
Open Research Online
The Open University’s repository of research publications
and other research outputs

Dione: An Integrated Measurement and Defect
Prediction Solution
Conference or Workshop Item
How to cite:

Caglayan, Bora; Tosun Misirli, Ayse; Calikli, Gul; Aytac, Turgay; Bener, Ayse and Turhan, Burak (2012).
Dione: An Integrated Measurement and Defect Prediction Solution. In: 20th International Symposium on the
Foundations of Software Engineering (ACM SIGSOFT 2012 FSE-20), 11-16 Nov 2012, Cary, North Carolina, USA.

For guidance on citations see FAQs.

c© [not recorded]

Version: Version of Record

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1145/2393596.2393619

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/help/helpfaq.html#Unrecorded_information_on_coversheet
http://dx.doi.org/doi:10.1145/2393596.2393619
http://oro.open.ac.uk/policies.html

Dione: An Integrated Measurement and Defect Prediction
Solution

Bora Caglayan
Department of Computer Engineering

Bogazici University
Turkey

bora.caglayan@boun.edu.tr

Ayse Bener
Ted Rogers School of Information

Technology Management,
Ryerson University, Toronto, CA
ayse.bener@ryerson.ca

Ayse Tosun Misirli
Department of Information

Processing Science, University of
Oulu, Finland

ayse.tosunmisirli@oulu.fi

Turgay Aytac
Prescience Inc., USA

taytac@scidesktop.org

 Gul Calikli
Department of Computer

Engineering, Bogazici University,
Turkey

gul.calikli@boun.edu.tr

Burak Turhan
Department of Information Processing
Science, University of Oulu, Finland

burak.turhan@ oulu.fi

ABSTRACT
We present an integrated measurement and defect prediction tool:
Dione. Our tool enables organizations to measure, monitor, and
control product quality through learning based defect prediction.
Similar existing tools either provide data collection and analytics,
or work just as a prediction engine. Therefore, companies need to
deal with multiple tools with incompatible interfaces in order to
deploy a complete measurement and prediction solution. Dione
provides a fully integrated solution where data extraction, defect
prediction and reporting steps fit seamlessly. In this paper, we
present the major functionality and architectural elements of Dione
followed by an overview of our demonstration.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management – productivity,
software quality assurance.

General Terms
Management, Measurement, Economics, Reliability.

Keywords
Software tool, measurement, software defect prediction.

1. INTRODUCTION
In recent years, different approaches to implement defect
prediction models have become increasingly popular [3]. Using
these approaches, practitioners seek to find efficient and cost-
effective solutions to solve software engineering problems such as
software measurement and analysis, software quality estimation
and efficient resource allocation [1,2].

 Existing measurement and decision support models often depend

on expert judgment based on ad-hoc procedures. Moreover, they
handle only a portion of the key needs which consist of software
measurement, analysis and defect prediction. Companies are forced
to use separate tools with incompatible APIs in order to implement
an integrated solution covering measurement, analysis and decision
support functionalities. Such an integrated solution is too
cumbersome to implement especially for small and medium-sized
enterprises (SMEs). An integrated solution that addresses the
measurement, analysis and decision making requirements of SMEs
is necessary to make them competitive in the market.

In this paper, we propose an integrated measurement and defect
prediction tool: Dione. Our main motivation behind such an
initiative was to produce a major infrastructure in order to help
software managers in the development of measurable, consistent
and reliable software products. Dione automatically collects data
from version control systems (CVS, SVN, Git, Mercurial,
Clearcase) and bug repositories (Bugzilla, Jira), which are
popularly used in the software industry, and it extracts software
metrics. Dione also uses the extracted data to predict the defect-
proneness of existing software artifacts using machine learning
techniques.

2. DIONE AT A GLANCE
Dione is implemented in Java as a web application. The major
functions of Dione, which can connect to company’s source
code/issue management systems, are as follows:
� Building a measurement repository that contains product and

process metrics (e.g. [2,3]) as well as information about
defected software components (e.g. files, classes, methods)

� Analyzing trends in metrics and issues using chart and report
configurations

� Constructing and calibrating customized a defect prediction
models to predict defect proneness of a software product’s
version or release.

