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Consider the generalized Kuramoto–Sivashinsky (gKS) equation. It is a model prototype for a wide vari-
ety of physical systems, from flame-front propagation, and more general front propagation in reaction–
diffusion systems, to interface motion of viscous film flows. Our aim is to develop a systematic and
rigorous low-dimensional representation of the gKS equation. For this purpose, we approximate it by a
renormalization group equation which is qualitatively characterized by rigorous error bounds. This for-
mulation allows for a new stochastic mode reduction guaranteeing optimality in the sense of maximal
information entropy. Herewith, noise is systematically added to the reduced gKS equation and gives a
rigorous and analytical explanation for its origin. These new results would allow one to reliably perform
low-dimensional numerical computations by accounting for the neglected degrees of freedom in a sys-
tematic way. Moreover, the presented reduction strategy might also be useful in other applications where
classical mode reduction approaches fail or are too complicated to be implemented.

Keywords: generalized Kuramoto–Sivashinsky equation; renormalization group method; stochastic mode
reduction.

1. Introduction

We consider abstract evolution equations of the form:

∂u

∂t
+ B(u, u)+ Au = 0,

u(x, 0)= u0(x),
(1.1)

where A denotes a general linear operator and B represents a non-linear term of Burgers’ type, i.e.
B(u)= B(u, u)= uux. Well-known equations in this class include, e.g. the viscous Burgers equation,
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the Korteweg–de Vries equation and the Benney–Lin equation. We start by performing a formal renor-
malization group (RG) approach for the general form in (1.1). We subsequently focus on a rigorous
low-dimensional reduction of the generalized Kuramoto–Sivashinsky (gKS) equation:

∂tu + λuux + κuxx + δuxxx + νuxxxx = 0 in Pα×]0, T[,

u(x, 0)= g(x) in Pα ,
(1.2)

where Pα :=] − απ ,απ [ is a periodic domain with α := L/2π for an arbitrary period L> 0 while the
solution u(x, t) : Pα×]0, T[→ R of (1.2) represents, for example, the fluctuations around a fixed mean
height of a 1D surface above a substrate point x at time t as, e.g. in a thin film flowing down a vertical
wall, see e.g. Kalliadasis et al. (2011) and Pradas et al. (2011a, 2013). We also take g(x) ∈ Hq(Pα) for
q � 4, a periodic initial condition, i.e.

g(x + L)= g(x).

The gKS equation is of the type (1.1) with

B(u) := B(u, u) := λuux and A := (κ∂2
x + δ∂3

x + ν∂4
x ). (1.3)

A rigorous dimensional reduction of the gKS equation is of special interest because it is not a Hamilto-
nian system and does not have an intrinsic invariant measure. This makes direct application of stochastic
mode reduction strategies difficult; see Stinis (2004) for instance.

It is noteworthy that the gKS equation retains the fundamental elements of any non-linear process
that involves wave evolution: the simplest possible non-linearity uux, instability and energy produc-
tion uxx, stability and energy dissipation uxxxx and dispersion uxxx. We note that the non-linearity arises
effectively from the non-linear correction to the phase speed, a non-linear kinematic effect that captures
how larger waves move faster than smaller ones. In the context of thin-film flows (Duprat et al., 2009;
Tseluiko et al., 2010a,b; Tseluiko & Kalliadasis, 2012), the terms uux, uxx, uxxx and uxxxx are due to the
interfacial kinematics associated with mean flow, inertia, viscosity and surface tension, respectively,
with the corresponding parameters, λ, κ , δ and ν, all positive and measuring the relative importance
of these effects. The ‘strength of the non-linearity’, λ, in particular, is associated with the scaling for
the velocity (and hence time). In addition,

∫
Pα

u dx = u0, a measure of the volume of the liquid, a
conservation property for systems whose spatial average does not drift. A simplified form of (1.2) is
obtained by appropriately rescaling u, x and t, which is equivalent to setting λ= κ = ν = 1 and keeping
the same notation for dimensionless quantities (Duprat et al., 2009; Tseluiko et al., 2010a,b; Tseluiko
& Kalliadasis, 2012).

As with many non-linear time-dependent problems in science and engineering, equations of the
form (1.1) are too complex to be fully resolved and the influence of neglected degrees of freedom
is not clear a priori. This problem exists independently of spatial dimensions for (1.1) and hence for
the gKS equation also. The reliable resolution of high-dimensional problems is a well-known issue in
computational science where one can numerically only deal with a finite number of degrees of freedom.

Hence, there is a strong need for (finite-dimensional/) dimensionally reduced formulations, which
in turn would allow for studies of long time behaviour of physical systems. Modelling of the ocean-
atmosphere, which mainly generates our weather, is one important example: One has a characteristic
timescale of several years for the ocean in contrast to several days governing atmospheric structures
such as cyclones. As a consequence, a characteristic feature of many physical systems is the presence of
fast and slow degrees of freedom. The relevant information of a system’s long-time behaviour is often
primarily contained in the slow modes. For Hamiltonian systems, such a mode-reduced mathematical
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formulation is generally obtained by the Mori–Zwanzig or optimal prediction techniques as described
later on. Here we focus on non-linear equations not showing a Hamiltonian-like structure as exemplified
by Equation (1.2) and we provide a systematic (e.g. via our RG method and maximum entropy principle)
and rigorous (e.g. via error estimates) framework for the reliable derivation of low-dimensional (/slow-
mode) representations of such equations.

First, we recall the general, often ad hoc, approximation of decomposing the problem of interest into
fast w and slow v modes. For Equation (1.1) such a purely formal splitting, i.e. u ≈ uε = vε + wε, reads
in standard notation applied in the literature as

∂

∂t
vε = f (vε, wε),

∂

∂t
wε = 1

ε
g(vε, wε),

(1.4)

where the small parameter 0< ε� 1 mediates the timescale separation. Mode reduction strategies, such
as ‘adiabatic elimination’ (VanKampen, 1985), invariant manifolds (Foias et al., 1988a) and optimal
prediction (Chorin et al., 1998), are tools to eliminate the fast modes and derive ‘appropriate’ equations
for the slow modes only. We remark that, especially for systems with spatio-temporal chaos (like the
gKS equation Chow & Hwa, 1995; Tseluiko et al., 2010a), such a reduction needs to be carefully
performed in order to not lose the relevant dynamical characteristics of the full system. Also the study
in Marion & Temam (1989) emphasizes the importance of careful finite-dimensional approximations
with computational schemes by exploiting the structure of Galerkin methods. The strategy of defining
an invariant manifold is almost classical by now. For example, in Foias et al. (1988b) the existence of
an inertial manifold for the KS equation (obtained from (1.2) with δ = 0) is shown. An inertial manifold
is a finite-dimensional, exponentially attracting, positively invariant, Lipschitz manifold. The principle
idea is to determine a map Φ : V → W such that we can rewrite Equation (1.1) in the low-dimensional
form:

∂tv + PB(v +Φ(v), v +Φ(v))+ APv = 0, (1.5)

where P : H → V and Q := (I − P) : H → W are projections onto the orthogonal subspaces V and W,
respectively, such that H = V ⊕ W. A strategy to determine Φ in general Galerkin spaces is, for exam-
ple, suggested in Foias et al. (1988a) for the KS equation. The RG approach performed here can also
be understood as a formal and feasible procedure to derive an asymptotic invariant manifold; see (1.8)
and (1.9). Further analytical results are the characterization of a global attracting set for the Kuramoto–
Sivashinsky equation by the so-called background flow method (Collet et al., 1993b; Goodman, 1994)
and via a ‘capillary Burgers equation’ (Otto, 2009), where the latter also forms the best known bound
in this context. In Akrivis et al. (2013) and Collet et al. (1993a), the analyticity of solutions is studied.

