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1. Introduction

This article concerns a novel class of models for nonnegative data which display
a number of attractive properties. It comprises a subset of the well-known log-
location-scale, or LLS, distributions discussed, for example, in [15], especially
Section 1.3.6 and Chapter 5, and [16], especially Chapter 12. This family of
distributions and its properties are reviewed in Section 2. In considering LLS
distributions, we noted the bimodality and ‘super-heavy’ tails of ‘log-heavy-
tailed’ distributions such as the log-t, and wondered if a better behaved and
more useful family of distributions might arise if the location-scale distributions
which model the logarithms of the original data were constrained in terms of
their tailweight. The reduction of the LLS distributions that we make — which
yields an affirmative answer to our question — is to assume that the underlying
location-scale distributions have log-concave densities, resulting in what we call
log-location-scale-log-concave distributions, or LLSLC distributions for short.
The additional properties that this endows are described in Section 3. Sections
4 and 5 explore the hazard functions of LLSLC distributions, with a relatively
elegant, if partial, theory of hazard shape arising under the imposition of a
further minor constraint on the hazard function of the underlying log-concave
distribution. Perhaps the most useful of these models are contained in the class
of three-parameter distributions described in Section 5.1 which allow constant,
increasing, decreasing, bathtub and upside-down bathtub shapes for their hazard
functions. A result concerning the mean residual life of LLSLC distributions is
provided in Section 6 and likelihood inference for these models is considered
briefly in Section 7. The article finishes, in Section 8, with some conclusions.

2. Log-location-scale distributions

Our starting point in this article is the class of location-scale distributions on
R, which have density and distribution functions of the respective forms

f0(x;μ, σ, κ) ≡
1

σ
f

(
x− μ

σ
;κ

)
, F0(x;μ, σ, κ) ≡ F

(
x− μ

σ
;κ

)
, x ∈ R.
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Here, μ ∈ R is the location parameter, σ > 0 is the scale parameter and any
further, shape, parameters associated with this distribution are in κ (which may
be a vector, but is typically one-dimensional in our work). Denote the random
variable associated with f and F by X.

The LLS distributions are distributions on R
+ which arise via the log transfor-

mation X = log(Y ), Y = eX . LLS distributions have density, distribution, sur-
vival, hazard and quantile functions, denoted g, G, G, hG and QG ≡ G−1, which
are all immediately available in terms of the same functions of the location-scale
distribution thus:

g(y; θ, λ, κ) =
λ

y
f
{
λ log

(y
θ

)
;κ

}
, y > 0;

G(y; θ, λ, κ) = F
{
λ log

(y
θ

)
;κ

}
, y > 0;

G(y; θ, λ, κ) = F
{
λ log

(y
θ

)
;κ

}
, y > 0;

hG(y; θ, λ, κ) =
λ

y
hF

{
λ log

(y
θ

)
;κ

}
, y > 0;

QG(u; θ, λ, κ) = θ exp
{

1
λQF (u;κ)

}
, 0 < u < 1.

Here, θ > 0 and λ > 0 are a reparametrisation of μ, σ with attractive inter-
pretation ([16], pp. 228, 428). The location parameter μ of f becomes, through
θ = eμ, the scale parameter of g. The scale parameter σ of f becomes, through
λ = 1/σ, the power parameter of g, that is, the LLS class includes the distri-
butions of Yλ = Y λ

1 for all λ > 0 whenever Y1 follows the LLS distribution
with parameter λ = σ = 1. Log-location-scale distributions might therefore be
renamed scale-power distributions. We will often drop explicit dependence of
functions on parameters for clarity in what follows.

Because of the convexity of the exponential transformation, an LLS distribu-
tion is always more skewed to the right in the classical van Zwet ([25]) sense of
convex transform order than the location-scale distribution from which it was
transformed. In fact, λ is a skewness parameter for G in this sense, smaller λ
corresponding to larger skewness.

The exponential transformation increases the weight in the right-hand tail of
the LLS distribution relative to that of the original location-scale distribution:
for instance, compare G(y) = F{λ log(y/θ)} with F (y) as y → ∞ (see also
Section 3 below). Moments of LLS distributions can be written in terms of the
moment generating function of f ([16], p. 429):

E(Y r) = θr
∫ ∞

−∞
exp(rx/λ)f(x)dx.

It is easy to see that a pair of LLS distributions based on common f are stochas-
tically ordered if their values of λ or of θ are different but their values of the
other parameters are the same.

Log-location-scale distributions also have Fisher information matrices with
an attractively simple structure; we will look at this in Section 7.
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3. Log-location-scale-log-concave distributions

Definition. LLSLC distributions are those LLS distributions based on
choices for f — and hence f0 — that are log-concave i.e. (log f)′′(x) ≤ 0 for all
x ∈ R.

