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Abstract

A mute is a device that is placed in the bell of a brass instrument to alter its sound.

However, when a straight mute is used with a brass instrument, the frequencies of its first

impedance peaks are slightly modified, and a mistuned, extra impedance peak appears. This

peak affects the instrument’s playability, making some lower notes difficult or impossible to

produce when playing at low dynamic levels. To understand and suppress this effect, an

active mute with embedded microphone and speaker has been developed. A control loop

with gain and phase shifting is used to control the damping and frequency of the extra

impedance peak. The stability of the controlled system is studied and then the effect of

the control on the input impedance and radiated sound of the trombone is investigated.

It is shown that the playability problem results from a decrease in the input impedance

magnitude at the playing frequency, caused by a trough located on the low frequency side

of the extra impedance peak. When the extra impedance peak is suppressed, the playability

of the note is restored. Meanwhile, when the extra impedance peak is moved in frequency,

the playability problem position is shifted as well.
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I. Introduction

Over the last 50 years, the acoustical properties of brass musical instruments1;2;3 and

their mutes4;5 have been widely studied. When a brass instrument is played, a mute can be

inserted into the instrument bell to reduce the level and to alter the timbre of the sound.

An efficient mute should modify the instrument’s sound with no impact on the playability

or the intonation. However, some mutes have a perturbing effect on the instrument’s input

impedance. For example, introducing a straight mute into a trombone bell will lead to the

appearance of a mistuned, extra impedance peak, usually between the two first peaks of

the input impedance5. This extra impedance peak has an effect on the playability of

certain low notes on the instrument, specifically those that have a fundamental that is close

in frequency to that of the extra impedance peak. In the case of the mute studied in this

paper, it is the playability of some pedal notes6 that is affected, with the effect particularly

noticeable at low dynamic levels.

In order to understand and also to suppress this particular effect of the mute on the

trombone, an active mute with embedded sensor (a microphone) and actuator (a

loudspeaker) linked by a controller composed of a phase shifter and a gain amplifier has

been developed, inspired by Chen et al.8. Over the past few decades, active control

techniques have been applied to various musical instruments, starting with percussion and

string instruments9;10;11 but progressing to wind instruments. In particular, active control
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has been used to play a complete octave on a flute with no holes12. To achieve this, the

incident wave was absorbed by a loudspeaker at the end of the tube, and replaced by a

chosen reflected wave. Active control using gain and phase shifting has also been used to

globally modify the resonances of a simplified clarinet (with all resonances affected by the

control)13. Meanwhile, modal active control has enabled individual resonances of a clarinet

to be controlled separately in simulations14 and experimentally15.

In Section II of this paper, the active mute, its effect on the trombone input

impedance and playability, and the principles underpinning the control are described.

Section III then presents simulations of the control of the mute. Finally, in Section IV,

experimental results are presented which demonstrate the effectiveness of the control when

the active mute is inserted in a real trombone. In particular, the effects of the active mute

on the input impedance, the playability at low dynamic levels, and the radiated sound of

the instrument are shown.

Frequency modifications are described in cents because of their musical meaning : 100

cents equals a semitone. The sounds referred to in Sections II.A and IV may be found at

http://instrum.ircam.fr/?p=806 . (It should be noted that the clicks which can be heard in

the third, fourth and fifth sound clips are caused by the switch of the control system.)

II. The active mute
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A. Effect of the mute on the trombone’s acoustics

A straight trombone mute may be considered as a 1-degree-of-freedom resonator4. A

Denis Wick straight trombone mute has been modified in order to apply active control to it

(see Figure 1). A Tymphany Peerless PLS-P830983 loudspeaker, enclosed at the rear, and

an electret microphone located at the end of a 65mm long capillary tube, have been added

to the mute (the capillary tube is used to decrease the acoustic pressure level between the

mute and the microphone).

Figure 2 shows the transfer functions measured between loudspeaker and microphone

when the mute was (i) positioned in free air, and (ii) positioned inside the bell of a

trombone. These measurements were carried out by sending an electrical swept sine signal

to the loudspeaker and recording the resultant signal measured by the microphone

embedded in the mute. The transfer functions (for the mute in free air and for the mute

positioned in the trombone bell) were then calculated by dividing the microphone signal by

the swept sine excitation signal; essentially giving the ratio between the pressure measured

by the microphone (P2 on Figure 1) and the flow produced by the speaker (U3 on Figure

1). The main peak in each transfer function is related to the Helmholtz resonance of the

mute. As can be seen from Figure 2, this depends on the mounting; when in free air, the

peak has a frequency fH = 114Hz. The phase exhibits the expected rapid change of angle

close to the resonance frequency fH , but this rapid change is part of a more extensive slope
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at low frequencies (below 200Hz). This slope may be due to the distance between the

speaker and microphone, to the capillary tube, or to the response of the loudspeaker

(resonance frequency at 147.5Hz).