2.1 Main Functionality
The main benefits of Dione over similar tools is integrating data
extraction, reporting and defect prediction modules for a complete
decision support cycle and offering a minimum configuration
solution. In this section, we will explain the modules of Dione in
more detail.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGSOFT'12/FSE-20, November 11 - 16 2012, Cary, North Carolina,
USA
Copyright 2012 ACM 978-1-4503-1614-9/12/11...$15.00.

1

Automatic Metric Extraction: Dione uses smart client
technology in order to connect to software development artefacts
(e.g. source code repositories, version control systems and issue
management systems) and to automatically extract product and in-
process metrics. Product metrics are static code metrics and a list
of static code metrics extracted by Dione can be found in [1]. In-
process metrics capture information about changed lines of code,
committers and their commit frequencies. Supported languages for
metric extraction are Java, C, C++, PL/SQL, and BPEL for Oracle.
By applying a pattern matching heuristic, Dione can also detect
and label defective parts of a software product at a pre-defined
granularity level (e.g. package, file, class or method). An example
heuristic is based on mining commit messages to extract issue IDs
or a list of words (pre-defined with the software team) indicating a
bug fix on the source code.

Manual and Batch Recording of Metrics: On the server
side, Dione stores the metrics gathered by smart clients in a
Relational Database Management System (RDMS). We do not
restrict organizations to use a specific RDMS since Dione can
easily connect to popular databases, such as Oracle, DB/2, MS
SQL Server, MySQL, PostGreSQL. Also, organizational data
(projects, processes, organizational teams, etc.) can be entered
using web-based forms manually.

Defect Prediction: The defect prediction module uses
machine learning algorithms (e.g. Naive Bayes, Bayesian
Networks, Decision Tree, Logistic Regression, Neural Networks,
Cascading classifiers). The system learns from historical metrics
and defect data and predicts defect proneness of current version (or
release) of a software. This learning-based approach has
advantages over rule-based models, since a) it learns from
historical data without human intervention, and b) the prediction
performance of learning based models reach to 80% defect
detection rates, while significantly reducing the inspection efforts
for finding defects [2].

In the case of the absence of local data, we used the approach
proposed by Turhan et al. [3] to train the model with cross project
datasets stored in the server side of Dione. Results in [3] show that
cross-project data can serve as meaningful proxy in the early stages
of a metrics program. Dione also provides a web UI that allows
users to calibrate their local defect prediction model with custom
algorithms, pre-processing techniques and heuristics before
running their model. An example usage can be seen in Section 3.4.

Web-Based Reporting: This module presents the output of
the prediction module to the users. The reports are custom tailored
to different stakeholders of the organization. For example, code
level predictions (as the list of defective/defect-free source files or
the probability of defect proneness of files) are presented to
developers in order to direct them to the critical parts of the code
for additional quality assessments, such as unit tests and
inspections. Diagrams summarizing defect density and active
developers working on defect prone modules are presented to
project managers in order to help them manage and optimize
testing resources.

2.2 Architecture
Dione utilizes all advantages of cloud computing which can be
defined as the delivery of computing and storage capacity as a
service to a scalable number of end-recipients. Therefore, customer
maintenance costs are minimal and also the storage and computing
resources of Dione can be used by multiple customers remotely.
Data mining tasks such as defect prediction, which are
computationally intensive, are implemented in the form of atomic
components so that they can be executed in parallel and can be

scaled out to several servers. Computationally intensive tasks can
be scheduled and monitored through a web-based environment and
these tasks utilize multiple server/processor resources. The
complete system architecture for Dione is shown in the architecture
diagram in Figure 2.

The web client is developed in Java by using Google Web Toolkit
(GWT) in addition to Javascript libraries such as jQuery and
HighCharts. Input forms and reporting modules were developed in
Java. For cross-browser compatibility, these modules compile
using GWT. Visual templates for chart types were developed in
Javascript using HighCharts library. Numerical computations and
intensive parts such as the machine learning algorithms were
implemented using Apache JMath library.