Distributions with log-concave densities have a number of interesting prop-
erties ([1], [2], [5], [16], Section 4.B, [22], [26]). However, focus here is on the
resulting properties of g, obtained after exponential transformation. These prop-
erties are, of course, in addition to all the properties outlined in Section 2 which
continue to apply to LLSLC distributions.

A first result is that log-concavity of f implies unimodality of g, where ‘uni-
modality’ allows the mode to be at 0 (so that g is then monotone decreasing).
To see this, leaving out the dependence on parameters except where necessary,
(log g)′(y) = G(y)/y where

G(y) = λ(log f)′
{
λ log

(y
θ

)}
− 1.

The log-concavity of f implies that G′(y) < 0, for all y > 0. Since the log-
concavity of f implies that f is unimodal on R ([16], Proposition 4.B.2),
(log f)′(x) > 0 for x < x0 where x0 is the mode of f , and is negative thereafter;
therefore, G(y), and hence (log g)′(y), is either positive or negative for small
y and is negative for large enough y. In fact, the mode of g will be at some
y0 < θ exp(x0/λ).

It is certainly not the case that g is itself log-concave, nor would one desire
this. This is because log-concave distributions have light-to-moderate tails. In
fact, the heaviest possible tails of f are simple exponential ([1], [2], [22]), in
the sense that f(x) ∼ exp(ξx) for some ξ > 0 as x → −∞ and/or f(x) ∼
exp(−ηx) for some η > 0 as x → ∞ (examples include Laplace and logistic
distributions). It is easy to see, however, that the tailweight-increasing property
of the exponential transformation allows g to have a heavy tail: for example, if
f has an exponential right-tail then g(y) ∼ y−(ηλ+1) as y → ∞, has a power,
or Pareto, tail with tail index ηλ. Else, one or both tails of f are lighter than
exponential, which we will refer to as ‘super-exponential’, so if the right-tail of
f is super-exponential, the tail of g is lighter than power-tailed (for example,
log-normal tail for g from normal tail for f , Weibull tail for g from extreme-value
tail for f). For more on this, see Section 4 below on the properties of hG.

Convolutions of log-concave distributions are again log-concave distributions
(e.g. [16], Proposition 4.B.3). This translates to saying that the distribution of
the product of a pair of independent LLSLC random variables is also distributed
according to an LLSLC distribution.

Location-log-concave distributions have monotone likelihood ratio in μ (e.g.
[16], p.59). This translates immediately to log-location-log-concave distributions
(LLSLC distributions with fixed λ and κ) having monotone likelihood ratio in θ.
Also, because f is log-concave, F is log-concave, and so hF (x) = −(logF )′(x) is
increasing (e.g. [16], Proposition 4.B.8.a). This implies the hazard rate ordering
of LLSLC distributions in θ when the other parameters are fixed.
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4. Hazard functions of LLSLC distributions

Using the relationship between the hazard function of an LLSLC distribution,
hG(y), and that of its underlying log-concave distribution, hF (x), the number
of modes of hG will be the same as the number of modes of

log hG(y) = log λ− log y + log hF

{
λ log

(y
θ

)}

over y > 0 and thence, setting x = λ log(y/θ), of

t(x) ≡ log(λ/θ)− x

λ
+ log hF (x)

over x ∈ R. Now,

t′(x) = − 1

λ
+ (log hF )

′(x).

Thus, since f is log-concave, log hF is increasing, and so the derivative of t
consists of a positive function plus a negative constant.

An elegant theory of LLSLC hazard shape arises for a constrained subset of
LLSLC distributions; the constraint appears not to be a very restrictive one.

Constraint. The constrained LLSLC (CLLSLC) distributions of interest are
those LLSLC distributions based on choices for f such that its hazard function
hF is log-concave, log-convex or both. We abbreviate this requirement to hF

being ‘log-concavex’.

For CLLSLC distributions, there are three cases to consider:

Case 1: (log hF )
′′(x) = 0, so that log hF (x) = δ+βx, for some δ ∈ R and β > 0.

Then, t(x) = (β − 1/λ)x+ constant. The corresponding hG’s are monotone; in
fact, they are power functions, and hence g is the Weibull distribution: from the
definition,

hG(y) =
λeδ

θβλ
yβλ−1

which is increasing (constant) decreasing as βλ > (=) < 1.

Case 2: (log hF )
′′(x) < 0. In this case, t′ is monotone decreasing. So t, and

hence hG, can be increasing, unimodal or decreasing, but it cannot be bathtub-
shaped. Here and for the rest of the paper, in the context of hazard functions,
we use ‘unimodal’ to mean ‘upside-down bathtub shaped’.