When the mute is placed in the bell of the trombone with the slide in the Bb1 position

(closed position), the peak in the transfer function moves to fpp = 66Hz (see Figure 2).

This modification results from the addition of an inductance parallel to the mute as a

result of the opening at the input of the bell4. The slope in phase at low frequency

observed when the mute is in free air is also visible when the mute is put inside the bell of

the trombone. The remainder of the paper focuses on the situation where the mute is

positioned inside the bell of the trombone.

The input impedance of a trombone has been measured with the impedance sensor of

the CTTM (Centre de Transfert de Technologie du Mans)16. Figure 3 shows the input

impedance of the trombone with slide in the Bb1 position, measured (i) without mute, and

(ii) with the active mute placed in the bell of the instrument but without control applied.

With the mute present, an extra impedance peak appears at a frequency of fpp (the same

as the peak of the transfer function when the mute is positioned inside the bell of the

trombone), the frequencies of the next three peaks are slightly increased (by less than 2Hz

or 20 cents) and the frequency of the first peak is slightly decreased (by 0.7Hz). The phase

of the input impedance is also modified by the mute, with a local phase shifting between
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45Hz and 90Hz and a maximum shift of 1.4 rad at 63Hz.

Figure 4 shows a spectrogram of a descending musical sequence played on a trombone

at low dynamic level by a professional musician with a normal straight mute. The note Bb1

(58Hz) is unstable, and the note A1 (55Hz) cannot be played. Note that A1 can sometimes

be played but is always perturbed by the presence of the mute. These two notes are the

pedal notes when the slide is in the Bb1 and A1 positions respectively. They do not present

any problem when played without a mute. The difficulties in playing these notes are due to

the presence of the mute.

A control system using a phase shifter ϕ and a gain G is added to the mute in order

to modify the extra impedance peak (see Figure 1). The phase shifter uses a phase inverter

(which applies a π phase shift at all frequencies) coupled to an operational amplifier phase

shifter. Figure 5 shows the electrical circuit of the coupled phase shifter and phase inverter,

and Table 1 gives the values used for its different components. The operational amplifier

phase shifter does not have constant phase shifting at all frequencies. The phase shift is

defined by :

ϕ(jω) = −2arctan(RC1ω) (1)

with ω = 2πf the angular frequency, R a variable resistance, and C1 = 10µF a

capacitance. The phase shift ϕ = π/2 used in Section IV.B is then the phase shift at the

resonance frequency of the transfer function (ϕ(ω0) = π/2).
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For the sake of simplicity, the phase shift will be considered constant in Sections II.B

and III.

Table 1: Values of the components used in Figure 5.

R1 1 kΩ C1 10µF

R2 15 kΩ C2 1µF

R3 3.9Ω

B. Principle of the active control

An analogue proportional feedback active control employing gain and phase shifting is

applied to the mute.

Let H be the transfer function of a resonator described by a second order band-pass

filter :

H(s) =
H0s

s2 + 2ξω0s+ ω2
0

(2)

where H0 is the gain of the resonator, s = jω is the Laplace variable, ξ = 1/2Q the

damping of the resonator with Q its quality factor and ω0 = 2πf0 with f0 the resonance

frequency of the resonator. Table 2 shows the values for these parameters, adjusted so that

the resulting curves match the measured transfer functions of the mute outside and inside

the bell of the trombone (see Figure 2). (Note that eq.(2) is used to represent the coupled

system [mute + loudspeaker], assuming the loudspeaker dynamics to be of little influence.
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Figure 2 shows that such a simplification is acceptable, although a more complete model is

presented in Appendix A.)

Table 2: Mute parameters obtained through fitting using eq.(2) and the measured transfer

functions of Figure 2.

Parameter Mute outside Mute inside

the trombone bell the trombone bell

H0 120 90

f0 114Hz 66

ξ 0.035 0.05

Figure 6 shows the control loop applied to H. The closed-loop (i.e. controlled)

transfer function HCL can be written as :

HCL =
y

w
(3)

with w the excitation (often referred to as a disturbance in the context of active control)

applied to the resonator and y the output of the resonator, so that

y = H(u+ w) = Hu+Hw (4)

where u is the command produced by the controller and applied to the resonator, with

u = yGejϕ. (5)
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where G is the control gain and ϕ the phase shifting.