Open questions and answers to the classical separation (1.4): (i) Is the splitting (1.4) and the approx-
imation of u by uε valid and in which sense? This question is often not answered in the literature where,
from the outset, a separation (1.4) is assumed; see Boghosian et al. (1999) and Chow & Hwa (1995) for
instance. These studies heuristically motivate a timescale mediation (or separation into slow and fast
scales) of the form (1.4). The present work aims to provide a rigorous foundation in Theorem 3.1 by the
following estimate:

‖u − vε‖2
L2(Pα)

(T)� Cε2 + exp(CT)(ε1/4 + ε). (1.6)
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If we suppose that u and uε satisfy a Gevrey regularity characterized by a parameter σ > 0, then we can
improve (1.6) in the following way:

‖u − vε‖2
L2(Pα)

(T)� Cε2 + exp(CT)
(
ε1/4 exp

(
− σ

ε1/4

)
+ ε
)

. (1.7)

It should be pointed out that these estimates also account for the reduction to the slow degrees of
freedom vε too and not just for the error between u and uε.

(ii) How can we account for the fast degrees of freedom wε in an equation for the slow modes vε

only? For this purpose, we apply an abstract RG approach extended to general multiscale problems;
see Chen et al. (1996), Moise &Temam (2000) and Moise & Ziane (2001). The RG method was first
introduced in quantum field theory as a tool to perform scale transformations. The method then became
popular with Wilson’s work on the Kondo problem (Wilson, 1975). It can formally provide the separa-
tion (1.4). This means that we first obtain an approximation for vε of the form

∂tv
ε + Avvε + PN B(vε, vε)= −εGε(U(t), vε), (1.8)

where εGε(U , vε) is a perturbation ‘force’ originating from the renormalization method and U = V + W
is a solution of the RG equations

∂tV + AvV + PN B(V , V)= 0,

∂tW + QN B1(V , W)= 0,
(1.9)

where V = PN U and W = (I − PN )U =: QN U are projections onto the normalized slow and fast man-
ifolds, respectively. Since we can analytically solve for W , we end up with an equation for the slow
variable vε only. The above estimates (1.6) and (1.7) then make the reduction (1.8) rigorous. Moreover,
Equation (1.9)2 can be interpreted as the map Φε(vε) onto the asymptotic invariant manifold.

It should also be pointed out that at this stage the RG approximation (1.8) alone is not satisfactory
since the fast variable W contained in U is of infinite dimension and hence cannot entirely be resolved
numerically. We give an answer to this problem after the last question (iii) by the principle of maxi-
mum entropy. Moreover, question (ii) is of particular relevance here, since the fast modes prevent the
existence of a canonical invariant measure. Such a measure makes classical reduction methods such as
Mori–Zwanzig and optimal prediction more feasible and does not require the choice of a less physically
founded non-invariant measure; see also question (iii) where a different methodology is proposed.

(iii) What kind of information do we need to carry over from the (infinite-dimensional) fast degrees
of freedom to the (finite-dimensional) slow ones and how? To this end, we derive a stochastic evolu-
tion equation for the resolved (slow) variable by properly including necessary information from the
unresolved (fast) variable by a maximum information entropy principle introduced in Jaynes (1957a,b)
and Rosenkrantz (1989). This principle does not require statistical data to define all Fourier modes. It
turns out that the asymptotic behaviour in time of a weighted variance of the fast modes is sufficient.
The necessity of such a strong assumption relies on the fact the gKS equation does not have an infinite-
dimensional invariant measure and that we only account for spatial randomness. Via this entropy princi-
ple (Theorem 4.1), we then conclude that the Fourier modes of the fast variable W in (1.9)2 are Gaussian
distributed with zero mean. Hence, we rigorously obtain a noisy gKS equation by applying the random
variable U = vε + W in the deterministic equation for the slow variable (1.8). Herewith, our analysis
explains how to rigorously add a random force to the gKS equation. Furthermore, our derivation further
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shows that the induced noise accounts for the unresolved degrees of freedom and hence becomes less
important for an increasing number of grid points in computations.

The approach proposed here provides an alternative to the Mori–Zwanzig formalism (Zwanzig,
1961, 1973; Mori, 1965) which advantageously makes use of a Hamiltonian (Zwanzig, 1961; Mori,
1965) or extended Hamiltonian structure (Zwanzig, 1973). Mori–Zwanzig techniques and related opti-
mal prediction methods (Chorin et al., 1998) generally rely on a canonical probability distribution
(invariant measure) which exists naturally for Hamiltonian systems. In principle, one can also apply
these techniques to systems that lack an invariant measure. However, the methodology becomes much
more involved in such situations and it is not clear how to choose the required non-invariant measure
unlike with systems with a canonical invariant measure. The canonical probability density for a Hamil-
tonian H(u) is ρ(u) := Z−1 exp(−βH(u)), where β is the inverse temperature and Z is a normalization
constant referred to as the partition function. The Mori–Zwanzig formalism then is based on a projec-
tion operator P that projects functions in L2 onto a subspace that only depends on the resolved degrees
of freedom. With respect to the canonical density ρ such a projection operator P can be defined by the
conditional expectation

[Pf ](v) := E[f |v] =
∫

f (v, w)ρ(v, w) dw∫
ρ(v, w) dw

, (1.10)

where f ∈ L2, and v is the resolved and w the unresolved variable. The projection P and Dyson’s formula
for evolution operators then provide an equation for the resolved modes v only. Moreover, (1.10) is
the conditional expectation of f given v and hence is the best least square approximation of f by a
function of v. Therefore, the projection P guarantees optimality which is the key idea in the optimal
prediction method. However, neither a Hamiltonian structure nor an invariant measure exists for the
gKS equation. Therefore, it is not obvious how to derive standard optimality statements relying on a
conditional probability argument (Stinis, 2004). In contrast to such a conditional probability approach,
we achieve optimality in the sense of maximum information entropy. However, we remark that one can
also define other projections than (1.10).