Case 3: (log hF )
′′(x) > 0. In this case, t′ is monotone increasing. So t, and hence

hG, is increasing, bathtub or decreasing, but not unimodal.

Taken together, CLLSLC distributions can only be monotone increasing or
decreasing (including constant), bathtub (by which we mean decreasing then
increasing) or unimodal (by which we mean increasing then decreasing). That
is, the derivative of the hazard function can have at most one change of sign.
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Table 1

Limits of t

Tail of f Left Right
Exponential any (−∞, const,∞) −∞
Super-exponential −∞ any (−∞, const,∞)

Table 2

Shapes of hG and their dependence on tails of f

Tails of f Right: exponential Right: super-exponential

Left: exponential decreasing or unimodal
increasing or constant

or decreasing or bathtub
or unimodal

Left: super-exponential unimodal increasing or unimodal

To match hazard shapes with parameter values, it is helpful to consider the
tail behaviour of f . This involves four cases which are summarised in Table 1
below.

Case I: exponential left-hand tail. As x → −∞, hF (x) ∼ f(x) ∼ γLe
ξx, γL, ξ >

0, say, and so t(x) ∼ (ξ − 1/λ)x+ constant. This goes to −∞ (constant)∞ as
x → −∞, as ξ > (=) < 1/λ.

Case II: exponential right-hand tail. As x → ∞, f(x) ∼ γRe
−ηx, γR, η > 0,

F (x) ∼ (γR/η)e
−ηx, hF (x) ∼ η > 0, and so t(x) ∼ −∞.

Case III: super-exponential left-hand tail. As x → −∞, write f(x) ∼ e�(x) for
any �(x) tending to minus infinity faster than x. Then, hF (x) ∼ f(x) ∼ e�(x) so
that t(x) ∼ log(λ/θ) + log{e−x/λ+�(x)} tends to −∞.

Case IV: super-exponential right-hand tail. As x → ∞, write f(x) ∼ e−r(x) for
any r(x) tending to infinity faster than x. Then, using l’Hôpital’s rule, hF (x) ∼
r′(x) so that t(x) ∼ log(λ/θ) + log{r′(x)e−x/λ}. It follows that, as x → ∞, t(x)
can tend to any of −∞, constant or ∞; example choices of r for each case are:

r(x) = xγ (γ > 1), r(x) = ex/λ and r(x) = ex
β

(β > 0), respectively.
The consequences for shapes of hG are immediate and summarised in Table 2.

5. Special cases of LLSLC distributions

5.1. LLSLC distributions with increasing or constant or decreasing
or bathtub or unimodal hazard functions

The most interesting subset of CLLSLC distributions would appear to be those
occupying the top right-hand cell of Table 2. These are distributions with three
parameters (when κ in f is scalar), previously referred to as scale (θ > 0), power
(λ > 0) and shape (κ) parameters, which parsimoniously afford this wide and
attractive variety of shapes. Since f must have an exponential left-hand tail,
parametrise it so that the exponential rate of decay is κ > 0 (that is, β = κ in
Case 1, ξ = κ in Case I). With a reparametrisation of the form α = κλ > 0, a
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Table 3

Shapes of hG for LLSLC distributions of the type described in this subsection when neither
α nor λ equals 1

α < 1 α > 1
λ < 1 decreasing unimodal
λ > 1 bathtub increasing

particularly attractive set of examples of such distributions has hazard functions
with the properties:

(i) as y → 0, hG(y) ∼ yα−1;
(ii) as y → ∞, hG(y) ∼ yλ−1.

Notice that as y → 0, hG is zero (nonzero constant) infinity as α > (=) < 1
and that as y → ∞, hG is zero (nonzero constant) infinity as λ < (=) > 1. The
parameters of these distributions can therefore be reinterpreted as controlling
scale (θ), hazard behaviour near zero (α) and hazard behaviour for large y (λ).

Moreover, for CLLSLC distributions with such limiting hazard behaviour,
‘joining the tail’ considerations immediately give the overall shape of the hazard
function to be as in Table 3, for all combinations of values of α and λ with neither
of them taking the value 1. Behaviour in the remaining ‘threshold’ cases where
either or both of α and λ equal 1 can be dealt with on a case-by-case basis.