Substituting eq.(4) and eq.(5) into eq.(3) leads to

HCL =
y

w
=

H

1−HGejϕ
. (6)

Figure 6 also shows the resonator H in open-loop. Let HOL be the open-loop transfer

function of the resonator, so that

HOL =
u

w
(7)

with

u = wHGejϕ (8)

then

HOL =
u

w
= HGejϕ. (9)

The phase at the resonance of the open-loop transfer function of the resonator gives

information about the effect of the control on the closed-loop transfer function. Modifying

the phase value at resonance leads to modifications of the frequency and damping of the

resonance. The role of the gain is then to accentuate these effects; the higher the gain, the

bigger the effect. Four phase zones may be seen13 :

• −π < ϕ < 0, the resonance frequency is decreased,

• 0 < ϕ < π, the resonance frequency is increased,
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• −π/2 < ϕ < π/2, the damping of the resonance is decreased (its amplitude is

increased),

• −π < ϕ < −π/2 and π/2 < ϕ < π, the damping of the resonance is increased (its

amplitude is decreased).

For most phase values, both the frequency and the damping of the resonance are affected.

However, for four phase values there is just a single effect :

• ϕ = 0, only the damping of the resonance is decreased (its amplitude is increased),

• ϕ = π, only the damping of the resonance is increased (its amplitude is decreased),

• ϕ = π/2, only the resonance frequency is increased,

• ϕ = −π/2, only the resonance frequency is decreased.

As an example, the parameters of H(s) in eq.(2) are chosen to be those obtained

through fitting of the transfer function of the mute when put inside the bell of the

trombone (see Table 2).

Substituting H(s) from eq.(2) into eq.(6), the closed-loop transfer function of this

resonator may be calculated. The effects of the control on H(s) for different G and ϕ

values (ϕ = [−π/2; 0; π/2; π]) are shown in Figure 7. The observed effects are those which

were predicted previously : only the amplitude of the resonance increases when ϕ = 0 and
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decreases when ϕ = π, and only the frequency of the resonance increases when ϕ = π/2 and

decreases when ϕ = −π/2. These effects are reported in Table 3, where the case without

control (ϕ = 0 and G = 0) is also included.

Table 3: Control effects on the resonator and differences between controlled cases and un-

controlled (ie. G = 0 and ϕ = 0) case.

ϕ 0 π π/2 −π/2

G 0 0.45 2 2 2

Amplitude (dB) 6.7 37 -7.8 6.7 6.7

Difference (dB) NA +30.3 -14.5 0 0

Frequency (Hz) 66 66 66 82 53

Difference (Hz, cents) NA 0, 0 0, 0 +16, +113 -13, -114

III. Simulations of the control

Simulations can be used to predict the stability of the controlled system as well as to

explore the possibilities of the control. Using the transfer function measured when the

mute is inserted in the bell of the trombone (Figure 2), and using the root locus

method17;18;19, the effects of the control are studied. This involves using eq.(6), together

with the measured transfer function Hm(s), and varying the phase shift ϕ from -π to π and

the gain G from 0 to 5, in order to map the resultant changes to the amplitude and
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frequency of the peak observed in the measured transfer function.

Figures 8 and 9 show maps of the transfer function modifications in amplitude and

frequency when control in gain and phase shifting is applied. On these maps, each point

represents the amplitude or the frequency of the closed loop transfer function.

The white zone on Figure 8 and the black zone on Figure 9 represent controls for

which the system is unstable. These zones have been determined using the root locus

method. As a comparison, the theoretical limit of the unstable zone for a resonator

described by eq.(2), determined using the root locus method, is added to Figure 8. The

differences between the theoretical limit and the shape of the white zone may be due to the

slope in the phase of the measured transfer function.

To make Figure 8 more readable, the amplitudes have been limited to 30 dB. It can be

seen that the amplitude of the resonance varies from -11 dB, at {G = 5;ϕ = 2.5 rad}, to

infinity (here, 30 dB) between ϕ = −2.35 rad and ϕ = 1.7 rad. The minimum gain value for

instability is {G = 0.36;ϕ = −0.1 rad}.

