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Abstract. Island electricity systems tend to rely heavily on the use of fossil fuels 

for the everyday supply of customer needs, so there are both significant economic 

and environmental benefits from the decarbonisation of these systems. One such 

key global environmental benefit is the anticipated reduction in CO2 emissions and 

its associated effects on climate change. In recognition, many islands are already 

pursuing ambitious goals for renewable energy sources integration. The resulting 

effects of policy on the long-term investment decisions however, need to be better 

understood. This paper presents a system dynamics simulation model which 

evaluates the adoption and diffusion of renewable generation sources within an 

existing island electricity system. In particular, renewable sources within the 

Azorean island of São Miguel are considered, with findings revealing that the 

requisite long-term investments are framed by the local experience of the renewable 

technologies and the pursuit of further renewable integration policy targets.   
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1 Introduction  

This paper focuses upon the opportunities and challenges facing those making 

investment decisions for the integration of renewable sources; to obtain a better 

understanding of the resulting future portfolio of electricity generation mixes and 

the possible benefit of these to stakeholders. To streamline the research objective, 

attention is focused upon an island system where technical issues are small in scope 

and largely local, but the political economy is largely external.  In [1], an extensive 

review of renewable integration into island systems is presented, which 

recommends that future models of such systems should incorporate both regulatory 

environments and the dynamics of learning curves of renewable sources, in order to 

comprehensively evaluate investment implications in the short, medium and long 

term. It is also important to identify the drivers and necessary investment and policy 

insights for a low-carbon optimized system, to achieve a sustainable future. 

Furthermore key stakeholders can elicit what are the distinct policy drivers and 

determine beneficial solutions and/or long-term investment strategies. 

Several island-based studies have previously been conducted to investigate 

renewable integration challenges. For example, the island of Flores in the Azores 

has been used in the study in [2], as a “green” island paradigm characterized by high 

renewable energy penetration. A TIMES MARKAL analysis model was developed 

with exogenous demand growth, and a scenario-based approach used to find optimal 

solutions for energy system design and management, given the different possible 
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exogenous ‘evolutions’ of electricity demand. The study analyzed the impact of 

demand side management (DSM) options, such as energy efficiency measures and 

dynamic demand response, showing that load shifting strategies could delay new 

investments, while rendering the current investments on renewable resources more 

economically viable. Of similar scope is the energy storage study in [3], again for 

the Azores, which used a least-cost unit commitment model analysis to determine 

the expected cost savings from introducing energy storage into existing electrical 

power grid networks.  The study highlighted some challenges and revealed potential 

cost-savings from incorporating energy storage within a smart electrical power grid 

system. Another study [4], examined the use of electric vehicles for CO2 emissions 

reduction by using renewable energy sources as the sole generation supply for 

charging the vehicles, with a least-cost economic dispatch and unit commitment 

model being proposed. Parness, also undertook a least-cost economic dispatch and 

unit commitment model. Recently [5]–[7] used system dynamics to analyze the 

distributed integration of renewable energy sources, carbon policy incentives and 

taxation within large interconnected energy networks. These works provide 

recommendations to policy makers for the uptake of, and pricing patterns for, 

tradable green certificates and carbon emissions prices. These models rely heavily 

on historical data, with the dynamics of the system being able to provide useful 

insights into these types of systems. 

System dynamics is not an optimization methodology but rather it aids in 

understanding and gaining insights into complex systems, by capturing a system’s 

key feedback structures and important sources of inertia and delays. Key 

endogenieties are often revealed which afford useful insights into the complex 

system structure and dynamic behaviors. System dynamics can elucidate scenarios 

and reveal hitherto unexpected behavior and phenomena in response to policies. 

The model presented in this paper highlights the necessary investment decisions 

needed to achieve the system’s local renewable target; globally influenced CO2 

emissions targets; and to embed local learning experience of renewable 

technologies. Long-term sustainability policy interventions tied to these aspects of 

the system are also explored via the model. The model analyses the scenarios in 

which the rate of renewable integration is likely/not likely to be delayed, diluted, or 

defeated by unanticipated reactions and side effects. This becomes evident as the 

renewable goals are achieved and the learning curves reducing the cost of the 

renewable investments come into play. 