The purpose of the present article is threefold:

1. To reliably perform a (stochastic) mode reduction for the full gKS equation in contrast to Stinis
(2004) where a truncated problem is studied. The principal idea is based on an abstract RG
approach, as emphasized earlier. We derive error estimates (Theorem 3.1) for this reduction
and hence provide rigorous support for the heuristic motivation of a noisy, low-dimensional
approximation deducted in Chow & Hwa (1995) by the standard RG method in physics (Wilson,
1975).

2. To rigorously support Stinis’ assumption of Gaussian distributed Fourier modes (Stinis, 2004).
To this end, we derive a probability distribution (Theorem 4.1) for the fast modes by the principle
of maximum information entropy.

3. The findings in (1) and (2) form the bases for a new stochastic mode reduction strategy. We are
able to reduce the fast variable by an equation for the slow variable only. The information of the
fast modes enters as a random variable W via a force term into the slow mode equations. We are
not aware of any previous work that utilizes the RG method in the context of stochastic mode
reduction.

We introduce basic notation and well-known results in Section 1.2. A formal derivation of an RG
equation for the gKS equation follows in Section 2. In Section 3, we obtain error estimates to rigorously
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verify the approximation derived in Section 2. In Section 4, we reduce the fast modes by a mode reduc-
tion strategy based on the maximum information entropy principle. Finally, in Section 6 we close with
conclusions and perspectives.

1.1 The gKS equation

The KS equation is a paradigmatic model for the study of low-dimensional spatio-temporal chaos or
weak/dissipative turbulence as defined by Manneville (1990). This type of turbulence is often charac-
terized by formation of clearly identifiable, localized coherent structures in what appears to be a ran-
domly disturbed system, as is e.g. the case with Rayleigh–Bénard convection (Shraiman, 1986). The KS
equation was first proposed as a model for pattern formation in reaction–diffusion systems by (Kuramoto
& Tsuzuki, 1976). Its derivation is based on a generalized, time-dependent Ginzburg–Landau equation.
Sivashinsky (1979) derived the KS equation as an asymptotic approximation of a diffusional–thermal
flame model. The equation also describes small-amplitude waves on the surface of a thin film flowing
down a planar inclined wall (e.g. Homsy, 1974; Kalliadasis et al., 2011).

With the addition of the dispersive term, uxxx, the KS equation becomes the gKS equation. Like the
KS equation, it has been reported for a wide variety of systems, from plasma waves with dispersion
due to finite ion banana width (Cohen et al., 1976) to a thin film flowing down a planar wall for near-
critical conditions (e.g. Kalliadasis et al., 2011; Saprykin et al., 2005). The studies in Duprat et al.
(2009), Tseluiko et al. (2010a,b) and Tseluiko & Kalliadasis (2012) have developed a coherent-structure
theory for the interaction of the solitary-pulse solutions of the gKS equation. In Duprat et al. (2009) and
Tseluiko et al. (2010a), the theory was shown to be in agreement with experiments using a thin film
coating a vertical fiber, another hydrodynamic system where the gKS equation can be applicable.

The well-posedness of (1.1) is established, for example, in Tadmor (1986) in the class of general-
ized Burgers equations which consist of a quadratic non-linearity and arbitrary linear parabolic part.
The article (Larkin, 2004) verifies solvability of the gKS equation in bounded domains and studies its
limit towards the Korteweg–de Vries equation. In the context of long-time and large-space considera-
tions, there are recent analytical attempts to verify an ‘equipartition principle’ in the power spectrum
of periodic solutions by deriving bounds on their space average of |u| and certain derivatives of it; see
Giacomelli & Otto (2005) and Otto (2009). Such a spectral characterization is reminiscent of white
noise.

An interesting work that applies the optimal prediction to the KS equation is that of Stinis (2004).
Since this approach requires a non-invariant measure, the author constructs a Gibbs measure for
the required initial distribution through inference from empirical data (obtained by a computational
approach). This allows one then to define the conditional expectation providing optimality by an orthog-
onal projection of the unresolved modes to the resolved ones. However, this approach already assumes
a Gaussian distribution from the outset. For this strategy, one also needs to work with the truncated KS
equation. Sufficient numerical data are then required in advance for a reliable construction of an initial
distribution.

1.2 Notation

Functions u ∈ Hs(Pα) for s � 1 can be represented by their Fourier series:

u(x)=
∑
k∈Z

uk exp

(
i
k

α
x

)
, ūk = u−k , (1.11)



A NEW MODE REDUCTION METHOD FOR NON-HAMILTONIAN PDES 279

where Hs denotes here the usual periodic Sobolev space with finite norm,

‖f ‖2
Hs :=

∑
k∈Z

(1 + |k|2)s|f̂ (k)|2. (1.12)

Furthermore, the square root of the latter quantity is a norm on Hs(Pα) equivalent to the usual one. We
denote, for s � 0,

Ḣs(Pα) :=
{

u ∈ Hs(Pα)

∣∣∣∣
∫

Pα

u dx = 0

}
. (1.13)

The subspace of Ḣs(Pα) spanned by the set

{ei(k/α)x | k ∈ Z, −N � k � N} (1.14)

is denoted by Hs
N . For a given integer N we define the projections v := PN u and w := QN u := (I − PN )u,

respectively, by

v = PN u =
∑
|k|�N

uk exp

(
i
k

α
x

)
,

w = QN u =
∑
|k|>N

uk exp

(
i
k

α
x

)
.

(1.15)

Let us mention that the gKS equation preserves mass as already noted in Section 1, i.e.∫
Pα

u dx = u0, (1.16)

where u0 is the zeroth Fourier mode. We remark that PN is an orthogonal projection with respect to Hs
N ,

which means ∫
Pα

(PN u − u)φ dx = 0 for all φ ∈ Hs
N . (1.17)

The projection PN enjoys the following well-known property (Jackson, 1930; Maday & Quarteroni,
1988), i.e. for k � s, k � 0 it holds

‖u − PN u‖Hs � CNs−k‖u‖Hk for all u ∈ Hk
N (Pα). (1.18)

Next, we introduce Gevrey spaces. For σ � 0 and s � 0, we say that a function f is in the Gevrey
space Gσ ,s if and only if

‖f ‖2
Gσ ,s

:=
∑
k∈Z

(1 + |k|2)s exp(2σ
√

1 + |k|2)|fk|2 <∞, (1.19)

where fk denote the Fourier coefficients of f . Note that if σ = 0, then Hs = G0,s. Moreover, it can be
readily proved (see Kalisch & Raynaud (2007)) that, for u ∈ Gσ ,s, the following inequality holds:

‖u − PN u‖Hs � Ns−k exp(−σN)‖u‖Gσ ,k . (1.20)
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2. Formal derivation of a reduced gKS equation

As noted in Section 1, we adapt RG approaches (Moise &Temam, 2000; Moise & Ziane, 2001) to the
gKS equation.