It can be seen from Figure 9 that the frequency of the resonance varies from 32Hz, at

{G = 5;ϕ = −2.6 rad}, to 99Hz at {G = 5;ϕ = 2 rad}. This is a difference of 1955 cents

(more than 19 semitones), which corresponds to a perfect twelfth. At low gains, the

modifications appear first around ϕ = ±π/2. When the gain is higher, shifts appear both
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when the frequency decreases and increases. These shifts may be due to the slope in the

phase in Figure 2.

IV. Experimental study

A control system using a phase shifter ϕ and a gain G is added to the mute in order

to modify the extra impedance peak (see Figure 1). The effects of the control on the

Helmholtz resonance of the mute when it is put inside the bell of the trombone, on the

input impedance, and on the sound produced by the instrument are studied using two

phase shifts : ϕ(ω0) = π (see Section IV.A), causing a decrease in the amplitude of the

resonance, and ϕ(ω0) = π/2 (see Section IV.B), causing an increase in the frequency of the

resonance. The aim of the first control is to suppress the extra impedance peak, in order to

restore the playability of the notes. The second control is designed to study the effect

obtained when the frequency of the extra impedance peak is changed. Finally, Section

IV.C uses two criteria - the sound level and the spectral centroid - to characterize the

differences that occur in the radiated sounds.

A. Suppressing the extra impedance peak

Figure 10 shows the control of the resonance measured between the speaker and

microphone of the mute when ϕ(ω0) is set equal to π and G is varied. The damping

increases with increasing gain, leading to a decrease in the amplitude (by as much as 15 dB
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when G = 2).

Figures 11 and 12 show the input impedances of the trombone with the slide in Bb1

and A1 positions respectively, without mute, with a normal straight mute inserted, and

with the active mute with control set at ϕ = π and G = 2. Meanwhile, Figure 13 zooms in

on the extra impedance peak of Figures 11 and 12. On all the figures, the extra impedance

peak appears at a frequency close to that of the resonance in the transfer function of

Figure 2 (i.e. fpp). The small variations in frequency are due to environmental changes

(temperature, humidity) between measurement sessions. On each side of the extra

impedance peak, there are small troughs. Due to these troughs, the magnitude of the

impedance at 58Hz (playing frequency of Bb1) in Figures 11 and 13 (top) is 4.1 dB lower

when there is a mute present, compared with the case when there is no mute. Similarly,

the magnitude of the impedance at 55Hz (playing frequency of A1) in Figures 12 and 13

(bottom) is 3.7 dB lower when there is a mute present. With the control applied, the peak

disappears in both figures, and the impedance magnitudes at the playing frequencies are

closer to those measured with no mute present ; 1 dB higher at 58Hz in Figures 11 and 13

(top) and 0.9 dB lower at 55Hz in Figures 12 and 13 (bottom). The control also has an

effect on the other peaks of the impedance magnitude curve of Figure 11, compared with

the normal mute (-2 dB on the second peak, -2 dB and +4 cents on the third peak and

+2.5 dB and +5 cents on the fourth peak, no frequency modification and an amplitude
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modification of less than 1 dB for the next peaks).

These figures also show modifications in the phase of the input impedance. A local

shift in the phase appears when the mute is inserted into the bell of the instrument, with a

maximum shift at 63Hz. At 58Hz in Figures 11 and 13 (top), the phase angle is 0.32 rad

greater when the mute is present, and at 55Hz in Figures 12 and 13 (bottom), it is 0.25 rad

greater. With control applied, the phase value is closer to that of the impedance with no

mute present at 58Hz in Figure 11 (the phase angle is only 0.15 rad greater when control is

applied). However, at 55Hz in Figure 12, with control applied, the phase value is further

from that of the impedance with no mute present (the phase angle is 0.4 rad greater when

control is applied).

For both notes, the behavior with respect to the magnitude of the input impedance is

the same; when the mute is present with no control applied, the amplitude at the playing

frequency is decreased and there are difficulties in playability, and when the control is

applied, the amplitude at playing frequency is increased and the playability is restored.

Conversely, the behavior with respect to the phase of the input impedance is different for

each note when the control is applied; in one case it becomes closer to the phase value

without mute (Bb1) and in the other case it becomes further away (A1). This suggests that

the primary reason for the difficulties in the playability of the notes when the mute is

inserted is the decrease in impedance magnitude at the playing frequency rather than the
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phase modification.