We know of three examples of such distributions (each presented with their
scale parameter θ suppressed):

Example 1: the generalized gamma (GG) distribution ([8], [23]). In the current
parametrisation, this has density

gGG(y) = λyα−1 exp(−yλ)/Γ(α/λ)

and hazard

hG;GG(y) =
λyα−1 exp(−yλ)

Γ(α/λ)− Γ(yλ;α/λ)

where Γ(z; δ) =
∫ z

0
wδ−1e−wdw is the incomplete gamma function. It includes

the Weibull and gamma (and hence exponential) distributions, as well as the
generalized (or power of) half-normal distribution ([6]) as special cases and has
the lognormal distribution as a limiting case. The GG distribution is an LLSLC
distribution because

fGG(x) = exp(κx− ex)/Γ(κ)

is log-concave. It is shown in Appendix A that hF ;GG is log-concave for κ > 1
and log-convex for κ < 1. That the behaviour of the GG hazard function follows
Table 3 is confirmed in the seminal paper of [11] where it provides an example
of how shapes of hazard functions hG can be implied by shapes of the function
−g′/g. Indeed, those considerations cover the threshold cases too, and so the GG
hazard function behaves as in Table 4. See also [8] and [9] where it is argued
that this makes the GG distribution of particular value in survival analysis.
A downside, perhaps, which is also relevant to dealing with censored data, is



Log-location-scale-log-concave distributions 2739

Table 4

Shapes of hG;GG, hG;EW and hG;PGW

α < 1 α = 1 α > 1
λ < 1 decreasing decreasing unimodal
λ = 1 decreasing constant increasing
λ > 1 bathtub increasing increasing

the appearance of the incomplete gamma function in its survival and hazard
functions.

Example 2: the exponentiated Weibull (EW) distribution ([17], [18]). In the
current parametrisation,

gEW (y) = α{1− exp(−yλ)}(α/λ)−1yλ−1 exp(−yλ)

and

hG;EW (y) =
α{1− exp(−yλ)}(α/λ)−1yλ−1 exp(−yλ)

1− {1− exp(−yλ)}α/λ .

Note the explicit distribution function GEW (y) = {1− exp(−yλ)}α/λ (but nei-
ther the hazard function nor its left-hand limit are as erroneously claimed in
the review paper [19]). The EW distribution is an LLSLC distribution because

fEW (x) = κ{1− exp(−ex)}κ−1 exp(x− ex)

can be shown (see Appendix B) to be a log-concave density. We strongly con-
jecture that hF ;EW is, like hF ;GG, log-concave for κ > 1 and log-convex for
κ < 1, and will proceed assuming this to be the case. See Figure 2 in Appendix
C for graphical evidence; extensive numerical computation also supports our
claim yet, despite strenuous efforts, we have been unable to prove it. That the
EW hazard function also follows Table 4 is confirmed in Section 2 of [18]. The
EW distribution includes the Weibull and exponentiated exponential (and hence
exponential) distributions, as well as the Burr Type X distributions, as special
cases. The similarity of the exponentiated Weibull distribution to the generalized
gamma distribution has recently been explored in detail by [9]. The similarity
of the exponentiated exponential distribution to the gamma distribution was
earlier investigated by [12].

Example 3: the power generalized Weibull (PGW) distribution ([4], [20], [21],
apparently independently treated in [10]). Probably the simplest direct construct
of a tractable hazard function with limiting properties (i) and (ii) is

hG;PGW (y) = λyα−1(1 + yα)(λ/α)−1;

this is the hazard function of Nikulin and colleagues’ PGW distribution, which
has survival function

GPGW (y) = exp{1− (1 + yα)λ/α}

and density
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gPGW (y) = λyα−1(1 + yα)(λ/α)−1 exp{1− (1 + yα)λ/α}.

The PGW distribution reduces to the Weibull distribution when α = λ. The
appropriate scaled log of a PGW random variable has density

fPGW (x) = eκx(1 + eκx)(1/κ)−1 exp{1− (1 + eκx)1/κ}.

Straightforward manipulations briefly given in Appendix D confirm that
log fPGW is concave and that log hF ;PGW is convex (linear) concave as
κ < (=) > 1. In fact, the derivative of log hG;PGW (y) with respect to y is a
positive function of y times α− 1+ (λ− 1)yα, from which the hazard shapes in
Table 4 immediately follow.

A graphical comparison of the hazard functions of the GG, EW and PGW
distributions is given in Figure 1. Each frame provides representatives of one of
the four possible nonconstant hazard regimes. For each distribution, the values of
α and λ are the same, but scalings are changed to equate the constant multiples
of the hazard as y → 0. That is, we plot θ−1

K hG;K(θ−1
K y), K = GG,EW,PGW,

where θGG = 1, θEW = {Γ((α/λ) + 1)}1/α and θPGW = {Γ(α/λ)}1/α. The
hazard functions of all three distributions are generally similar in monotone
cases, but differ more in unimodal and bathtub cases. In particular, while the
GG and EW hazard functions remain broadly similar, the PGW hazard differs
rather more from them; the PGW hazard seems to have a sharper mode than the
others in unimodal cases and a shallower antimode than the others in bathtub
cases. At the least, while the PGW distribution shares the attractive set of
hazard shapes of the GG and EW distributions ([9]), with the same number of
parameters, it seems to differ more from its GG and EW competitors than those
two do from each other. We intend to explore the similarities and differences
between GG, EW and PGW distributions more in future work.

