point. Therefore
the sequence tn converges to q locally uniformly on the complement of τ(q). It follows, in
particular, that t(H)⊆ H.

Lemma 6.1 Given points p and q in H, and ε > 0, there are Möbius maps ti(z) = ai/(1+z),
i = 1, . . . ,n, that satisfy ti(H)⊆ H and are such that χ(t1 · · · tn(p),q)< ε .

Proof Choose n to be suitably large that χ(tn(p̄),q)< ε and χ(tn(p),q)< ε , where t(z) =
a/(1+ z̄) and a = q+ |q|2. Let ai equal a if i is odd, and ā if i is even. Then t1 · · · tn(p) is
equal to either tn(p̄) if n is odd, or tn(p) if n is even, so the result follows. ut

Using Lemma 6.1 we can choose an infinite sequence t1, t2, . . . of Möbius maps, where
tn(z) = an/(1+ z) and tn(H)⊆ H, such that the orbit tn · · · t1(0), n = 1,2, . . . , is dense in H.
Notice that we work with the sequence tn · · · t1(0) rather than the usual sequence t1 · · · tn(0).
Let α be the involution given by α(z) = −1− z, and let L denote the half-plane given by
Re[z]<−1/2. The map α interchanges L and H. Since α(−1) = 0, it follows that the orbit
αtn · · · t1α(−1) is dense in L. Observe that αtiα = t−1

i for each positive integer i, and so

αtn · · · t1α = t−1
n · · · t−1

1 = T−1
n .

Therefore we have shown that the orbit T−1
n (−1) is dense in L. Now, −1 is not a forward

limit point of Tn, or in other words the sequence Tn( j) does not accumulate at −1, be-
cause this sequence is confined to the hyperbolic half-space with ideal boundary H. It fol-
lows that the backward limit set Λ(Tn) of Tn, which is the set of accumulation points of
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T−1
1 ( j),T−1

2 ( j), . . . , is equal to the set of accumulation points of T−1
1 (−1),T−1

2 (−1), . . . .
Therefore Λ(Tn) = L.

Since the backward limit set of Tn contains points other than ∞, we see from the equiva-
lence of (i) and (vi) in Theorem 1.1 that the Stern–Stolz series diverges. Therefore Tn(0) and
Tn(∞) converge to a point p (in the chordal metric). Since Tn( j) lies on the geodesic joining
Tn(0) and Tn(∞), we see that Tn( j) converges to p also. That is, Tn is generally convergent,
with limit p.

It is known that if the backward limit set of a restrained sequence of Möbius transfor-
mations contains an open disc E, then the conical limit set is uncountable and its closure
contains E (see [6, Lem. 5.12]). As Λ(Tn) = L, it follows that Λc(Tn) is uncountable and
Λc(Tn) ⊇ L. Therefore Λc(Tn) is dense in L. This completes our construction because, by
Corollary 5.1, Tn diverges everywhere on Λc(Tn).

7 The geometry of the parabola theorem

As we saw in Section 2, the significance of the parabolic region in the parabola theorem is
that it gives rise to the inclusions tn(H)⊆H, where H is a half-plane. This leads to a nested
sequence of discs

H ⊇ T1(H)⊇ T2(H)⊇ T3(H)⊇ ·· · .

Associated to this sequence of discs is a sequence of points T1(∞),T2(∞), . . . . Since ∞∈ ∂H,
it follows that Tn(∞) ∈ Tn(∂H) for each integer n. Our geometric approach to the parabola
theorem allows us to describe all possible sequences of discs and points that arise in that
theorem. Beardon carried out a similar programme for the Śleszyśki–Pringsheim theorem
in [4].

Given an open disc D in C∞, a point a in D, a point b in ∂D, and a point c that lies outside
D, we define a parabola sequence to be a sequence of Möbius transformations f1, f2, . . . that
satisfies fn(D)⊆D, fn(c) = b, and fn(b) = a for each integer n. When a = 0, b = ∞, c =−1,
and D = Hα we recover the usual sequence of maps tn that arise in the classical parabola
theorem. For simplicity, we focus only on symmetric parabola sequences, which are parabola
sequences such that a and c are inverse points with respect to ∂D. Let Fn = f1 · · · fn, and let
F0 be the identity map.

Theorem 7.1 Let f1, f2, . . . be a symmetric parabola sequence with associated disc D and
points a, b, and c. Let Dn = Fn(D) and zn = Fn(b). Then

(i) D0 ⊇ D1 ⊇ D2 ⊇ ·· · ,
(ii) zn ∈ ∂Dn,

(iii) zn−1 ∈ C∞ \Dn and zn+1 ∈ Dn, and these are inverse points with respect to ∂Dn.

Conversely, any sequence of discs Dn and points zn satisfying (i), (ii), and (iii) arise as the
Fn-images of D and b for some symmetric parabola sequence fn.

There is a similar theorem for general parabola sequences, which has a more elaborate
version of statement (iii) involving hyperbolic distance.

Theorem 7.1 is illustrated in Fig. 7.1.

Proof (of Theorem 7.1) Suppose that fn is a symmetric parabola sequence. Property (i)
follows from the inclusion Fn(D) ⊆ Fn−1(D). Property (ii) holds because b ∈ ∂D. Property
(iii) follows by preservation of inverse points under Möbius transformations, as zn−1 =Fn(c)
and zn+1 = Fn(a).