One of the most important innovations in the architecture of Dione
is the smart clients which are small Java programs that can be
executed directly from the Dione web interface. Smart clients
gather metrics from the software artifacts such as source code
repositories and issue management systems, and they send these
data to the Dione server. In order to enhance functionalities on the
client-side, one can download smart clients for log-keeping and
process monitoring from the server side. Integration with other
software quality applications is supported through web services.

Smart clients retrieve configuration data that they need from the
server side. Dione also satisfies privacy constraints, since smart
clients do not store any data or configuration information such as
passwords and user names permanently. Moreover, data transferred
between server and client sides are encrypted, as well as the data
stored temporarily on the client side. Smart clients are updated
automatically by changing the version of the smart client on the
server side.

Dione offers two solutions for different organizational needs,
namely fully centralized and on-site. In fully centralized solution,
all data are stored on the central Dione server. This version of
Dione collects data from multiple companies into one repository.
Data privacy is ensured by organizational segmentation. In the on-
site solution, the server is deployed within the company network.

2.3 Dione Availability
Access details for the online trial version of Dione can be
requested by contacting info@softlabint.com.

3. REFERENCES
[1] Kocaguneli E., Tosun, A., Bener, A., Turhan, B., Caglayan,

B., Prest: An Intelligent Metric Extraction, Analysis and
Defect Prediction Tool, Proceeding of the 21st Int. Conference
on Software Engineering and Knowledge Engineering, July 1-
3, 2009, Boston, USA.

[2] Tosun, A., Bener, A., Turhan, B., Menzies, T., Practical
Considerations in Deploying Statistical Methods for Defect
Prediction: A Case Study within the Turkish
Telecommunication Industry, Inf. and Software Technology,
52(11): 1242-1257, 2010.

[3] Turhan, B., Menzies, T., Bener, A., Distefano, J., On the
relative value of cross-company and within-company data for
defect prediction, Empirical Software Engineering, 14 (5):
540-578, 2009.

[4] Eclipse Project Web Page, http://www.eclipse.org/.

2

APPENDIX: Dione Demo

We will use the well-known open source software Eclipse to show
the metric extraction, metric analysis and defect prediction features
of Dione in the demo. To accomplish this, we setup a server with
the project data of Eclipse. All operations will be done by users
through web browsers to access the Dione server during the demo.
Demo steps can be tried by multiple users concurrently.

Demo Setup Details

Dione hardware setup during the demo includes two networked
PCs with server capabilities. All the required hardware for the
demo will be brought by the demo team. Deployment schema of
Dione can be seen in Figure 1.

The first PC act as the client layer. It will also store the cached
source code repository of the Eclipse project. The second PC hosts
the server side components of Dione. The program is written in
Java and Apache Geronimo Application Server is used to serve
both smart clients and web pages. The data is hosted on a Mysql
database on the second PC. Under normal conditions, demo of
Dione will take between 15 to 20 minutes.

As the first step, all relevant Eclipse project data imported to the
database so that a client-deployed implementation of Dione can
access required data and use them in all operations. Internet access
will be required to access Dione server during demo. Public access
to Dione will be available throughout the demo.

Mysql Database

Version
Control

System: of
Eclipse

Bug
Repository:

Bugzilla

Hosts Dione Smart Clients and Development Server
Of Dione Inc

Sends extracted metrics

Dione
Server

Demo Participants will connect
Dione server through the

network

Apache
Geronimo

Web Server

Figure 1 Deployment details of Dione

Demo Organization Details

The Eclipse Foundation is a not-for-profit, member supported
corporation that hosts the Eclipse projects and helps cultivate both
an open source community and an ecosystem of complementary
products and services [4].

Eclipse Project

Eclipse project is a widely used multi-language software
development platform written mainly in java language. It was
initially derived from IBM VisualAge IDE. The project was made
open-source in November 2001 and it was licensed initially under
creative-commons license and later Eclipse Public License. Both of
these licenses are compatible with FSF standards for open source
licenses. During the history span of Eclipse project that we
examined, the core committers to the project were IBM employees.
In the Demo we will use Dione to extract and import the static
code and churn metrics of the Eclipse Project during the
development between January 2003 and June 2006. We will use
the extracted metrics to show the analysis capabilities of Dione and
predict the post release defects for Eclipse versions 3.0, 3.1 and 3.2
using Dione and show the prediction output.