Pruyt and Kwakkel, [8] incorporated learning curves when using system 

dynamics to consider cost reductions accruing from the experience gained from 

previous installation of various competing energy technologies. The authors 

demonstrated the impact of learning curves on the cost of these competing 

technologies in energy transitions. In [9] the system dynamics approach was further 

applied to understand holistically the diffusion of a new technology, namely wind 

power. The authors showed the extent to which system dynamics captures the 

underlying mechanisms of diffusion processes and applied this to a large 

interconnected energy system. This provided the context for the case study into our 

chosen island: São Miguel in the Azores. 

The rest of this paper is organized as follows: Section 2 presents the case study 

used for this work. The developed island renewable integration model is detailed in 
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Section 3. Sections 4 details the scenarios and Section 5 discusses the initial 

findings, analysis, validation and insights gained. The paper concludes with Section 

6 and includes an outlook of the next steps and future modifications of the model. 

2 Case Study: São Miguel – an electrically isolated island 

The Azores are an archipelago of nine Portuguese islands about 1,500 km west 

of mainland Portugal within the Atlantic Ocean. The islands are clustered into three 

major groups: the eastern, central and western groups, and they have a total 

population of 245,000 [10]. São Miguel is the largest island in the Azores, both in 

terms of size and population. It was chosen for this study because it is an electrically 

isolated island system that has ongoing extensive renewable technologies 

integration and plans for more in the face of high amounts of fossil fuel generation 

capacity, partly due to its carbon lock-in [3], [11]. 

São Miguel’s electricity system is isolated in a technical, but not in a political 

and economic sense. The power system on the island is stand-alone without any 

interconnections to other islands or the mainland (preventing the import and export 

of electricity in peak supply and load situations). The island does not operate an 

energy market and it is dependent on the Portuguese mainland government to 

determine energy prices and policies [12], [13]. The local electricity company, 

Electricidade dos Açores (EDA), serves all nine islands including São Miguel as a 

fully-regulated utility. São Miguel electricity customers pay the same retail 

electricity rates as mainland Portugal according to national law. Effectively, the 

Azorean electricity tariffs are subsidized by the rest of Portugal [3]. Policy requires 

that EDA follows least-cost planning procedures when investing in capacity 

additions or other grid enhancements. However, as highlighted in [14], and typical 

to most island electricity systems, São Miguel has a very large capacity reserve 

margin (well above 30%). In contrast, the UK has a National Grid reserve margin 

goal of about 20%. As a consequence of the high margin in São Miguel a significant 

amount of generation capacity is idle most of the year [15]. The annual electricity 

consumption load grew more than 3% a year in the period 2005-2009, before 

dropping back after the global financial crisis (not featured in our model). Our 

model currently assumes that the future demand keeps rising by the same 3% 

margin, with a fixed set of projected investments which will be responsible for 

covering additional electricity consumption [12]. The tariff prices for electricity are 

also expected to rise [13]. Issues of demand will be advanced in future work. In this 

study demand is exogenous and smoothly increasing.  

A key aspect of this study is the recently imposed Portuguese national decree to 

achieve 75% renewable electricity on the island by 2018, with an intermediate goal 

of 50% renewable by 2015 [3]. However, there are no clear insights into the long-

term dynamics for hastily adopted renewable policies. Would it be delayed, diluted 

or frustrated due to the global pressures of CO2 emissions reduction or affected by 

the local learning curve of the renewable technologies? This paper provides clear 

insights into this issue as it details the key socio-techno-economic aspects of the 

renewable integration problem for a typical island electricity system. 
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3   Renewable integration model 

The integration of renewables in the island electricity system raises many 

uncertainties and different types of complexities and dynamics. As with all complex 

systems, the structure of the system affects its behavior. The system dynamics 

approach proposed in this paper makes it possible to represent the dynamics of the 

system in terms of the “feedback” processes, stock and flow structures, time delays 

and accumulations. These dynamics arise from the interactions within the 

networked feedbacks (loops) of the system. There are various causal relationships 

between key system variables which can be either positive (+ve)/self-reinforcing or 

negative (–ve)/self-correcting feedbacks. Accumulations are the individual stocks 

or measurable quantities of the system, i.e., the accumulated CO2 emissions, 

accrued cost of new renewable capacity and the installed renewable capacity. These 

characterize the state of the island system and also are the sources of inertia and 

memory. The flows, such as the investment rate and net monthly CO2 emissions, 

are directly linked to their respective stocks and reflect the rates at which these 

stocks increase or decrease. In the modelling, planned renewable investments and 

existing renewable capacity are stocks which are determined endogenously. Our 

model is a long-timescale investment model and is not a short-term grid balancing 

model. We adopt a one-month time-step. As such in this work we are largely 

insulated from short-term issues of weather and renewables intermittency.   