5.2. LLSLC distributions with decreasing or unimodal hazard
functions

LLSLC distributions in the top left-hand cell of Table 2 include the most heavy-
tailed ones; they are treated more briefly here as they might not have such
importance for survival and reliability data as they do in some other contexts
(e.g. financial). These distributions are based on f ’s with two exponential tails;
a wide variety of such distributions is covered by the family of distributions in
[14]. Members of this family have densities of the form

f(x) ∝ exp{κx− (κ+ τ)W (x)},

κ, τ > 0. Here, W (x) is the first iterated distribution function of a symmet-
ric distribution on R, itself with tails that are lighter than Cauchy, that is,
W ′(x) is the distribution function of a not-extremely-heavy-tailed symmetric
distribution. Such W satisfy W (x)−W (−x) = x and are such that W (x) → 0
as x → −∞, W (x) ∼ x as x → ∞. These densities are log-concave because
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Fig 1. Examples of hazard functions of GG (solid), EW (dotted) and PGW (dashed) distri-
butions, with (a) λ = 3

4
, α = 3

8
, (b) λ = 3

4
, α = 9

4
, (c) λ = 2, α = 1

2
, (d) λ = 2, α = 4.

(log f)′′(x) = −(κ+τ)W ′′(x) and W ′′(x) > 0 is a (symmetric) density function.
Unfortunately, these distributions are not very tractable in general.

Nonetheless, a prime example of such an f is the log F distribution aris-
ing from W (x) = log(1 + ex) (the iterated distribution function of the logistic
distribution); it has fGF (x) ∝ eκx/(1 + ex)κ+τ . It follows that

gGF (y) ∝ yα−1/(1 + yλ)(α/λ)+τ .

This is the generalized F , generalized beta of the second kind, or Feller-Pareto,
distribution (e.g. [3], [7], [13], Chapter 27). The generalized F distribution
does not have decreasing or unimodal hazards for all choices of its parameters
([7]).

Special Case 1: α = λ (κ = 1), the Burr Type XII, or Pareto Type IV or
Singh-Maddala, distribution. This is very tractable with, inter alia, hG;BXII(y) =
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λτyλ−1/(1+yλ). It is easy to show directly that log hF ;BXII is concave and that
hG;BXII is decreasing for λ ≤ 1 and unimodal otherwise. Note that τ acts only
as a proportionality coefficient in this hazard function.

The result of applying our approach to the generalized F distribution is then
easy to state: log hF ;GF is concave if and only if κ ≥ 1, and so hG;GF , which
tends to zero as x → ∞ for all values of its parameters, is guaranteed to be
either decreasing or unimodal when κ ≥ 1 (equivalently, when α ≥ λ). This is
proved in Appendix E.

This ‘high level’ information — which takes no direct account of λ — can be
complemented with more detailed information about when hG;GF is decreasing
or unimodal given by Glaser’s method ([16], Proposition C.4(1),(ii)). Briefly,
the hazard rate is unimodal if λκ > 1 or if κ = 1/λ < 1. It is decreasing if
λκ < 1 and either λ{κ(1 + λ) + τ(λ− 1)} ≤ 2 or κ(1 + λ)2 + τ(1− λ)2 < 4, or
if κ = 1/λ ≥ 1.

Special Case 2: λ = 1, the (scaled) F , or beta of the second kind, distribution.
The F hazard function is decreasing for α = κ ≤ 1 and unimodal otherwise.

5.3. LLSLC distributions with increasing or unimodal or just
unimodal hazard functions

The lower two cells in Table 2 are perhaps least interesting and will be considered
even more briefly. Distributions in the bottom left-hand cell, with unimodal
hazards only, arise from distributions in the top right-hand cell by replacing f
by the distribution of −X, density f(−x). The corresponding g distributions are
the distributions of 1/Y where Y follows any distribution in the top right-hand
cell of Table 2.

Distributions in the bottom right-hand cell of Table 2 can be constructed in
bespoke fashion from densities f with a pair of light, superexponential, tails.

6. Mean residual life of LLSLC distributions

Confine attention in this section to LLSLC distributions for which the mean μG

exists. The mean residual life function is, of course,

MG(y) ≡ EG(Y − y|Y ≥ y) =

∫∞
y

G(t)dt

G(y)
=

IG(y)
G(y)

,

say. Note that MG(0) = μG.
Now, for LLSLC G, we can write

IG(y) =
∫ ∞

y

F (λ log(t/θ))dt =
θ

λ

∫ ∞

λ log(t/θ)

ew/λF (w)dw.