18 Ian Short

D0
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D2

D3

c

z0

z1

z2

z3

Fig. 7.1 Orbits of discs and points under a symmetric parabola sequence

Now suppose that Dn and zn have been given to satisfy (i), (ii), and (iii). Define H =
D0, b = z0, a = z1, and let c be the inverse point of a in ∂D. For each positive integer n
choose a Möbius transformation Fn that satisfies Fn(D) = Dn, Fn(b) = zn, and Fn(c) = zn−1.
From property (iii), and because Möbius transformations preserve inverse points, we see
that Fn(a) = zn+1. Therefore the sequence f1, f2, . . . defined by fn = F−1

n−1Fn is a symmetric
parabola sequence with Dn = Fn(D) and zn = Fn(b). ut

There is a subtle geometric fact that is not immediately apparent from Theorem 7.1:
if the sequence zn converges then the intersection of the nested closed discs Dn is a single
point. A proof of this can be extracted from [17]. In general, the intersection of a nested
sequence of closed discs is either a single point or a closed disc, and it is usual in continued
fraction theory to refer to these two alternatives as the limit-point case and the limit-disc
case, respectively.

For more general parabola sequences, it is no longer true that convergence of zn can only
arise with the limit-point case. To see why this is so, consider the map

t(z) =
−3/16
1+ z

,

which is a loxodromic Möbius transformation with attracting fixed point−1/4 and repelling
fixed point−3/4. Let tn = t for each positive integer n, so that Tn = tn. If H is the half-plane
given by Re[z] > −1/2 then t1, t2, . . . and H together form a symmetric parabola sequence,
because −1 and 0 are inverse points with respect to ∂H. Because the repelling fixed point
of t lies outside H, the limit-point case occurs for this parabola sequence. The limit point
is −1/4. If instead H is the half-plane Re[z] > −3/4 then tn and H again form a parabola
sequence, but this time the parabola sequence is not symmetric, because −1 and 0 are not
inverse points with respect to ∂H. The repelling fixed point of t belongs to ∂H for this
parabola sequence, and it follows that the limit-disc case occurs: the limit disc is given by
|z+1/2|6 1/4.

8 Higher dimensions

All our methods generalise to higher dimensions, and the results and their proofs go through
virtually unchanged. We give just one example of this, namely a version of Theorem 1.2 in
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many dimensions. See [2,18] for the theory of Möbius transformations in several dimen-
sions.

So far we have only considered Möbius transformations acting on C∞, and in particular
we have studied continued fractions using sequences of maps tn given by tn(z) = an/(bn+z).
Each of these maps takes ∞ to 0. Now we would like to consider Möbius transformations
that act on RN ∪{∞}. Consider a sequence of Möbius maps t1, t2, . . . acting on RN ∪{∞}
that satisfies tn(∞) = 0 for each integer n. Let σ be inversion in the unit sphere. Then tn can
be expressed in the form

tn(x) = anσ(bn + x),

where bn ∈ RN , and an denotes an orthogonal map of RN followed by a dilation. That is,
there is a positive scalar λn and an orthogonal map An such that an(x) = λnAn(x). In the
two dimensional case an is a complex number, λn = |an|, and An is a rotation by an/|an|.
Let us denote λn by |an| even in higher dimensions. Because σ is anticonformal, we must
also declare that An is anticonformal in order for tn to be conformal. This is not strictly
necessary, as we have not needed conformality so far, but it tallies with the two-dimensional
case in which all the maps tn are conformal. The Stern–Stolz series in higher dimensions is
the series

|b1|
(

1
|a1|

)
+ |b2|

(
|a1|
|a2|

)
+ |b3|

(
|a2|
|a1||a3|

)
+ |b4|

(
|a1||a3|
|a2||a4|

)
+ · · · .

Now, for the parabola theorem we need all the coefficients bn to be equal, so let bn =
(1,0, . . . ,0) for each integer n, and we write this more simply as bn = 1. Our maps tn now
have the form tn(x) = anσ(1+ x), and as usual we let Tn = t1 · · · tn. Let −1 denote the point
(−1,0, . . . ,0) and let H be a Euclidean half-space that contains 0, but does not contain −1,
even its closure. As before, we let u be the point inverse to −1 in ∂H, and let us also define
v = σ(1+u). Using the argument of Section 2 we see that tn(H)⊆H if and only if tn(u) lies
in the region

{
x ∈ RN : |x|6 d(x,∂H)

}
bounded by a paraboloid. Notice that tn(u) = anv.

We now have a strong version of the parabola theorem, valid in several dimensions.

The paraboloid theorem Let H be a Euclidean half-space in RN that contains 0, but does
not contain−1, even in its closure, and suppose that anv∈ {z ∈ C : |z|6 d(z,∂H)} for each
positive integer n. If the Stern–Stolz series

(
1
|a1|

)
+

(
|a1|
|a2|

)
+

(
|a2|
|a1||a3|

)
+

(
|a1||a3|
|a2||a4|

)
+ · · · .

converges, then there are distinct points p and q such that T2n−1 → p and T2n → q locally
uniformly on RN , and T2n−1(∞)→ q and T2n(∞)→ p. If the Stern–Stolz series diverges then
Tn converges locally uniformly on H, and almost everywhere on RN

∞, to a single point.

This framework for describing continued fractions in several dimensions can be used to
generalise many other results on continued fractions. For instance, the Śleszyśki–Pringsheim
theorem says that K(an|bn) converges if |bn| > 1+ |an| for each integer n. In higher di-
mensions, using our notation tn(x) = anσ(bn + x) and Tn = t1 · · · tn, the same sequence of
inequalities |bn|> 1+ |an| guarantees convergence of T1(0),T2(0), . . . .
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