2.1 Projections into fast and slow equations

We apply the projections PN and QN defined in (1.15) to equation (1.1) and obtain the following coupled
system for v and w:

∂tv + PN B(v + w)+ Avv = 0, where Av = PN A = APN ,

∂tw + QN B(v + w)+ Aww = 0, where Aw = QN A = AQN .
(2.1)

We define ε= 1/N4, where N is large enough (see error estimates, i.e. Theorem 3.1) and set

Ãv = Av on PN Ḣs = Hs
N ,

Ãw = εAw = Aw

N4
on QN Ḣs = Ḣs \ Hs

N .
(2.2)

The eigenvectors of Ãv are the functions exp(i(k/α)x), k ∈ Z, |k| � N with eigenvalues

ρv
k := −ν

∣∣∣∣ k

α

∣∣∣∣
2

− iδ

(
k

α

)3

+ κ

∣∣∣∣ k

α

∣∣∣∣
4

.

Correspondingly, the eigenvectors of Ãw are the functions exp(i(k/α)x), k ∈ Z, |k|>N with
eigenvalues,

ρw
k := 1

N4

(
−ν
∣∣∣∣ k

α

∣∣∣∣
2

− iδ

(
k

α

)3

+ κ

∣∣∣∣ k

α

∣∣∣∣
4
)

. (2.3)

Remark 2.1 The RG method is formally applied here as if these operators Ãv and Ãw were independent
of ε. This technical step of scaling the linear operator and its subsequent treatment is part of the abstract
RG approach introduced in Moise &Temam (2000) and Moise & Ziane (2001) in the context of fluid
dynamics.

We can now rewrite (2.1) as

∂tv + Ãvv + PN B(v + w)= 0,

∂tw + 1

ε
Ãww + QN B(v + w)= 0.

(2.4)

For convenience, we additionally define

u =
(

v
w

)
, L =

(
0

Ãw

)
, A =

(
Ãv

0

)
, F(u)=

(−PN B(v + w)
−QN B(v + w)

)
, (2.5)
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and hence rewrite (2.4) in the following compact way:

∂tu + 1

ε
Lu + A u = F(u). (2.6)

For the subsequent RG analysis, we introduce the fast time scale s = t/ε, and we define ũ(s)= u(εs).
We set ṽ(s)= Pũ(s), w̃(s)= Qũ(s). In these new variables, (2.4) becomes

∂sṽ + εÃvṽ + εPN B(ṽ + w̃)= 0,

∂sw̃ + Ãww̃ + εQN B(ṽ + w̃)= 0
(2.7)

or (2.6),

∂sũ + Lũ + εA ũ = εF(ũ). (2.8)

2.2 Perturbation expansion: the RG equation

We now formally apply the RG method and additionally omit the dependence of L and A on N as in
Moise &Temam (2000) and Moise & Ziane (2001). For simplicity, we also assume that either (i) L, ν,
κ are not proportional to π or that (ii) N2 � 8

7 (α
2ν/κ), where N denotes the largest Fourier mode in the

Galerkin approximation.
We make the ansatz of a naive perturbation expansion,

ũε = ũ0 + εũ1 + ε2ũ2 + · · · (2.9)

for ũ in (2.8). After substituting (2.9) into (2.8), we formally obtain the following sequence of problems:

∂sũ
0 + Lũ0 = 0,

∂sũ
1 + Lũ1 = F(ũ0)− A ũ0

(2.10)

and so on.
Formally, the solution of (2.10)1 for the initial condition ũ0(0)= u0 is

ũ0(s)= exp(−Ls)u0. (2.11)

Equation (2.11) can be equivalently written as

ṽ0(s)= v0,

w̃0(s)= exp(−Ãws)w0.
(2.12)

We solve equation (2.10)2 with the variation of constants formula

ũ1(s)= exp(−Ls)
∫ s

0
exp(Lσ)[F(exp(−Lσ)u0)− A exp(−Lσ)u0] dσ , (2.13)

where ũ1(0)= 0, since we are interested in approximations up to O(ε) such that ũ1(0) is irrelevant and
can be taken to be zero; see Moise & Ziane (2001). We note that A exp(−Lσ)= A and we decompose
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the rest of the integrand in (2.13) as

exp(Lσ)F(exp(−Lσ)u0)− A v0 =: FR(u0)+ F̃NR(σ , u0), (2.14)

where FR(u0) represents the part independent of σ on the left-hand side of (2.14) and F̃NR the rest.
Using standard RG terminology, we refer to FR as the ‘resonant’ and F̃NR as the ‘non-resonant’ term.

Using (2.11), (2.13) and (2.14) in (2.9) provides the following Duhamel’s form of the formal pertur-
bation expansion for ũ = ũε,

ũε(s)= exp(−Ls)

(
u0 + εsFR(u0)+ ε

∫ s

0
F̃NR(σ , u0) dσ

)
+ O(ε2). (2.15)

The key idea is now to remove the secular term εsFR(u0), which grows in time. To this end, we define
the ‘renormalized function’ Ũ = Ũ(s) as the solution of

∂sŨ = εFR(Ũ),

Ũ(0)= u0.
(2.16)

The equation for the slow variable U(t)= Ũ(t/ε) correspondingly satisfies

∂tU = FR(U),

U(0)= u0.
(2.17)

Let us derive the explicit form of the RG equation for our problem. With the expressions for L and F,
and the identity u0 = v0 + w0, we obtain

exp(Lσ)F(exp(−Lσ)u0)= exp(Lσ)

(−PN B(v0 + exp(−Lσ)w0)

−QN B(v0 + exp(−Lσ)w0)

)
. (2.18)

Next we identify the resonant terms, i.e. FR(u0). With the Fourier series expansion

φ(x)=
∑
k∈Z

exp

(
i
k

α
x

)
φk , (2.19)

we have,

B(φ,ψ)= iλ
∑
k∈Z

exp

(
i
k

α
x

)
φk

∑
l∈Z

exp

(
i

l

α
x

)
l

α
ψl

= iλ
∑
j∈Z

exp

(
i

j

α
x

) ∑
k+l=j

(
φk

l

α

)
ψl. (2.20)
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As a consequence, we end up with the expressions,

QN B(v0, exp(−Lσ)w0)= iλ
∑
|j|>N

exp

(
i

j

α
x

) ∑
k+l=j

|k|�N<|l|

(
v0k

l

α

)
exp(−σρw

l )w0l,

QN B(exp(−Lσ)w0, exp(−Lσ)w0)= iλ
∑
|j|>N

exp

(
i

j

α
x

)

×
∑

k+l=j
|k|,|l|>N

(
exp(−σρw

k )w0k
l

α

)
exp(−σρw

l )w0l. (2.21)

The resonant terms in the first sum are the terms for which ρw
l = ρw

j holds. We note that one also
needs to look at the skew-symmetric bilinear form QN B(exp(−Lσ)w0, v0), which leads to the same res-
onance condition; this means (−|l/α|2 − iδ(l/α)3 + κ|l/α|4)= (−|j/α|2 − iδ(j/α)3 + κ|j/α|4). Since
ν, δ, κ > 0, the following set characterizes the resonant indices:

R1(j) := {(k, l) | k = 0, j = l, |l|>N}. (2.22)

The condition ρw
k + ρw

l = ρw
j characterizes the resonant terms in the second sum of (2.21), i.e. (k/α)n +

(l/α)n = (j/α)n for n = 2, 3, 4 needs to hold at the same time. Assuming that this condition holds for n =
2, we immediately obtain an additional requirement |j/α|4 = |k/α|4 + |l/α|4 + 2|k/α|2|l/α|2, which
holds with respect to the set of resonant indices defined by

R2(j) := {(k, l) | k = 0, l = j, |k|, |l|>N} ∪ {(k, l) | l = 0, k = j, |k|, |l|>N} = ∅, (2.23)

since |k|, |l|>N . For a rigorous and detailed proof we refer the reader to the Appendix. We immediately
recognize that (2.23) also justifies our assumption on the case n = 2 above.

These considerations determine the resonant part of F by

FR(u0)=
[−PN B(v0)− Ãvv0

−QN B1(v0, w0)

]
, (2.24)

where B1 is given by its Fourier series expansions for the corresponding index set R1(j), i.e.

QN B1(v0, w0)= 2iλ
∑
|j|>N

ei(j/α)x

(
v00

j

α

)
w0j. (2.25)

Equation (2.14) and the above consideration give the non-resonant term by

F̃NR(σ , u0)=
[
−PN B(v0 + e−Ãwσw0)+ PN B(v0)+ Ãvv0

−QN B̃1(v0, w0)− QN B̃2(w0)

]
, (2.26)
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where QN B̃1 and QN B̃2, respectively, are defined by their Fourier series expansions

QN B̃1(v0, w0)= iλ
∑
|j|>N

ei(j/α)x
∑

k+l=j
|l| |= |j|

|k|�N<|l|

((
v0k

j

α

)
w0l +

(
w0l

j

α

)
v0k

)
e(ρ

w
j −ρw

l )σ ,

QN B̃2(w0)= iλ
∑
|j|>N

ei(j/α)x
∑

k+l=j
|k/α|n+|l/α|n |= |j/α|n for n=2,3,4

|k|,|l|>N

(
w0k

j

α

)
w0l e(ρ

w
j −ρw

k −ρw
l )σ .

(2.27)

With (2.24) the RG equation for our problem is in the fast time scale,

∂sṼ + εÃvṼ + εPN B(Ṽ )= 0,

∂sW̃ + εQN B1(Ṽ , W̃)= 0,
(2.28)

or after rescaling by t = εs, and defining V = PN U , W = QN U ,

∂tV + AvV + PN B(V)= 0,

∂tW + QN B1(V , W)= 0.
(2.29)

Remark 2.2

(1) The above considerations for the resonant and non-resonant terms can easily be extended to situa-
tions where we replace the linear spatial differential operator A with pseudodifferential operators
P(∂/∂x) with symbol p(ξ) of the form

Re p(iξ)� c|ξ |ν , |ξ | → ∞, (2.30)

where ν > 3
2 . The requirement (2.30) on the P(∂/∂x) guarantees the well-posedness (of such

generalized Burgers equations) (Tadmor, 1986). One only needs to adapt the sets for the resonant
indices; see (2.22) and (2.23).

(2) Note that the V -equation in the RG equation (2.29) is simply the Galerkin approximation of the
gKS equation (1.1).

The special structure of the renormalization equation (2.29)2 for the unresolved (fast) variable allows
one to give an explicit expression for its solution. After rewriting (2.29)2 as

∂tWj(t)+ 2iλ
j

α
V0(t)Wj(t)= 0, (2.31)

where V0(t)= const. due to conservation of mass (1.16), we immediately obtain the solution

Wj(t)= cj
W ei2λ(j/α)V0t, cj

W := Wj(0). (2.32)

With (2.32) the solution of (2.29)2 becomes

W(x, t)=
∑
|j|>N

cj
W ei(j/α)(x+2λV0t). (2.33)
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Equation (2.33) shows that there is no restriction on the definition of the mass V0. In the context of
stochastic mode reduction the situation is different; see Section 4.

2.3 Construction of approximate/renormalized solutions

In order to define renormalized solutions, we have to first determine the non-resonant term F̃NR(σ , u0)

given by (2.26). In fact, we are interested in

FNR(s, U)=
∫ s

0
F̃NR(σ , U) dσ . (2.34)

Let

PFNR(s, U)= 2iλ
∑
|j|�N

ei(j/α)x
∑

k+l=j
|k|�N<|l|

e−ρw
l s

ρw
l

Vk
j

α
Wl + iλ

∑
|j|�N

ei(j/α)x
∑

k+l=j
|k|,|l|>N

e−(ρw
k +ρw

l )s

ρw
k + ρw

l

Wk
j

α
Wl,

QFNR(s, U)= −2iλ
∑
|j|>N

ei(j/α)x
∑

k+l=j
|k|�N<|l|

|l| |= |j|

e(ρ
w
j −ρw

l )s − 1

ρw
j − ρw

l

Vk
j

α
Wl

− iλ
∑
|j|>N

ei(j/α)x
∑

k+l=j
|k/α|n+|l/α|n |= |j/α|n for n=2,3,4

|k|,|l|>N

e(ρ
w
j −ρw

k −ρw
l )s − 1

ρw
j − ρw

k − ρw
l

Wk
j

α
Wl. (2.35)

Now, we are able to define the approximate solution suggested by the RG theory. We obtain

uε(t)= e−L(t/ε)(U(t)+ εFNR(t/ε, U(t))), (2.36)

or with respect to fast w̄ε and slow variables v̄ε,

vε = PN uε = V(t)+ εPFNR(t/ε, U(t)),

wε = QN uε = e−QN At(W(t)+ εQFNR(t/ε, U(t))).
(2.37)

We note that the initial data are defined by

vε(0)= V(0)+ εPFNR(0, U(0))= v0 + εPFNR(0, u0),

wε(0)= W(0)+ εQFNR(0, U(0))= w0.
(2.38)

3. The renormalized gKS equation and approximation error

After inserting (2.36) into (1.1), we obtain the following perturbed gKS equation:

∂tu
ε + Auε + B(uε, uε)= −εRε(U(t)), (3.1)
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where A and B are defined by (1.3) and Rε is given by

Rε = B(e−L(t/ε)U(t), e−L(t/ε)FNR(t/ε, U(t)))+ B(e−L(t/ε)FNR(t/ε, U(t)), e−L(t/ε)U(t))

+ B(e−L(t/ε)FNR(t/ε, U(t)), e−L(t/ε)FNR(t/ε, U(t)))− APFNR(t/ε, U(t))

− e−L(t/ε)δU FNR(t/ε, U(t))∂tU . (3.2)

Next, we study estimates on the approximate solutions uε of Equation (3.1). In a first step, we need to
investigate the non-resonant part FNR of the approximate solutions.