Figure 14 shows a spectrogram of the same musical sequence as depicted in Figure 4,

but with control configuration ϕ = π and G = 2 applied. This time, all the notes, including

Bb1 and A1, can be played without difficulty. This is explained by the suppression of the

extra impedance peak in the input impedance (see Figure 13), and the increase of the

impedance magnitude at the playing frequency when the control is applied (+4.7 dB at

58Hz for the note Bb1 and +2.8 dB at 55Hz for the note A1, compared to when no control

is applied when the mute is inside the bell). With this control gain, the effective power sent

by the amplifier to the speaker varies from 0.05Watts (low level) to 2Watts (high level).

As the trombone is played at a low dynamic level here, the effective power is close to

0.05Watts.

To demonstrate the influence of the control on the playability of the instrument, a

small musical sequence consisting of two repetitions of the note A1 is played (see Figure

15). For each repetition, the control is successively switched ON, OFF and finally ON.

The first note is from 0 to 3 seconds, with the control applied from 0 to 1.5 seconds,

then switched OFF and then applied again from 2.8 seconds. At first, with the control

applied, the pitch A1 is played without problem. When the control is switched OFF, the

self-sustained oscillations stop, and there is no more sound produced by the instrument.

When the control is applied again, the self-sustained oscillations start again, sounding at
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pitch A2 (110Hz) for 25ms until the musician stops blowing.

The second note is from 4.5 to 8 seconds, with the control stopped between 5.3 and

6.4 seconds. When the control is applied, the note is played without any problem, but

when it is stopped, the note is unstable, with frequency variations. But this time, as the

self-sustained oscillation is retained, the stable note still sounds at pitch A1 when the

control is switched back ON. This control case is referred to as case 1 in Table 4.

These two examples show that using active control to suppress the extra impedance

peak restores the playability of the notes which were influenced by the mute. Moreover, it

seems that the difficulties in producing the notes when a straight mute is inserted are due

to a decrease in the magnitude of the input impedance at the playing frequency.

B. Moving the extra impedance peak

Figure 16 shows the control of the resonance measured between the speaker and

microphone of the mute when ϕ = π/2 and G = 0.7, and when ϕ = 3π/4 and G = 3. The

second control case was determined according to Figure 9; when increasing the gain G,

greater changes in frequency can be achieved when a phase shift of 3π/4 is used (compared

with a phase shift of π/2), although the amplitude of the peak is then also affected. The

control causes the frequency of the resonance to increase, from 66Hz to 73Hz (increase of

175 cents) in the first case, and from 66Hz to 115Hz (increase of 961 cents) in the second
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case. Only the first control case, with ϕ = π/2 and G = 0.7, is considered in the remainder

of this section.

Figure 17 shows the input impedance of the trombone with the slide in the C2

position without mute, with a normal straight mute inserted and with the active mute with

control set at ϕ = π/2 and G = 0.7 . To play a C2, a tenor trombone with a F valve has

been used. Note that the C2 is not a pedal note, as it has a frequency corresponding to the

second impedance peak when there is no mute. For the normal mute without control, the

extra impedance peak appears at the same frequency as the resonance of the transfer

function of Figure 2 (i.e. fpp). As in Section IV.A, on both sides of this peak, there are

little troughs. These troughs do not modify the impedance magnitude at 65Hz, the playing

frequency of the note C2, when there is no control. With the control applied, the peak is

moved in frequency, from 66Hz to 71Hz. The troughs on both sides of the peak move with

it, so that the magnitude at 65Hz is decreased by 4.6 dB when the control is applied.

The local shift in the phase also moves, along with the peak, when the control is

applied, with a maximum shift of 0.95 rad at 68.5Hz. At 65Hz, the shift is of 1.28 rad

when no control is applied, which doesn’t lead to difficulties in playability. When the

control is applied, the phase shift is reduced to 0.65 rad.

Figure 18 shows a spectrogram of two repetitions of the note C2 played separately on

a trombone, first with the control applied (from 0 to 2.5 seconds), and second without
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control (from 3 to 5 seconds). Remember that without control, there is no difficulty in

playing C2. When the control is applied, the note exhibits instabilities, particularly around

1 second where the harmonic richness of the emitted sound is reduced for about 200ms,

with no harmonics higher than 500Hz. According to the musician, the note C2 is difficult

to play when the control is applied, but not as difficult as Bb1 and A1 when there is no

control. The second C2 note, without control applied, does not show any problem in terms

of its playability. To check that the dynamic level was the same for these two notes, the

spectral centroid (see Section IV.C) has been calculated for the two notes when they are

stable, as the value of the spectral centroid depends on the harmonic richness of the sound,

which for a brass instrument depends on the playing level due to nonlinear effects. For the

first note, between 1.5 and 2 seconds, the spectral centroid is at 731Hz, while for the

second note, between 4 and 4.5 seconds, it is at 730Hz. Therefore, it can be concluded that

both notes were played at the same dynamic level.