Since F is log-concave, hF is increasing, and we have

hF (λ log(y/θ))IG(y) ≤
∫ ∞

y

hF (λ log(t/θ))F (λ log(t/θ))dt



Log-location-scale-log-concave distributions 2743

=

∫ ∞

y

f(λ log(t/θ))dt =
θ

λ

∫ ∞

λ log(y/θ)

ew/λf(w)dw

=
1

λ

{
yF (λ log(y/θ)) + IG(y)

}
,

using integration by parts. (The fact that the term ew/λF (w) → 0 as w → ∞
follows from the conditions for μG to exist, namely that f have either a super-
exponential tail, or an exponential tail with η > 1/λ, as x → ∞.) Rewriting the
above inequality in terms of G and multiplying throughout by λ, we have

yhG(y)IG(t) ≤ yG(y) + IG(y)

which can be rearranged to yield (yhG(y) − 1)MG(y) ≤ y. When hG(y) ≤ 1/y
this is unhelpful, but when hG(y) > 1/y we have the bound

MG(y) ≤
1

hG(y)− (1/y)
.

The bound is particularly relevant for large y, where it adds to the general
property of mean residual life functions that MG(y) ∼ 1/hG(y) as y → ∞.

7. Aspects of likelihood inference

The distributions with which we are concerned have three or four parameters
and hence can be fitted to data by maximum likelihood. In practice, optimisa-
tion software should be run from several starting points to try to ensure that the
global maximum of the likelihood is found, and the log-likelihood surface is not
always very well behaved. Any problems will be exacerbated when one or more
parameters of the distributions are made to depend on covariates. An impor-
tant aspect of inference not considered here is the accommodation of censored
observations.

Theoretically, the problem is regular and standard asymptotic theory for
maximum likelihood estimation applies. The Fisher information matrix associ-
ated with LLS, and hence LLSLC, distributions has a nice structure. It is easy
to show that the expected Fisher information associated with the location-scale
distribution f0(·;μ, σ, κ) on R has the form

⎛
⎜⎝

I11(κ)
σ2

I12(κ)
σ2

I13(κ)
σ

I12(κ)
σ2

I22(κ)
σ2

I23(κ)
σ

I13(κ)
σ

I23(κ)
σ I33(κ)

⎞
⎟⎠

which does not depend on μ. (Here the result is written as if κ is one-dimensional;
only a notational change is necessary if κ is higher-dimensional.) In particular,
asymptotic correlations between parameter estimators depend only on κ. For-
mulae for the I··(κ) terms are given in Appendix F.
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Because of the simplicity of the reparametrisation as we move from R to R
+,

the expected Fisher information associated with g(·; θ, λ, κ) on R
+ has the very

similar form ⎛
⎜⎝

λ2I11(κ)
θ2 −I12(κ)

θ
λI13(κ)

θ

−I12(κ)
θ

I22(κ)
λ2 −I23(κ)

λ
λI13(κ)

θ −I23(κ)
λ I33(κ)

⎞
⎟⎠ ,

involving precisely the same functions of κ. In particular, asymptotic correlations
between parameter estimators, which depend only on κ, are precisely the same
as for f0. The asymptotic variance of θ̂ is proportional to (θ/λ)2, that of λ̂ is
proportional to λ2 and that of κ̂ depends only on κ as before. (Here, hats denote
maximum likelihood estimators).

If f is symmetric about zero, then I12(κ) = I13(κ) = 0 and we are in the
happy position of μ̂ being asymptotically independent of σ̂ and κ̂ on R and,
equivalently, of θ̂ being asymptotically independent of λ̂ and κ̂ on R

+. Basing
accelerated failure time models — which take θ to depend on covariates — on
log-location-scale-symmetric distributions would therefore seem to be attractive,
and that is just what is done in the recent work of [24] (for a wide subset
of such distributions). However, for the purposes of better hazard modelling,
symmetry of location-scale distributions is eschewed, and then simple parameter
orthogonality is unavailable. The imposition of log-concavity of f appears not to
provide any simplification or extra consequences of the above Fisher information
matrices.

8. Conclusions

This paper has presented a unified view of distributions for survival and reliabil-
ity data which are not only log-location-scale distributions, with the advantages
thereof, but a subset of them which arise from log-concave distributions on the
‘logged’ scale. These LLSLC distributions are additionally necessarily unimodal
and closed under multiplication of random variables.

