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Geometry of Goodness-of-Fit Testing in High
Dimensional Low Sample Size Modelling

Paul Marriott1, Radka Sabolova2, Germain Van Bever2, and Frank Critchley2

1 University of Waterloo, Waterloo, Ontario, Canada
2 The Open University, Milton Keynes, UK

Abstract. We introduce a new approach to goodness-of-fit testing in
the high dimensional, sparse extended multinomial context. The paper
takes a computational information geometric approach, extending clas-
sical higher order asymptotic theory. We show why the Wald – equiv-
alently, the Pearson χ2 and score statistics – are unworkable in this
context, but that the deviance has a simple, accurate and tractable sam-
pling distribution even for moderate sample sizes. Issues of uniformity of
asymptotic approximations across model space are discussed. A variety
of important applications and extensions are noted.

1 Introduction

A major contribution of classical information geometry to statistics is the geo-
metric analysis of higher order asymptotic theory, see the seminal work [2] and
for example [5]. It has excellent tools for constructing higher order corrections
to approximations of sampling distributions, an example being the work on the
geometry of Edgeworth expansions in [2, Chapter 4]. These expressions use cur-
vature terms to correct for skewness and other higher order moment (cumulant)
issues and provide good, operational corrections to sampling distributions, such
as those in Fig. 3 (b) and (c) below. However, as discussed in [6] and [3], these
curvature terms grow unboundedly as the boundary of the probability simplex is
approached. Since this region plays a key role in modelling in the sparse setting
– the MLE often being on the boundary – extensions to the classical theory are
needed. This paper starts such a development.

Independently, there has been increased interest in categorical, (hierarchical)
log-linear and graphical models. See, in particular, [10], [8], [7], and [6]. As stated
by [7] ‘[their] statistical properties under sparse settings are still very poorly
understood. As a result, [analysis of such data] remains exceptionally difficult’.

This paper is an introduction to a novel approach which combines and ex-
tends these two areas. The extension comes from using approximations based on
the asymptotics of high dimensionality (k-asymptotics) rather than the more fa-
miliar sample size approach (N -asymptotics). This is connected to, but distinct
from, the landmark paper by [12] and related work. In particular, for a practical
example of so-called sparse-data asymptotics, see [1, §6.3]. Computational infor-
mation geometry – in all its forms: see, for example, [11], [13] [4], and [6] – has



been a significant recent development, and this paper is a further contribution
to it.

We address the challenging problems which arise in the high dimensional
sparse extended multinomial context where the dimension k of the underlying
probability simplex, one less than the number of categories or cells, is much more
than the number of observations N , so that boundary effects necessarily occur,
see [3]. In particular, arbitrarily small (possibly, zero) expected cell frequencies
must be accommodated. Hence we work with extended multinomial models thus
taking us out of the manifold structure of classical information geometry, [4].

For practical relevance, our primary focus is on (a) accurate, finite sample
and dimension approximation, rather than asymptotic limiting results per se;
and (b) performance at or near the boundary, rather than (as in earlier studies)
the centre of the simplex.

Section 2.1 shows why the Wald statistic – identical, here, to the Pearson
χ2 or score statistic – is unworkable in this context. In contrast analysis and
simulation exercises (§2.2) indicate that the same is not true of the deviance
D. We demonstrate that a simple normal (or shifted χ2) approximation to the
distribution of D is accurate and tractable even as the boundary is approached.
In contrast to other approaches, this appears to hold effectively uniformly across
the simplex. The worst place is at its centre (where all cells are equiprobable),
due to discretisation effects. However, further theory shows that, even here,
the accuracy of approximation improves without limit when N, k → ∞ with
N/k → c > 0.

Section 3 considers the uniformity of asymptotic approximations. Its three
subsections address issues associated with the boundary, higher moments and
discreteness, respectively.

2 Analysis

2.1 Why the Wald statistic is unworkable

With i ranging over {0, 1, ..., k}, let n = (ni) ∼ Multinomial (N, (πi)), where
here each πi > 0. In this context the Wald, Pearson’s χ2, and score statistics all
coincide, their common value, W , being

W :=

k∑
i=0

(πi − ni/N)2

πi
≡ 1

N2

k∑
i=0

n2i
πi
− 1.

Defining π(α) :=
∑
i π

α
i we note the inequality, for each m ≥ 1,{

π(−m) − (k + 1)m+1
}
≥ 0,

in which equality holds if and only if πi≡1/(k + 1) – i.e. iff (πi) is uniform.
We then have the following theorem, which establishes that the statistic W is
unworkable as πmin := min(πi)→ 0 for fixed k and N .