Lemma 3.1 Let p � 2 and let the initial condition satisfy g ∈ Hq(Pα) with q � 4. Assume that the
solution of the RG equation (2.29) satisfies U(t) ∈ Hp(Pα) for all t> 0. For N large enough there exist
two uniform constants c1 and C2, where C2 depends on the initial conditions, and c1 depends only on
Pα , but both independent of N , such that the following estimates are true for all t> 0:

‖PN FNR(t/ε, U(t))‖Hp � C2e−c1N4t,

‖e−QN AtQN FNR(t/ε, U(t))‖Hp � C2e−c1N4t.
(3.3)

Remark 3.1 (Initial conditions) We note that the regularity assumed above in Lemma 3.1 and in the
results below is slightly higher since g ∈ Hp(Pα) would be enough. This regularity assumption enters
via an argument based on Gronwall’s inequality.

Proof. We see that c1, and C2 represent generic constants independent of N (or ε). We first derive
estimate (3.3)1. With the expression (2.35)1 we immediately obtain

‖PN FNR(t/ε, U(t))‖Hp � C2e−c1N4t(‖V · ∇W‖Hp + ‖W · ∇V‖Hp + ‖W · ∇W‖Hp), (3.4)

where we used the fact that we have the following bound:

e−ρw
l t/ε

ρw
l

= e−(−ν|l/α|2−iδ(l/α)3+κ|l/α|4)t

1/N4(−ν|l/α|2 − iδ(l/α)3 + κ|l/α|4) � C2e−c1N4t. (3.5)

The last inequality follows due to N < |l|. The second estimate (3.3)2 can be obtained in the same way
by using the inequalities 1 − e−x � x for all x � 0 and x e−x � 1/e for all x � 0. We refer the interested
reader to Moise &Temam (2000) for a deeper consideration. �

The bounds of Lemma 3.1 allow us to control Rε in the spirit of Moise &Temam (2000).

Lemma 3.2 For N > 0 and for initial conditions g ∈ Hq(Pα) for q � 4, there exist two constants c1 and
C2 independent of N , such that the following estimate holds true for all t � 0:

‖Rε(t)‖L2 � C2 e−c1N4t. (3.6)

Proof. The proof follows in the same way as the proof of Lemma 3.1. We only need to take into account
the expression of Rε and apply Lemma 3.1. �

Subsequently, we write ‖·‖ and (·, ·) for the L2(Pα)-norm and the L2(Pα)-scalar product,
respectively.



A NEW MODE REDUCTION METHOD FOR NON-HAMILTONIAN PDES 287

Lemma 3.3 For 0< T∗ <∞ and initial conditions g as in Lemma 3.2, there exists an 0< ε∗ <∞
such that, for 0 � ε := 1/N4 � ε∗, solutions to Equation (3.1) satisfy uε ∈ L∞(0, T∗; L2(Pα)) ∩
L2(0, T∗; H2(Pα)).

Proof. We give here the elements of the proof for the case κ > ν and refer the reader to Larkin
(2004) and Tadmor (1986) where stronger regularity (e.g. uε ∈ L∞(0; T ; H2(Pα))) and existence results
can be found. We formally test equation (3.1) with uε and using the periodicity of Pα , i.e. (λ/6)
(∂x(uε)3, 1)= 0, such that

1

2

d

dt
‖uε‖2 + (κ − ν)‖∂2

x uε‖2 � ε2

2
‖uε‖2 + 1

2
‖Rε(U)‖2, (3.7)

where we used the inequality ‖∇uε‖2 � ‖Δuε‖2, which holds in the periodic case (see Tadmor, 1986,
p. 3). After defining

β := 2ε2,

γ := 1
2‖Rε(U)‖2,

(3.8)

we multiply (3.7) by exp(− ∫ t
0 β ds) such that

1

2
exp(−βt)

d

dt
‖uε‖2 � exp(−βt)

β

2
‖uε‖2 + exp(−βt)γ (t). (3.9)

Since

d

dt

(
exp(−βt)

1

2
‖uε‖2

)
= −β exp(−βt)

1

2
‖uε‖2 + exp(−βt)

1

2

d

dt
‖uε‖, (3.10)

we can rewrite (3.9) as

d

dt

(
exp(−βt)

1

2
‖uε‖2

)
� exp(−βt)γ (t), (3.11)

and subsequent integration together with Lemma 3.2 gives

‖uε(T)‖2 � C exp(βT)
∫ T

0
exp((β − C/ε)t) dt � C

β + C/ε
exp(βT). (3.12)

For aribtrary 0< T∗ <∞ we can choose 0 � ε� ε∗ := 1/(exp(βT∗)− β/CC∞)where the constant C∞
is chosen such that

C

β + C/ε
exp(βT∗)� C∞ <C exp(βT∗)/β. (3.13)

�
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The reduced equation for the resolved (slow) modes vε alone follows immediately after using (2.37)1

and (2.29)1, i.e. V(t)= vε(t)− εPFNR(t/ε, U(t)),

∂tv
ε + Avvε + PN B(vε, vε)= −εGε(U(t), vε), (3.14)

where the induced force term Gε is defined by

Gε(U(t), vε) := PN B(e−L(t/ε)vε, e−L(t/ε)PFNR(t/ε, U(t)))+ PN B(e−L(t/ε)PFNR(t/ε, U(t)), e−L(t/ε)vε)

+ PN B(e−L(t/ε)PFNR(t/ε, U(t)), e−L(t/ε)PFNR(t/ε, U(t)))

− AvPFNR(t/ε, U(t))− e−L(t/ε)δU PFNR(t/ε, U(t))∂tU , (3.15)

and U(t)= V(t)+ W(t)= vε(t)+ W(t) is the solution of the RG equation (2.29).

Lemma 3.4 For 0< T∗ <∞ and g as in Lemma 3.2, there exists an 0 � ε∗ <∞ such that, for 0 � ε=
1/N4 � ε∗, solutions to (3.14) satisfy vε := PN uε ∈ L∞(0, T∗; L2(Pα)) ∩ L2(0, T∗; H2(Pα)).

Proof. The proof is similar to the proof of Lemma 3.3. �

The same arguments as those for Lemma 3.2 lead to the following lemma.

Lemma 3.5 For N > 0 and v0 = PN g ∈ Hq(Pα) for q � 4, there exist two constants c1 and C2 indepen-
dent of N , such that the following estimate holds true for all t � 0:

‖Gε(t)‖L2 � C2 e−c1N4t. (3.16)

The following theorem gives qualitative information about the RG approach by quantifying the error
between (3.14) and (1.1).