A particular focus has been on the important question of shapes of hazard
functions. These shapes can be well understood within the LLSLC framework
(Sections 4 and 5) allowing the categorisation of certain existing distributions
and the potential for constructing other distributions with desirable hazard
structures. Perhaps the most useful LLSLC models are those of Section 5.1,
three-parameter distributions allowing constant, increasing, decreasing, bathtub
and unimodal hazard functions. Our work sheds further theoretical light on the
strong similarities — observed by [9] — between two especially useful, and
highly recommended, distributions of this type, the generalised gamma and
exponentiated Weibull distributions. Superficially, we expected to agree with
Cox & Matheson ([9]) that “An advantage of the EW family is that it is easier
to work with than the GG”; paradoxically, we were able to prove our conjecture
of the logconcavexity of hF only for the GG distribution and not for the EW!

In future work on which we have already embarked, we intend, as already
mentioned, to explore further the similarities and differences between GG, EW
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and PGW distributions, and also to better understand the relationships between
them and certain distributions with heavier tails (like the generalized F ) from
which they arise as limiting cases. This work will be at least partly focussed on
clarifying which particular case(s) to recommend for use to practitioners.

Appendix A: Proof that hF ;GG is log-concavex

Define

Gκ(x) = Γ(κ)− Γ(ex;κ) =

∫ ∞

ex
yκ−1e−ydy,

so that
log hF ;GG(x) = κx− ex − logGκ(x),

and define L(x) = exp{(κ− 1)x− ex}. Note that

G′
κ(x) = −exL(x) and G′′

κ(x) = (ex − κ)exL(x)

and, by integration-by-parts,

Gκ+1(x) = exL(x) + κGκ(x) and Gκ(x) = L(x) + (κ− 1)Gκ−1(x).

Now,

(log hF :GG)
′′(x) = −ex − (logGκ)

′′(x) =
ex

G2
κ(x)

Aκ(x)

where

Aκ(x) = exL2(x) + (κ− ex)L(x)Gκ(x)−G2
κ(x)

= L(x){exL(x) + κGκ(x)} −Gκ(x){exL(x) +Gκ(x)}
= L(x)Gκ+1(x)−Gκ(x){exL(x) + κGκ(x)}+ (κ− 1)G2

κ(x)

= {L(x)−Gκ(x)}Gκ+1(x) + (κ− 1)G2
κ(x)

= (κ− 1){G2
κ(x)−Gκ+1(x)Gκ−1(x)}.

The term in curly brackets is negative by the Cauchy-Schwartz inequality, so
hF ;GG is log-convex if κ < 1 and is log-concave if κ > 1, as required.

Appendix B: Proof that fEW is log-concave

(log fEW )′′(x) = −ex + (κ− 1)
ex exp(−ex){1− ex − exp(−ex)}

{1− exp(−ex)}2

= − ex

{1− exp(−ex)}2Nκ(x)

where

Nκ(x) = 1− (κ+ 1) exp(−ex) + κ exp(−2ex) + (κ− 1)ex exp(−ex)
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Therefore, fEW will be log-concave if Nκ(x) > 0 or equivalently if Nκ(y) > 0
where y = ex > 0 and

Nκ(y) = {1− (1 + y)e−y}+ κe−y{e−y + y − 1}.

It is, in fact, true that Nκ(y) > 0; this is because κ > 0, e−y + y − 1 > 0
and 1 − (1 + y)e−y > 0. The latter two inequalities arise from the standard
inequalities for the exponential function

z

1 + z
< 1− e−z < z, z > −1,

the first immediately, the second after writing 1−(1+y)e−y = (1+y)(1−e−y)−y.

Appendix C: Graphical evidence that hF ;EW is log-concavex

Plots of the second derivative of log hF ;EW (x) suggestive of its being positive for
all κ < 1 and negative for all κ > 1 (it is zero for κ = 0) are given in Figure 2.

Fig 2. Plots of (log hF ;EW )′′(x): (a) in order of decreasing maximum, for κ =
0.05, 0.1, 0.25, 0.5, 0.75, 1; (b) in order of increasing minimum, for κ = 2, 1.75, 1.5, 1.25, 1.1, 1.

Appendix D: Proof that fPGW is log-concave and hF ;PGW is
log-concavex

(log hF ;PGW )′′(x) = (1− κ)κ
eκx

(1 + eκx)2

and the claimed log-concavexity of hf :PGW is clear. In addition,

(log fPGW )′′(x) = (log hF ;PGW )′′(x) + (logFPGW )′′(x)

= (1− κ)κ
eκx

(1 + eκx)2
− eκx(1 + eκx)(1/κ)−2(κ+ eκx)
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and the log-concavity of fPGW when κ ≥ 1 is immediate. For κ < 1, note that

(log fPGW )′′(x) =
eκx

(1 + eκx)2
Oκ(x)

where
Oκ(x) = (1− κ)κ− (1 + eκx)1/κ(κ+ eκx).