Figure 2 Architecture Document of Dione

Steps of the Demo

Data Import
Easy integration with existing project data is a major strength of
Dione compared to other solutions. Data import in Dione can
either be done automatically through the smart clients or manually
using xml files. During the demo we will show a data import
operation using both available methods. Before the demo, we will
predefine the relevant organizational data, such as organization,
team, roles, project and version, using our web application in order
to save time.
For importing the change sets of Eclipse and entities related to the
change sets we will use XML files for the bulk of the data.
Afterwards we will show the live data transfer capability of the
smart clients. Smart clients will be configured with the Eclipse
project connection parameters and run from the web interface of
Dione.
Imported files, classes, methods and metrics extracted from these
software modules via Prest can be seen and edited from Dione’s
web application (Figure 3). Figure 3 shows the granularity, source
(e.g. method name), metric code and metric values imported from a

3

project. We will show the imported changeset and metric data of
Eclipse during the demo.

Figure 2 Metric Viewer In Dione

Reporting
Metrics are the building blocks of the charting and reporting
system of Dione. Changes in key indicators in every software entity
can be tracked over time or change periods. Past results of the
intelligent modules can be tracked through summary results. If
subscribed, reports and charts are sent by e-mail in time intervals.
In addition, Dione features a mail alert mechanism that warns
recipients about potential problematic situations. In Figure 4,
change trend of lines of code of a file in the software product over
revision history is shown as an example.
Derived metrics that aggregate or combine base metrics can be
defined within Dione for reporting purposes. Dione can be
scheduled to derive and cache the derived metrics in order to save
time during reporting.
In the demo, we will show the interesting trends observed during
Eclipse development: 1) Calculation of a derived metric:
cyclomatic complexity per month, 2) LOC size of the project over
time, 3) Defect count and defect density per month, 4) Average
cyclomatic complexity per month.

Figure 4 Metric Analysis Screen For Eclipse Project

Defect Prediction
This component is one of the four intelligent modules built into
Dione. It has a configuration and a prediction step. In

configuration, historical data, test data and algorithms that will be
used during defect prediction are selected by the user.
Furthermore, periods of defect prediction runs (i.e. every
day/week/month) can be defined so that Dione periodically
produces reports including predictions about defect-proneness of
software modules and metrics that are most significant indicators
of defects. It is also possible to run these configurations manually
and observe their progress or errors (if exists).
In the configuration step, Dione provides to the user the ability to
define custom prioritization in addition to default labels assigned
in prediction step. More specifically, it is possible to define alert
levels, such as LOW, MEDIUM, HIGH, with probability of defect-
proneness thresholds (e.g. LOW with probability being less than
50%, MEDIUM with probability between 50% and 75%, HIGH
with probability being greater than 75%). Dione uses these custom
levels and predicts files’ defect-proneness based on these levels.
This approach helps to prioritize certain software modules that are
most probably defect-prone among others.
In Figure 5, a screenshot from prediction results is shown. While
displaying predictions, a hierarchical tree-like structure showing all
software modules in the test set from package level to method level
are presented. For each software module, probability of defect-
proneness and user-defined prioritization levels are reported.
Furthermore in top right region of Figure 5, a multivariate analysis
of software metrics and defects in historical data is also listed.
We will predict the post release defects of Eclipse for version 3.2
during the demo. We will show the defect prediction configuration
step initially. In this step we will define the training data, machine
learning algorithms that will be used by the model and the schedule
parameters of the defect predıctıon run. Afterwards, we will
schedule the defect prediction batch job and show the task
monitoring features within Dione.
Finally, we will show the defect prediction output and compare the
findings of Dione with the actual post-release defect data of
Eclipse.

Figure 5 Defect Prediction Output of Dione

4