Moving the extra impedance peak in frequency results in the playability issues

affecting different notes (for instance, C2). Once again, this is explained completely by the

decrease in the magnitude of the input impedance at the playing frequency (see Figure 17

and Section IV.A). This control case is referred to as case 2 in Table 4.

To verify that the playability problem has been moved and not enhanced, Figure 19

shows a musical sequence in which the note A1 is played on a trombone, with the same
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control alternately switched ON and OFF (it is ON from 0 to 1.2 seconds and from 2.3 to

3.5 seconds, and OFF from 1.2 to 2.3 seconds and from 3.5 to 4 seconds). As discussed

previously, without control, the A1 note is difficult to produce. When the control is not

applied, the sound produced by the instrument endures a loss of richness between 1.2 and

2.3 seconds (no harmonic content beyond 1500Hz), and the instrument fails to sound

between 3.5 and 4 seconds. When the control is applied, the sound is richer harmonically

and more stable, despite a few instabilities at the beginning of the sequence. This control

case is referred to as case 3 in Table 4.

Increasing the frequency of the extra impedance peak results in a modification of the

playability problem; the issue is encountered on higher notes. This confirms that the

playability problem results from a decrease in the magnitude of the input impedance at

playing frequency.

C. Radiated Sound characterization

In this section, a comparison is made between the sound radiated by the instrument

when the mute is uncontrolled and the sound radiated when the mute is controlled. The

comparison is made for three different control cases:

• the control with ϕ = π and G = 2 of Section IV.A, focusing on the note A1 (Figure

15), referred to as case 1,
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• the control with ϕ = π/2 and G = 0.7 of Section IV.B, focusing on the note C2

(Figure 18), referred to as case 2,

• the control with ϕ = π/2 and G = 0.7 of Section IV.B, focusing on the note A1

(Figure 19), referred to as case 3.

In case 1, the comparison is made between the U (uncontrolled) part and the second

C (controlled) part of the second note of Figure 15 (the note played from 4.5 to 8 seconds).

In case 3, the comparison is made between the first U (uncontrolled) part and the second

C (controlled) part of Figure 19. For all three cases, the comparison is made between notes

that could actually be played (for example, in the first U part of Figure 15, the note cannot

be played, so no comparison may be made).

The comparisons between sounds, measured one metre away from the output of the

instrument, are made using two criteria:

• the sound level,

• the spectral centroid, which is related to the “brightness” of the sound20.

The sound level L is calculated with

LdBSPL
= 10log10

(
p2

p20

)
, (10)
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where p is the measured pressure signal, and p0 the reference value. As the comparison is

between uncontrolled and controlled instruments, p0 is the mean value of the RMS pressure

amplitude during the period with no control applied, and p is the mean value of the RMS

pressure amplitude during the period when the instrument is being controlled.

The frequency of the spectral centroid fsc is calculated using21

fsc =

∑f=N
f=1 fx(f)∑f=N
f=1 x(f)

, (11)

where f is the frequency, N is the Nyqvist frequency for the measured signal (here, N =

22050Hz) and x(f) is the amplitude of the spectrum of the sound at frequency f .

Table 4: Differences in sound level and spectral centroid for the sound radiated by the

instrument when control is applied to the mute (for three cases of control).

Control cases 1 2 3

Sound level (dBSPL) +2.77 -1.48 +8.22

Spectral Centroid (Cents) +160 -72 +185

Table 4 presents these differences. The sound level is increased for cases 1 (+2.77 dB)

and 3 (+8.22 dB). In both cases, the intention of the control is to restore the playability of

the notes, therefore as the notes are more stable and easier to play, they sound louder. In

case 2, the sound level is decreased because the control has a negative impact on the

playability of the note C2 for 200ms (see Figure 18).
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The differences in spectral centroid for the three control cases are shown in cents. The

spectral centroid changes in value depending on how the player blows the instrument. If

the musician blows harder, the high frequency harmonics in the sound are enhanced, and

the spectral centroid becomes higher in frequency. For these three cases, the spectral

centroid varies between 700Hz (case 2) and 900Hz (case 3), which correlates with

Sandell21. For control cases 1 and 3, the spectral centroid increases in frequency when the

control is applied, which indicates a “brighter” sound, while in control case 2, it decreases

in frequency when the control is applied, which indicates a “darker” sound.