Theorem 1. For k > 1 and N ≥ 6, the first three moments of W are:

E(W ) =
k

N
, var(W ) =

{
π(−1) − (k + 1)2

}
+ 2k(N − 1)

N3

and E[{W − E(W )}3] given by{
π(−2) − (k + 1)3

}
− (3k + 25− 22N)

{
π(−1) − (k + 1)2

}
+ g(k,N)

N5

where g(k,N) = 4(N − 1)k(k + 2N − 5) > 0.
In particular, for fixed k and N , as πmin → 0

var(W )→∞ and γ(W )→ +∞

where γ(W ) := E[{W − E(W )}3]/{var(W )}3/2.

2.2 The deviance statistic

Unlike the triumvirate of statistics above, the deviance has a workable distribu-
tion in the same limit: that is, for fixed N and k as we approach the boundary of
the probability simplex. The paper [3] demonstrated the lack of uniformity across
this simplex of standard first order N -asymptotic approximations. In sharp con-
trast to this we see the very stable and workable behaviour of the k-asymptotic
approximation to the distribution of the deviance.

Define the deviance D via

D/2 =
∑
{0≤i≤k:ni>0}

ni log(ni/N)−
k∑
i=0

ni log(πi)

=
∑
{0≤i≤k:ni>0}

ni log(ni/µi),

where µi := E(ni) = Nπi. We will exploit the characterisation that the multi-
nomial random vector n has the same distribution as a vector of independent
Poisson random variables conditioned on their sum. Specifically, let the elements
of (n∗i ) be independently distributed as Poisson Po(µi). Then, N∗ :=

∑k
i=0 n

∗
i ∼

Po(N), while (ni) := (n∗i |N∗ = N) ∼ Multinomial(N, (πi)). Define

S∗ :=

(
N∗

D∗/2

)
=

k∑
i=0

(
n∗i

n∗i log(n∗i /µi)

)
where D∗ is defined implicitly and 0 log 0 := 0. The terms ν, τ and ρ are defined
by the first two moments of S∗ via(

N
ν

)
:= E(S∗) =

(
N∑k

i=0E(n∗i log {n∗i /µi})

)
,



(
N ρτ

√
N

· τ2

)
:= cov(S∗) =

(
N
∑k
i=0 Ci

·
∑k
i=0 Vi

)
,

where Ci := Cov(n∗i , n
∗
i log(n∗i /µi)) and Vi := V ar(n∗i log(n∗i /µi)). Careful anal-

ysis gives:

Theorem 2. Each of these terms ν, τ and ρ are bounded as πmin → 0 and
hence the distribution of the deviance is stable in this limit.

Moreover, these terms can be easily and accurately approximated using standard
truncate and bound computational methods, exploited below.

Under standard Lindeberg conditions, multivariate central limit theorem
(CLT) gives for large k and N that S∗ is approximately distributed as a bi-
variate normal N2(E(S∗), cov(S∗)). Mild conditions (see [12]) ensuring uniform
equicontinuity of the conditional characteristic functions D∗/2|{N∗ = N} (see
[14]) then gives, in the same limit,

D/2 = D∗/2|{N∗ = N} ∼ N1(ν, τ2(1− ρ2)). (1)
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Fig. 1. Stability of the sampling distributions

3 Uniformity of asymptotic approximations

3.1 Uniformity near the boundary

In general asymptotic approximations are not uniformly accurate as is shown
in [3]. Consider the consequences of Theorem 1 when πmin is close to zero as
illustrated in Fig. 1. This shows, in panel (a), the distribution, π, where we see
that πmin is indeed very small. Here, and throughout, we plot the distributions in
rank order without loss since all sampling distributions considered are invariant
to permutation of the labels of the multinomial cells. Panel (b) shows a sample of
1000 values of W drawn from its distribution when there are N = 50 observations
in dimension k = 200. The extreme non-normality, and hence the failure of the



standard N -asymptotic approximation, is evident. In contrast, consider panel
(c), which shows 1000 replicates of D for the same (N, k) values. The much
greater stability, which is implied by Approximation (1), is extremely clear in
this case.

The performance of Approximation (1) can, in fact, be improved by simple
adjustments. Here we show a couple of examples in Fig. 2. Panel (a) shows a
QQ-plot of the deviance, against the normal, in the case where the underlying
distribution is shown in Fig. 1 (a) – one that is very close to the boundary. We
see the normal approximation is good but shows some skewness. Panel (b) shows
a scaled χ2-approximation, designed to correct for skewness in the sampling dis-
tribution, while panel (c) shows a symmetrised version of the deviance statistic,
defined by randomising across upper and lower tails of the test statistic, which,
if it is used for testing against a two tailed alternative, is a valid procedure. Both
these simple corrections show excellent performance.
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Fig. 2. Evaluation of the quality of k-asymptotic approximations

Having seen that the N -asymptotic approximation does not hold uniformly
across the simplex, it is natural to investigate the uniformity of the k-asymptotic
approximation given by (1). This approximation exploited a bivariate normal

approximation to the distribution of S∗ = (N∗, D∗/2)
T

and it is sufficient to
check the normal approximation to any linear function of N∗ and D∗/2. In
particular, initially, we focus on the component D∗. We note that we can express
D∗/2 via

D∗/2 =
∑
{0≤i≤k:n∗

i>0}
n∗i log(n∗i /µi) = Γ ∗ +∆∗ (2)

where

Γ ∗ :=

k∑
i=0

αin
∗
i and ∆∗ :=

∑
{0≤i≤k:n∗

i>1}
n∗i log n∗i ≥ 0

and αi := − logµi. It is insightful to consider the terms Γ ∗ and ∆∗ separately.