Theorem 3.1 Let g ∈ H4(Pα), ε= 1/N4, and suppose that u, uε ∈ L∞(0, T ; H2(Pα)). Then the dif-
ference between the reduced solution vε and the exact solution of the gKS equation (1.1) satisfies the
following error estimate:

‖u(T)− vε(T)‖2
L2(Pα)

� Cε2 + exp(CT)(ε1/4 + ε). (3.17)

If we suppose that u, uε ∈ L∞(0, T ; Gσ ,2(Pα)), then we can improve (3.17) in the following way:

‖u(T)− vε(T)‖2
L2(Pα)

� Cε2 + exp(CT)
(
ε1/4 exp

(
− σ

ε1/4

)
+ ε
)

(3.18)

Remark 3.2

1. The exponential growth in time is not surprising; see, for example, estimate (3.12) in the proof of
Lemma 3.3. This estimate motivates the definition of a new variable h(x, t; η) := exp(−ηt)u(x, t).
Tadmor (1986) verifies global existence for such a decayed variable h and a conservative form
of the KS equation.

2. The assumption u, uε ∈ L∞(0, T ; H2(Pα)) is a direct consequence of a priori estimates, which
are derived by analogous steps as in the proof of Lemma 3.3, and of imposing initial conditions
u0, uε0 ∈ H2(Pα).
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Proof. The error ‖u − vε‖L2(Pα) can be bounded using the triangle inequality by

‖u − vε‖L2(Pα) � ‖u − uε‖L2(Pα) + ‖uε − vε‖L2(Pα), (3.19)

where the first term on the right-hand side in (3.19) represents the approximation error from the RG
method (RG error) and the second term accounts for the truncation error (Tr error). For notational
brevity, we introduce the error variables

EεRG := u − uε and EεTr := uε − vε. (3.20)

Step 1: (RG error) The equation for the error variable eεRG reads

∂tE
ε
RG + [κ∂2

x + δ∂3
x + ν∂4

x ]EεRG + EεRG∂xu + uε∂xEεRG = εRε(U). (3.21)

First, we test (3.21) with −∂2
x EεRG, i.e.,

∂t(∂xEεRG, ∂xEεRG)− (κ∂2
x EεRG, ∂2

x EεRG)− (δ∂3
x EεRG, ∂2

x EεRG)− (ν∂4
x EεRG, ∂2

x EεRG)

− (EεRG∂xu, ∂2
x EεRG)− (uε∂xEεRG, ∂2

x EεRG)= −(εRε(U), ∂2
x EεRG). (3.22)

Then, we use the test function EεRG,

∂t(E
ε
RG, EεRG)+ (κ∂2

x EεRG, EεRG)+ (δ∂3
x EεRG, EεRG)+ (ν∂4

x EεRG, EεRG)

+ (EεRG∂xu, EεRG)+ (uε∂xEεRG, EεRG)= +(εRε(U), EεRG). (3.23)

Next, we add up (3.22) and (3.23) and apply the Sobolev embedding theorem and standard inequalities
to end up with

1

2

d

dt
[‖EεRG‖2 + ‖∂xEεRG‖2] + (ν − 3α)[‖∂2

x EεRG‖2 + ‖∂3
x EεRG‖2]

� CRG(κ ,α, ε, ‖u‖H1 , ‖∂xu‖H1 , ‖uε‖H1 , ‖∂xuε‖H1)‖EεRG‖2
H1 . (3.24)

After defining
C̃RG = 2CRG, (3.25)

we can multiply (3.24) by exp(− ∫ t
0 C̃RG ds) such that

1

2
exp

(
−
∫ t

0
C̃RG ds

)
d

dt
‖EεRG‖2 � exp

(
−
∫ t

0
C̃RG ds

)
C̃RG

2
‖EεRG‖2. (3.26)

Applying a corresponding identity based on the product rule as (3.10) in the proof of Lemma 3.3, we
can simplify (3.26) to

d

dt

(
exp

(
−
∫ t

0
C̃RG ds

)
1

2
‖EεRG‖2

)
� 0, (3.27)

which further reduces by assumptions of Theorem 3.1 and after integration to

1

2
‖EεRG(T)‖2 � 1

2
exp

(
−
∫ T

0
C̃RG ds

)
‖EεRG(0)‖2 � C‖EεRG(0)‖2. (3.28)
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In order to get a bound controlled by ε on the right-hand side of (3.28), we have to take into account the
definition of the initial data (2.38), i.e.

‖EεRG(0)‖2 = ε2‖PFNR(0, g)‖2 � Cε2, (3.29)

since g ∈ H2(Pα) and hence PFNR(0, g) ∈ H1(Pα) and its norm is bounded independently of ε= 1/N4

in H1(Pα). Hence, we can conclude that

‖EεRG(t)‖2
L2(Pα)

� Cε2, (3.30)

which holds uniformly in time.
Step 2: (Tr error) We derive an estimate for the error variable EεTr := uε − vε = uε − PN uε. From (3.1)
and (3.14), the error EεTr satisfies the equation

∂tE
ε
Tr + [κ∂2

x + δ∂3
x + ν∂4

x ]EεTr + PN [uεuεx] − vεvεx = ε(PN Rε(U)− Gε(U , vε), vε), (3.31)

which can be rewritten, for all φ ∈ H2
N , as

∂t(E
ε
Tr,φ)+ ([κ∂2

x + δ∂3
x + ν∂4

x ]EεTr,φ)

+ ({PN [uεuεx] − vεvεx}, EεTr)= ε({PN Rε(U)− Gε(U , vε)},φ). (3.32)

Choosing φ = EεTr allows one to estimate (3.32) in the following way:

1

2

d

dt
‖EεTr‖2 + ν‖∂2

x EεTr‖2 � C(α, κ)‖EεTr‖2 + α‖∂xEεTr‖2 + (I)+ (II), (3.33)

where we define

(I) := (PN [uεuεx] − vvx, EεTr),

(II) := ε(‖PN Rε(U)‖ + ‖Gε(U , vε)‖)‖EεTr‖.
(3.34)

Let us first control term (I), which means

|(I)| � |(−PN uε(PN uε)x + uεuεx , EεTr)| + |(PN uε(PN uε)x − vεvεx , EεTr)|
� 1

2 |(∂x((u
ε − PN uε)(uε + PN uε)), EεTr)| + 1/4|(∂x(PN uε + vε), EεTr)|

� C(‖uε‖H1 + ‖PN uε‖H1)‖uε − PN uε‖H1‖EεTr‖ + C‖EεTr‖2, (3.35)

where we used the embedding H1
N (Pα) into L∞(Pα), i.e. ‖∂x(PN uε + vε)‖L∞ � C. The second term

(II) immediately becomes

|(II)| � ε exp(−ct/ε)C‖EεTr‖. (3.36)

Define

γ (t) := C(‖uε‖, ‖vε‖, ‖uε‖H1 , ‖PN uε‖H1 , ‖uε‖H2)ε1/4 + C(‖uε‖, ‖vε‖)ε exp(−Ct/ε),