Figure 1Figure 1 shows the three main feedback loops influencing renewable 

integration within the system. The green loop (balancing effect of locally influenced 

renewable target) captures the causal relationship between the amount of renewable 

capacity installed and the shortfall of the amount needed to reach the local 

renewables target. The purple loop (balancing effect of the globally-influenced CO2 

emissions target) shows the effects of the installed renewable capacity and planned 

investments of renewables on the global emissions targets of the island system. The 

red loop (reinforcing effect of local renewable learning curve experience) captures 

the extent of cost reductions that accrue from the experience of installing 

renewables. This loop captures the breakeven cost of renewable production capacity 

that is required for the system to be sustainable. These three loops are the key 

components underpinning the model’s structure, with their interactions being 

important for understanding the emerging characteristics of the system. In the work 

reported here we do not consider issues of long-term seasonal energy storage. This 

will be considered in future work focusing on the demand side.  Shorter term (e.g. 

diurnal) storage is also omitted from this initial long-term investment model.   

Additionally, social and economic impact plays a key role in the overall model, 

though at this stage these are secondary to the main feedback loops. The model 

crucially highlights a generic structure aggregating all renewable sources into a 

single entity. Later disaggregation will permit more accurate modelling, as the 

technological advancement with learning-curve cost reductions and profitability of 

the individual renewable sources can differ significantly. In later work we intend to 

focus on DSM and related social factors and to model this demand forecast as an 

endogenous component of the system. This will be pursued during further 

enhancements of the model. 
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Figure 11 Overview of the key feedback structures related to renewable 

integration within the island electricity system 

 

The simulation model is implemented using the Vensim software package. The 

model has been derived from the causal loop diagram (Figure 1Figure 1), and 

includes the stock and flow variables that capture the key system structure. The 

important exogenous inputs are the local renewable targets, the CO2 emissions 

targets, the electricity price and the electricity demand. In future versions of the 

model the electricity demand will be endogenous, but in this study our aim is to 

focus on renewable integration policies and cost reductions from installation 

experience. In this paper, the demand is assumed to be exogenous and storage is 

neglected. 

To model cost reductions we follow [8] and write ����� � �� 	��	
�	
�	

�

�

, where 

Ct is the investment cost per MW at time t, ��  is the cumulative constructed capacity 

(including decommissions), and e is the learning curve parameter. The parameter e 

= �log2 (�), where � is the progress ratio with	0 � � � 1. A progress ratio of 90% 

means that for each doubling of �� 	there is a cost reduction of 10%. Following [16, 

p. 338], the model was tested with several realistic progress ratios. For the 

relationship of the progress ratio to the economic concept of learning-by-doing 

please see [8] and [16, p. 338]. 

Within the model (Figure 2) the key stocks are the planned renewable 

investments, the installed renewable capacity and the cost of new renewable 

capacity. The growth of planned investments in renewable capacity depends on the 
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investment rate, which, in turn, is affected by the total capacity required to meet (i) 

forecasted demand load; (ii) the financial expectations of investors; and (iii) the 

CO2 and local renewable targets. To model the influence of targets, we use the 

approach given in [16], whereby �,	the rate of adjustment of a variable � to a target 

�∗, is given by � � ��∗ � ��/�� , where �� is the adjustment period.  
Important dynamic components of the model are, for the monthly time step Δ�: 

a. the rate of change of installed renewable capacity, Δ� /Δt � P# � P$, where P# 

is the rate of commencement of generation and %& is the depreciation rate; 

b. the rate of change of planned renewable investments, Δ'(/Δ� � ' � �) , where ' 

is the investment rate and �)  is the rate of commencement of construction of new 

renewable capacity. 

The investment rate ' is a compound of several model variables:   

' � max	���- � � �/� , ��& � � �/� , �. , �/� 0	�) 	
where �-  is the forecasted demand load; �  is the installed renewable capacity; �& 

is the financially desired renewable capacity; �  is the capacity investment decision 

timeline; �)  is the rate of renewable capacity retirement; and �. and �/ are, 

respectively, the rates of adjustment to the renewables and CO2 emissions targets, 

as described above. The desired renewable capacity �& � 1. 	� , where 1. is the 

investment attractiveness, which, following [17], we model as a piecewise linear 

function of profitability.  