3.2 Uniformity and higher moments

One way of assessing the quality of the k-asymptotic approximation for the
distribution of Γ ∗ would be based on how well the moment generating function
of the (standardised) Γ ∗ is approximated by that of a (standard) normal. Writing
the moment generating function as

Mγ(t) = exp

(
− E(Γ ∗)√

V ar(Γ ∗)

)
exp

 k∑
i=0


∞∑
h=1

(−1)h

h!
µi(logµi)

h

(
t√

V ar(Γ ∗)

)h


then, when analysing where the approximation would break down, it is natural
to make the third order term (i.e. the skewness)

k∑
i=0

µi(logµi)
3

as large as possible for fixed mean E(Γ ∗) = −
∑k
i=0 µi log(µi) and V ar(Γ ∗) =∑k

i=0 µi(logµi)
2.

Solving this optimisation problem gives a distribution with three distinct
values for µi. An example of this is shown in Fig. 3, where k = 200. Panels (b) and
(c) are histograms for a sample of 1000 values of W and D, respectively, drawn
from their distribution when N = 30. In this example, we see both the Wald
and deviance statistics are close to normal but with significant skewness which
disappears with a larger sample size. This is to be expected from the analysis
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Fig. 3. Worst case solution for normality of Γ ∗

of [9] and [12] who look at the behaviour of deviance, when bounded away from
the boundary of the simplex, when both N and k tend to infinity together. In
particular [9] shows the accuracy of this normal approximation improves without
limit when N, k → ∞ with N/k → c > 0. Symmetrising the deviance would of
course reduce this skewness, but in this example would hide the underlying
geometric structure and only works in the two tailed testing problem.



3.3 Uniformity and discreteness

In fact the hardest cases for the normal approximation (1) to the distribution of
the deviance are in complementary parts of the simplex to the hardest cases from
the Wald statistic. For W , it is the boundary where there are problems, while
for (1) the worst place is the centre of the simplex, i.e. the uniform distribution.
The difficulties there are not due to large higher order moments, but rather to
discreteness.

In this analysis consider again decomposition (2). Note that Γ ∗ is completely
degenerate here, while there are never any contributions to the ∆∗ term from
cells for which ni is 0 or 1. However, for k >> N , we would expect that for all i,
n∗i ∈ {0, 1}, with high probability, hence, after conditioning on N∗ = N there is
no variability in D – it has a completely degenerate (singular) distribution. In
the general case all the variability comes from the cases where n∗i > 1 and these
events can have a very discrete distribution – so the approximation given by the
continuous normal must be poor.

We illustrate this ‘granular’ behaviour in Fig. 4. Panel (a) shows the uniform
distribution when k = 200, panel (b) displays 1000 realisations of D when N =
30. The discreteness of the distribution is very clear here, and is also illustrated
in panel (c) which shows a QQ-plot of the sample against a normal distribution.
Note that any given quantile is not far from the normal, but the discreteness of
the underlying distribution means that not all quantiles can be attained. This
may, or may not, be a problem in a goodness-of-fit testing situation.
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Fig. 4. Behaviour at the centre of the simplex, N=30

Again following the analysis of [9] this behaviour will disappear as N gets
larger relative to k. This is shown in Fig. 5 where the N is now 60 – twice what
it was in Fig. 4. The marked drop in granularity of panel (b) between Figures 4
and 5 is due to the much greater variability in the maximum observed value of
n∗i as N increases. Clearly, for the distribution of any discrete random variable
to be well approximated by a continuous one, it is necessary that it have a large
number of support points, close together. The good news here is that, for the
deviance, this condition appears also to be sufficient.
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Fig. 5. Behaviour at the centre of the simplex, N=60

4 Discussion

Overall, we have seen that the deviance remains stable and eminently useable
in high-dimensional, sparse contexts – of accelerating practical importance. Dis-
creteness issues are rare, predictable and well-understood, while simple modifi-
cations are available to deal with any higher moment concerns, such as skewness.
When using the deviance, computational information geometry can be used to
gain insight into the power of the implicit likelihood ratio test, exploiting the
fact that D is constant on high-dimensional affine subspaces in the mean param-
eterisation, [6], while both its null and alternative approximating distributions
depend only on a few low-order moments, inducing a pivotal foliation.
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