When the control is applied so that the playability of the note is restored, the note is

played more easily, and therefore the sound level is higher and there is more harmonic

content in the produced sound. Conversely, when the playability of a note is reduced, both

its sound level and its harmonic content are reduced.

V. Conclusion and perspectives

When a mute is used on a brass instrument, an extra impedance peak is introduced

that affects the playability of some of the low notes (the pedal notes of the instrument in

the case studied in this paper). Using active control to suppress the extra impedance peak

enables the playability of these notes to be restored. Meanwhile, moving the peak in

frequency shifts the playability problem to other notes.
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To further investigate the effect that the mute has on the magnitude of the input

impedance (and hence the playability of certain notes on the instrument), future work

could include carrying out a full simulation of the behavior of the self-sustained dynamics

of a trombone with mute inserted. With this fuller understanding, it may become possible

in the future to create a single universal mute, employing active control to mimic the

variety of effects provided by the different types of mute in current usage.

I. Appendix A: Model with mute and loudspeaker

In Section II.B, the coupled system [mute + loudspeaker] is described by a second

order band-pass filter (eq.(2)), which is a simplification neglecting some of the loudspeaker

dynamics. In this section, a model combining a second order band-pass filter, representing

the mute, and a model of the speaker is developed. The loudspeaker model is based on

Lissek et al.22 (case 0).

Let H be as defined by eq.(2), using the parameters obtained through fitting of the

transfer function for the mute positioned inside the bell of the instrument (see Table 2),

and HL be the acoustic impedance of the loudspeaker, defined as :

HL(s) =
1

Zmc

(
Rms + sMms +

1

sCmc

)
, (12)

where Zmc = ρcSd is the mechanical equivalent to characteristic medium impedance, with ρ

the density of the air, c the velocity of sound in the air and Sd the surface of the membrane
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of the loudspeaker, Rms the mechanical resistance of the membrane, Mms its mass, s = jω

the Laplace variable and

Cmc =
CmsVb

Vb + Cmsρc2S2
d

, (13)

with Cms the suspension compliance and Vb the closed volume behind the loudspeaker. The

values used for these parameters are reported in Table 5.

H and HL are in parallel, so that

Htot =
H(s)HL(s)

H(s) +HL(s)
. (14)

Figure 20 shows the transfer functions H and Htot. Both are very similar, with differences

of only 0.4Hz (3 cents) in frequency and of less than 0.1 dB in amplitude. This confirms

that it is not necessary, in this particular case, to model the loudspeaker separately from

the mute.

Table 5: Parameters of the loudspeaker.

Parameter Value Parameter Value

c 340m.s−1 ρ 1.2 kg.m−3

Sd 13.10−4m2 Rms 0.47 kg.s−1

Mms 1.5.10−3 kg Cms 0.76.10−3 kg.m2.s−2

Vb 1.10−4m3
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Figure Captions

Figure 1. Top left : Schematic diagram of a straight mute with embedded microphone and

speaker, and control system (phase shifter and gain), inserted into the bell of a trombone.

Right : Photograph of the active straight mute (phase shifter and gain are not shown

here). Bottom left : Equivalent electric circuit of the trombone coupled to the mute with

control system, with U1 and P1 respectively the flow and the pressure at the input of the

trombone, Z1 the impedance of the trombone, U2 the flow at the input of the mute, P2 the

pressure measured inside the mute by the microphone (Mic), Z2 the impedance of the mute

and U3 the flow induced by the loudspeaker (LS) inside the mute, ϕ the phase shifting and

G the control gain.

Figure 2. Top : Transfer functions measured between the speaker and the microphone for

the mute outside (solid black line) and inside (solid gray line) the bell of the trombone, and

fitted transfer functions for the mute outside (dash black line) and inside (dash gray line)

the bell of the trombone (see Table 2 and eq.(2)). Bottom : Phase of the measured transfer

functions for the mute outside (solid black line) and inside (solid gray line) the bell of the

trombone.

Figure 3. Top : Input impedance magnitude of a trombone in Bb1 position without mute

(dash grey line) and with the active mute with no control applied (solid black line).