 

 
 

Figure 2 Simplified Stock and Flow Diagram of Simulation Model 
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Structural validation of the model is achieved by comparing model outputs with 

historical output data of the real system for the endogenous installed renewable 

capacity. Historical data for 2005-2014 of the key exogenous variables, such as the 

demand load and electricity prices, have been used to determine appropriate data 

extrapolations using the Vensim SMOOTH and FORECAST functions.  

To gain some insights into the next 35 years of the system structure and variables, 

the model has been implemented, with a monthly time step, for the period 2005-

2049. The investment decisions for the renewable integration within the system 

have been observed and insights given based on different renewable targets and CO2 

emissions policies (CO2 avoidance trading certificates and a price for CO2 emissions 

have been ignored). It is important to keep in mind that this renewable model is still 

to be integrated with a fossil-fuel capacity model [18] and a future demand-side-

management model and therefore model outputs and insights are provisional. 

4   Three Scenarios 

Within the scope of this model we are able to see the effects of the renewable 

target and CO2 emissions policy on the planned and installed renewable capacity 

within the system. The additional effects on the cost of renewable investments due 

to the cost-reduction from installation experience is also highlighted in the model. 

In all scenarios, the initial planned renewable investments, installed renewable 

capacity and cost of renewable investments are obtained from the historical data of 

São Miguel, for the initial time of January 2005. Model calibration time is given 

from January 2005 to December 2014, whilst the simulation period runs from 2015 

up to 2049. Three different scenarios are used for evaluation, which vary according 

to the desired policies. The extrapolated input data for the exogenous peak demand 

of the system and the initial cost of renewable investments remain the same in all 

scenarios. The CO2 emissions and renewable target policies are implemented as 

stated in Section 3, and by fitting the adjustment time and required goal to the 

desired policy. The three scenarios are: 

Reference scenario: This scenario considers the “business as usual” case and 

represents the most likely outcome under a midterm goal of 50% reduced CO2 

emissions and 50% installed renewable capacity targets within the system by 2030.  

Less-aggressive renewable scenario: This scenario features renewable policies that 

have a goal of 50% reduced CO2 emissions and 50% installed renewable capacity 

targets within the system, by 2050.  

Aggressive renewable scenario: This scenario represents the goal of 50% reduction 

in CO2 emissions and 75% installed renewable capacity within the system by 2018.  

5   Analysis 

Figure 3 shows the observed trend for the planned renewable investments within 

the system. In all three scenarios, as outlined in Section 4, the initial state of the 
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model sets planned renewable investment at 9MW reflecting the reality of São 

Miguel in 2005. The monthly planned renewable investments peaks somewhere 

after 2011 for all scenarios but as expected the policy of 75% renewable by 2018 

has a higher peak. After the peak the trend appears to be a steep decline into an 

exponential levelling off to zero around 2038 for all three scenarios. The similarity 

of the three scenarios is partly a consequence of assuming the same demand growth 

in each case. Future work will explore a range of scenario demands. Furthermore, 

it is expected renewable capacity will converge to meet the policy target as such, 

which is equivalent to archetypical s-shaped system dynamics behavior where such 

convergences might be with a system carrying capacity.  

 
Figure 3 Planned Renewable Capacity Investments in 3 Scenarios 

 

Following the planning stage, the installation and actual commisioning of 

installed renewable capacity can take 2-3 years. Figure 4 shows the amount of 

installed renewable capacity for all three scenarios, also compared to the real data 

of installed renewable capacity from 2005 to 2015 and the results of Ilić, in [19, Ch. 

20]. All three of the scenarios reflect a similar amount of installed renewable 

capacity of about 39MW for 2015 in line with the real data. The calibration time of 

the model was short and  there was an initial deviation from the real data, however 

the long term trajectory of both our simulated model and the real data tends to be 

correlated. Note, Ilić achieved similar results to the 80MW approximate value of 

installed capacity in 2028 using a stochastic dynamic programming method for 

long-term capacity planning. This provides some confidence in the validity of our 

work. The aggressive 2018 renewable policy has an installation peak that occurs 

faster and is higher than the 2030 50% policy and the 2050 50% policy. However 

the final capacity in 2050 does not differ by much and we think that this can be 

attributed also to the electricity demand growth on the island (the carrying capacity 

of the system).  