However, Oκ(x) is easily seen to be a decreasing function of x and so is max-
imised when x → −∞, taking a maximised value of (1 − κ)κ − κ = −κ2 < 0.
Hence fPGW is log-concave for all κ > 0.

Appendix E: Proof that log hF ;GF is log-concave when κ > 1 and is
not log-concave when κ < 1

When κ > 1, the proof of log-concavity of log hF ;GF follows similar lines to that
in Appendix A. Define

Gκ(x) =

∫ ∞

ex

yκ−1

(1 + y)κ+τ
dy

(noting that Gκ also depends on τ), so that

log hF ;GF (x) = κx− (κ+ τ) log(1 + ex)− logGκ(x),

and define L(x) = exp{(κ− 1)x}/(1 + ex)κ+τ . In this case,

G′
κ(x) = −exL(x) and G′′

κ(x) =

(
(κ+ τ)ex

1 + ex
− κ

)
exL(x)

and, by integration-by-parts,

(κ+ τ)Gκ+1(x) = exL(x) + κGκ(x)

and
(κ+ τ − 1)Gκ(x) = (1 + ex)L(x) + (κ− 1)Gκ−1(x).

Now,

(log hF :GF )
′′(x) = − (κ+ τ)ex

(1 + ex)2
− (logGκ)

′′(x) =
ex

G2
κ(x)

Bκ(x)

where

Bκ(x) = exL2(x) +

(
κ− (κ+ τ)ex

1 + ex

)
L(x)Gκ(x)−

(κ+ τ)

(1 + ex)2
G2

κ(x)

= L(x){exL(x) + κGκ(x)} −
(κ+ τ)

(1 + ex)2
Gκ(x){(1 + ex)L(x) +Gκ(x)}

=
(κ+ τ)

(1 + ex)
{(κ+ τ − 1)Gκ(x)− (κ− 1)Gκ−1(x)}Gκ+1(x)
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− (κ+ τ)

(1 + ex)
Gκ(x){(κ+ τ)Gκ+1(x)− κGκ(x)} −

(κ+ τ)

(1 + ex)2
G2

κ(x)

<
(κ+ τ)

(1 + ex)

[
(κ+ τ − 1)Gκ(x)Gκ+1(x)− (κ− 1)G2

κ(x)

− (κ+ τ)Gκ(x)Gκ+1(x) + κG2
κ(x)−

1

(1 + ex)
G2

κ(x)

]

=
(κ+ τ)

(1 + ex)
Gκ(x)

{
ex

1 + ex
Gκ(x)−Gκ+1(x)

}
< 0.

The first inequality arises from the fact that κ > 1 and the Cauchy-Schwartz
inequality applied to the second term, that is, Gκ−1(x)Gκ+1(x) > G2

κ(x). The
final inequality follows because

Gκ+1(x) =

∫ ∞

ex

yκ

(1 + y)κ+τ+1
dy =

∫ ∞

ex

yκ−1

(1 + y)κ+τ

y

1 + y
dy

>
ex

1 + ex

∫ ∞

ex

yκ−1

(1 + y)κ+τ
dy =

ex

1 + ex
Gκ(x),

y/(1 + y) being an increasing function.
That log hF ;GF can not be log-concave when κ < 1 follows from consideration

of the behaviour of (log hF ;GF )
′′(x) as x → −∞. Using formulae above and the

facts that L(x) ∼ exp{(κ − 1)x} and Gκ(x) ∼ 1 as x → −∞, when κ < 1,
(log hF ;GF )

′′(x) ∼ κeκx which approaches zero from the positive side. (This
contrasts with (log hF ;GF )

′′(x) ∼ −(κ+ τ)ex < 0 when κ > 1.)

Appendix F: Formulae in the expected Fisher information matrices

Denote differentiation with respect to x by primes and with respect to κ by
small circles. Remembering that f depends only on κ, we have:

I11(κ) = −
∫

(log f)′′(x)f(x) dx =

∫ {f ′(x)}2
f(x)

dx;

I12(κ) = −
∫

x(log f)′′(x)f(x) dx =

∫
x
{f ′(x)}2
f(x)

dx;

I13(κ) =
∫
(log f)′◦(x)f(x) dx = −

∫
f ′(x)f◦(x)

f(x)
dx;

I22(κ) = 1−
∫

x2(log f)′′(x)f(x) dx =

∫
x2 {f ′(x)}2

f(x)
dx− 1;

I23(κ) =
∫

x(log f)′◦(x)f(x) dx = −
∫

x
f ′(x)f◦(x)

f(x)
dx;

I33(κ) = −
∫

(log f)◦◦(x)f(x) dx =

∫ {f◦(x)}2
f(x)

dx.
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