Bottom : Phase of the input impedance.
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Figure 4. Spectrogram of a musical sequence played on a trombone with an ordinary

straight mute. This spectrogram corresponds to the first of the online sound clips.

Figure 5. Electrical circuit of the coupled phase shifter and phase inverter. The values of

the different components are given in Table 1.

Figure 6. Schematic diagram of the active control applied to a system H in closed-loop

(dotted u arrow) and in open-loop (solid u arrow), with a gain G and a phase shifting ϕ. y

is the output of the system, u the command and w the disturbance applied to the system.

To obtain an open loop, u is not added to w and there is no actuator.

Figure 7. Top : Calculated transfer functions of a resonator without control (solid black

line), and with control so that ϕ = 0 and G = 0.45 (dashed black line), ϕ = π and G = 2

(solid light grey line), ϕ = π/2 and G = 2 (dashed dark grey line) and ϕ = −π/2 and

G = 2 (solid dark grey line). Bottom : Phase of the transfer functions.

Figure 8. Amplitude map for different controls of gain (ordinates) and phase (abscissa),

when the mute is in the bell of the trombone. The lighter the colour, the higher the

amplitude. The white zone is unstable. The -o- curve shows the theoretical limit between

stable and unstable zone for a resonator described by eq.(2).

Figure 9. Frequency map for different controls of gain (ordinates) and phase (abscissa),

when the mute is in the bell of the trombone. The lighter the colour, the higher the

frequency. The black zone is unstable.
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Figure 10. Top : Transfer functions of the mute inside the bell of the trombone without

control (solid black line) and controlled with ϕ = π and different G values : G = 0.1 (solid

grey line), G = 0.4 (dash black line), G = 0.8 (dash grey line), G = 1 (-x-) and G = 2 (-o-).

Bottom : Phase of the transfer functions.

Figure 11. Top : Input impedance magnitude of a trombone in Bb1 position without mute

(solid grey line), with a normal mute (solid black line) and with an active mute with ϕ = π

and G = 2 (dash black line). Bottom : Phases of the input impedance.

Figure 12. Top : Input impedance magnitude of a trombone in A1 position without mute

(solid grey line), with a normal mute (solid black line) and with an active mute with ϕ = π

and G = 2 (dash black line). Bottom : Phases of the input impedance.

Figure 13. Top : Zoom on the extra impedance peak of the input impedance magnitude of

a trombone in Bb1 position without mute (solid grey line), with a normal mute (solid black

line) and with an active mute with ϕ = π and G = 2 (dash black line). The vertical dotted

arrow is at 58Hz, the playing frequency of a Bb1. Bottom : Zoom on the extra impedance

peak of the input impedance magnitude of a trombone in A1 position without mute (solid

grey line), with a normal mute (solid black line) and with an active mute with ϕ = π and

G = 2 (dash black line). The vertical dotted arrow is at 55Hz, the playing frequency of a

A1.

Figure 14. Spectrogram of a musical sequence played on a trombone with an active mute,
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ϕ = π, G = 2. This spectrogram corresponds to the second of the online sound clips.

Figure 15. Spectrogram of the note A1 played two times, from 0 to 3 seconds and from 4.5

to 8 seconds, with (C) and without (U) control applied, ϕ = π, G = 2. Between the two

notes, the musician does not blow (NB). This spectrogram corresponds to the third of the

online sound clips.

Figure 16. Top : Transfer functions of the mute inside the bell of the trombone without

control (solid black line), controlled with ϕ = π/2 and G = 0.7 (dash black line) and with

ϕ = 3π/4 and G = 3 (dash grey line). Bottom : Phase of the transfer functions.

Figure 17. Top : Input impedance magnitude of a trombone in C2 position without mute

(solid grey line), with a normal mute (solid black line) and with an active mute with

ϕ = π/2 and G = 0.7 (dash black line). Bottom : Phases of the input impedance.

Figure 18. Spectrogram of the note C2 played two times, first with control applied from 0

to 2.5 seconds and second without control applied from 3 to 5 seconds, with ϕ = π/2,

G = 0.7. This spectrogram corresponds to the fourth of the online sound clips.

Figure 19. Spectrogram of the note A1 played with (C) and without (U) control applied,

ϕ = π/2, G = 0.7. This spectrogram corresponds to the fifth of the online sound clips.

Figure 20. Top : Transfer function of the mute inside the bell of the trombone, calculated

with eq.(2) (black line) and calculated taking the loudspeaker in account with eq.(14) (gray

line). Bottom : Phases of the transfer functions.
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