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Introduction:  Bunburra Rockhole (BR) is the first 

recovered meteorite of the Desert Fireball Network [1].  
It was initially classified as a basaltic eucrite, based on 
texture, mineralogy, and mineral chemistry [2] but 
subsequent O isotopic analyses showed that BR’s 
composition lies significantly far away from the HED 
group of meteorites (fig. 1) [1].  This suggested that 
BR was not a piece of the HED parent body (4 Vesta), 
but other explanations could also account for the ob-
served oxygen signatures. Possible scenarios include 
contamination by components from other bodies 
(chondrites or other achondrites) or that 4 Vesta may 
not be as equilibrated as hypothesized [3]. 

After examining multiple pieces with different in-
struments (CT scans and x-ray maps), no obvious evi-
dence of contamination was found.  If BR is not from 
Vesta, a conundrum exists as no unusual features were 
found in mineral and bulk trace element chemistry [4] 
as exist for other anomalous basaltic achondrites such 
as Ibitira or Asuka 881394 [5,6]. These meteorites 
have distinct petrological and geochemical characteris-
tics, in addition to their anomalous O isotope composi-
tions, that set them apart from eucrites.  Thus, early 
results provided a somewhat ambiguous picture of 
BR’s petrogenesis and parentage.  To clarify the nature 
of the relationship, if any, between BR and eucrites, 
we have performed a correlated stable isotope and bulk 
chemical study of several lithologic fragments. 

Samples and Analytical Methods:  Earlier O iso-
tope [1] and bulk trace element studies [4] focused on 
analyzing the different lithologies characterized by 
different grain sizes to look at chemical variability. A 
1.81g, slightly fusion-crusted, piece of BR (measuring 
a little over 2 cm in long dimension) was allocated to 
the Open University for follow-up oxygen isotope 
analyses. The aliquots analysed here have a dominant 
grain size, but overall contained mixed lithologies. The 
main piece was divided into 4 smaller pieces (labeled 
A, B, C, and D), from which further fragments were 
taken. O isotopic compositions were measured on two 
fragments of piece A (A and A/1) and three fragments 
of piece C (C/A/1, C/A/2, and C/B/3). After O analysis, 
four powders (A/1, C/A/1, C/A/2, C/B/3) and two 
uncrushed (A, B) pieces were sent on to Fordham Uni-

versity for chemical analysis. Four of these were ana-
lysed for major and trace elements and two for trace 
elements only. Two of these subsamples (A/1 and 
C/A/2) were analysed at UC Davis to investigate the Cr 
isotopic systematics.  Homogenized powders from the 
two chips were dissolved in Parr bombs for a 96 hour 
period at 200°C to insure complete dissolution of re-
fractory minerals such as spinel.  Cr separation was 
completed following the methods described in [7].  
High-precision Cr isotope ratios were obtained using 
the Thermo Triton-Plus TIMS at UC Davis with the 
54Cr/52Cr ratio expressed as ε-notation (parts per 104) 
deviation from a terrestrial standard. 

Oxygen isotope analysis was undertaken by laser 
fluorination using the methods described in [8]. Sys-
tem precision, as determined on an internal obsidian 
standard is: ±0.05‰ for δ17O; ±0.09‰ for δ18O; 
±0.02‰ for Δ17O (2σ). Δ17O values were calculated 
using the linearized format of [9], with λ = 0.5247.  All 
error values listed below are 2σ. 

Bulk trace and major elements were analysed fol-
lowing the methods described in [10, 11] respectively. 

Results and Discussion:  
Stable isotopes The oxygen isotope compositions 

of 25 different fractions (n = 42) of BR are shown in 
Fig. 1. The mean Δ17O of BR is -0.127 ± 0.044‰ and 
the mean δ18O is 3.98 ± 0.22‰[12].  This is signifi-
cantly different from the HED mean Δ17O value of -
0.246 ± 0.014 [3].  The five pieces for which bulk 
chemistry has also been determined have a much tight-
er mean Δ17O of  -0.133 ± 0.016‰, at the upper end of 
the δ18O range for BR (4.09 ± 0.16‰).  

The measured ε54Cr for sample A/1 is -0.37 ± 0.11 
and for C/A/2 is -0.35 ± 0.08, identical within error.  
These values are resolvably different from the average 
ε54Cr value range observed in eucrites of -0.7ε (Fig. 2). 

The stable isotope systematics indicate that BR 
does not come from the same parent asteroid as eu-
crites. Interestingly, BR plots in the same field with 
Asuka 881394 [13] in the Δ17O-ε54Cr isotopes space – 
indicating they may be sampling the same differentiat-
ed body.  
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Bulk composition Like previous studies [3], BR ap-
pears similar in chemistry to eucrites. Bulk trace ele-
ments for all follow a volatility pattern (Fig. 3) very 
similar to basaltic and polymict, and distinct from cu-
mulate, eucrites. Further, siderophile element contents 
in BR are low, at nearly the same level as in basaltic 
eucrites.  

Bulk rare earth elements show a relatively flat pat-
tern with a slight negative Eu anomaly for all samples, 
except piece C/B/3, which has a slight LREE enriched 
pattern without the Eu anomaly.  Concentrations are 
10-15xCI.  The BR mode is dominated by plagioclase 
and thus the negative Eu anomaly may be evidence of 
earlier fractionation of a plagioclase rich component 
prior to formation of BR melts, similar to the case for 
lunar basalts.   

The distinct O and Cr isotopes suggest that BR is 
sampling a different differentiated body to the HED 
parent body (4 Vesta).  The bulk trace elements and 
low siderophile concentrations argue against contami-
nation.  BR is a jumble of lithologic fragments from a 
differentiated parent asteroid which may be the same 
body represented by Asuka 881394. This implies that 
they have been mixed on a fine scale, most likely by 
impact.  

The next step is to determine the relationship be-
tween BR and A881394 and their possible parent body 
and to seek a better understanding of how trace ele-
ment and isotope geochemistry co-varies with the ob-
served variation in oxygen isotopic composition. 
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Fig. 1.  Δ17O vs δ18O for BR.  Also shown are the HED 
[4] and angrite fractionation lines [14].  The five pieces 
analysed for bulk composition in this study are shown 
in coloured symbols Grey boxes show the 2σ variation 
for the HED and angrite data [3,14]. Anomalous eu-
crite data from [6].  

 

 
Fig. 2.  Δ17O vs ε54Cr for BR (red symbols) and normal 
eucrites (green symbols).  Data for eucrites from [15] 
and [7] for ε54Cr and Δ17O, respectively. 

 
Fig. 3.  Bulk trace lithophile elements (in order of in-
creasing volatility) in different pieces of BR compared 
to average compositions for eucrites [data from 16].   

1650.pdf45th Lunar and Planetary Science Conference (2014)