Figure 5 highlights the cost reduction learning curve. This study used a 90% 

progress ratio resulting in a 10% cost reduction on the initial cost price in 2005 for 

every doubling of the renewable capacity within the system. The new renewable 

cost price for 2005 as given by [20] was used. By 2050, the cost of new renewable 
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capacity is shown to decrease by a small amount in all three scenarios indicating 

that the learning experience of the renewable element within the island is not very 

high. The corollary is that the learning-by-doing opportunity on such small islands 

is not very significant. Such learning effects are typically measured in terms of the 

cost reductions that can be expected from a doubling of installed capacity. The small 

size of the island system evidently restricts the potential for limitless growth and 

hence learning-by-doing.  

 
Figure 4 Installed renewable capacity. Our modelling (3 Scenarios), 

real world data and independent modelling [18].  

 

 
Figure 5 Costs per MW of capacity in 3 scenarios illustrating the effect of 

learning-by-doing 

 

Figures 6 and 7 show the renewable capacity needs for CO2 emissions 

replacement and how the deviation from the local renewable target influences the 
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three scenarios. In all cases, values are initially high then decrease in proportion to 

the aggressiveness of the associated policy. If stakeholders only considered these 

factors then there would be overly costly investment in the early years of the system.  

In Figure 6, both the reference “business as usual” and less aggressive policies 

achieved the local renewable targets by 2023. However, we see indications that the 

aggressive 75% 2018 policy appears to struggle. In that case the simulated model 

achieved its target by 2029. This can also be attributed to the carrying capacity of 

the system and the financial limitations attached to higher investments over a shorter 

time. Figure 7 implies that a higher amount of renewables are needed on a monthly 

basis for the aggressive renewable scenario in order to achieve the EU influenced 

CO2 emissions goals. However, with less aggressive goals this target is achieved 

about 2 years later than the more aggressive policy goals. These observations 

emerge from this initial study restricted in scope and may evolve further as other 

factors are made endogenous to the model. One consideration that could greatly 

affect renewable generation is the effectiveness of diurnal and seasonal energy 

storage. We note the special role of hydro-power in this regard, which will be 

accounted for as different renewable types are disaggregated in future work. 

 

 
Figure 6 Convergence of modelled Figure 7 Convergence with CO2 

capacity with policy in 3 scenarios emissions target in 3 scenarios      

6   Conclusions 

This paper presents a system dynamics assessment of the renewable integration 

within the isolated island electricity system of São Miguel. Key components of the 

model highlight the cost reduction due to local learning from renewables and the 

type of renewable policy employed. Results and evaluations are starting to suggest 

that a sharp focus on achieving an aggressive renewable integration policy may lead 

to a boom and bust cycle of planning with periods of too much capacity. As shown 

in the results, in the long run, the required renewable targets will be achieved 

eventually, even with less aggressive renewable policies. This implies that possibly 
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the financial health of the system can be jeopardized due to higher investment costs 

needed over a short period of time. Island systems typically suffer from a weaker 

innovation landscape and from limited opportunities for learning-by-doing. These 

realities combined with the preliminary results reported here suggest that island 

systems policy-makers should consider adopting a carefully-paced approach and 

should probably avoid establishing a world-leading position in innovation. That 

said, the small scale of island systems can lend themselves to experimentation and 

world-class opportunities from learning-by-research [21]. All these initial ideas will 

be re-evaluated in the light of the more holistic work to come.   

The insights distilled from the model show that there are benefits to be obtained 

from considering all of the key feedbacks including installation experience and the 

urgency of the renewable capacity targets as renewables are integrated. These seem 

to steer the long-term renewable investment outlooks and provide the gaps for the 

optimal generation mixes of the system. The model of the system uses many key 

variables such as demand forecast and electricity tariffs as exogenous inputs. Future 

work will include analysis of the demand forecast within the model with a view to 

modelling more aspects endogenously. Storage and renewable disaggregation will 

have a particular role to play in future work. We intend to consider shorter time-

steps and in this way to model the daily/weekly short-term drivers of renewable 

dispatch within such island electricity systems. This will be based on the short-term 

availability and the relative cost of renewables compared to other electricity options 

within the island system. We further intend to include energy efficiency/demand 

side response and diurnal storage in our modelling.  
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