β := 2(C(α, κ)+ C)
(3.37)
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and mulitply (3.33) with exp(− ∫ t
0 β ds) such that

1

2
exp(−βt)

d

dt
‖EεTr‖2 � β

2
exp(−βt)‖EεTr‖2 + γ (t) exp(−βt). (3.38)

Using again a corresponding identity to (3.10) in Lemma 3.3, we can rewrite (3.38) as

d

dt

(
exp(−βt)

1

2
‖EεTr‖2

)
� γ (t) exp(−βt), (3.39)

which becomes after integration with respect to time

1

2
exp(−βT)‖EεTr‖2(T)� C

∫ T

0
{(ε1/4 + ε exp(−Ct/ε)) exp(−βt)} dt

� Cε1/4

β
(1 − exp(βT))+ Cε

β + C/ε
(1 − exp(−(β + C/ε)T)). (3.40)

In the remaining part, we need to improve (3.40) with the help of Gevrey spaces. To this end, we remark
that the factor ε1/4 in (3.37) relies on the interpolation estimate (1.18). If we assume that solutions uε are
in Gσ ,s, then we improve (1.18) by (1.20). As a consequence, we are able to rewrite inequality (3.40) by

1

2
‖EεTr‖2(T)� C

∫ T

0

(
ε1/4 exp

(
β(T − t)− σ

ε1/4

)
+ ε exp(−Ct/ε + β(T − t))

)
dt

� Cε1/4

β
exp(βT)+ Cε

β + c/ε
exp(βT). (3.41)

�

4. Stochastic mode reduction

In this section, the renormalized equations (2.29), (2.31) from Sections 2.1 to 3 allow for a rigorous
stochastic mode reduction similar in spirit to the Mori–Zwanzig one (Zwanzig, 1961; Mori, 1965) but
for systems not satisfying an extended or generalized Hamiltonian structure (Zwanzig, 1973) and with-
out a canonical invariant measure.

As in the Mori–Zwanzig formalism, we assign a stochastic process to the unresolved modes. This
is done by applying the Jaynes maximum entropy principle; see Jaynes (1957a,b) and Rosenkrantz
(1989). This seems a reasonable approach for our problem since we do not have a canonically induced
probability density. Hence maximizing the information entropy for the probability density of Fourier
modes is equivalent to maximizing the multiplicity of Fourier modes. Multiplicity means the number of
different ways a certain state in a system can be achieved. States in a system with the highest multiplicity
can be realized by nature in the largest number of ways. Hence, the probability density functions with
maximum entropy are optimal statistical descriptions.

It should also be noted that a system at equilibrium will most probably be found in the state of highest
multiplicity since fluctuations from that state will be usually too small to measure. The probability
distribution may also be obtained from experiments as statistical data. In Stinis (2004), the probability
distribution is constructed by a conditional expectation obtained from previously computed samples
which are used to fit an a priori assumed Gaussian distribution.
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Finally, we emphasize that the maximum entropy principle can also be applied to problems where
one lacks deterministic data as a consequence of not enough experimental data to fix all degrees of
freedom. A common approach to model such uncertainty is to use white noise. The maximum entropy
method turns out to be an attractive alternative because it allows one to systematically add noise to the
gKS equation over the Equation (3.14), which is obtained by the evolutionary RG method.

However, since we apply the entropy maximization principle (Jaynes, 1957b) on an approximate
equation, we already neglect information from the beginning and hence have to account for this by an
asymptotic in time characterization of the fast modes for example; see Assumption (A). This assumption
might be improved or adapted appropriately in other applications. Subsequently, (Ω ,F , P) denotes the
usual probability space with sample space Ω , σ -algebra F and probability measure P.

4.1 Problem induced probability density by maximizing information entropy

With the considerations at the beginning of Section 4, we assign a probability distribution to the unre-
solved degrees of freedom W based on the following:

Assumptions:

(A) For a probability measure Pj with density fj and

CN (w̃
ε,0
j ) := 1

2 (w̃
ε,0
j )

2, (4.1)

where w̃ε,0j (t)= wε,0j (t,ω) denotes a realization for ω ∈Ω of the jth Fourier mode of the leading
order term wε,0 of wε in (2.37)2, i.e. wε,0(x, t)= e−QN t/εW(x, t), we assume that it holds asymp-
totically in time that

Ej

[
∂

∂t
CN (w

ε,0
j )

]
=
∫ ∞

−∞
fj(w̃

ε,0
j )

∂

∂t
CN (w̃

ε,0
j ) dw̃ε,0j = δj(t) := −ρw

j e−2ρw
j tW 2

j (0), (4.2)

i.e. there is a t0 � 0 such that (4.2) holds for t> t0. We call δj(t) a dissipation rate and Ej denotes
the expectation with respect to the probability Pj.

(B) Under (A) the probability Pj[Wj � w̃ε,0j ] = F(w̃ε,0j ) with density fj, i.e.

F(w̃ε,0j ) :=
∫ w̃ε,0j

−∞
fj(r) dr, (4.3)

has maximum information entropy SI(fj),

SI(fj)= −
∫ ∞

−∞
fj(r) log

(
fj(r)

ν(r)

)
dr, (4.4)

where fj(r) denotes the probability density of the jth Fourier mode of the unresolved variable W
and ν is an according invariant measure which is defined on background information intrinsically
given by the physical origin of W .
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Remark 4.1

(1) The idea of deriving probability distributions for multiscale evolution problems by maximizing
the information entropy seems to go back to Lorenz (1996). The energy argument in Lorenz
(1996), which assumes that the fast modes reached already the stationary state, does not provide
here enough information to fix the Lagrange multiplier λ1 associated with this energy constraint.
We impose Assumption (A) instead. Note that we take slightly more information into account
by using wε,0 instead of W , which does not decay as fast as wε,0.

(2) A mechanical system governed by the Hamiltonian H(q, p) canonically induces an invariant
measure by the density distribution function f (q, p) := (1/Z(β)) e−βH(q,p).

(3) Equation (4.2) accounts for the fact that we do not have an invariant measure to the fast modes.
For simplicity, we also neglect a possible randomness in time. This is a further reason for the
assumption in (4.2).

In information theory, an entropy related to (4.4) was originally introduced by Shannon (1948) to
measure the maximum information content in a message. The Assumptions (A) and (B) above account
for the lack of a free energy and a Hamiltonian for which the thermodynamic equilibrium (invariant
measure) can be achieved via the gradient flow with respect to the Wasserstein distance (Jordan et al.,
1998). In fact, it should be noted that minimizing the free energy with respect to constant internal energy
is equivalent to maximizing the entropy.

Theorem 4.1 Under Assumptions (A) and (B), it follows that the unresolved modes Wk for |k|>N
obtained by Equation (2.31) are normally distributed with zero mean, i.e. μk = 0, and variance σ 2

k =
1/2λkρk , where λk := 1/2δj(t) is a Langrange multiplier.

Remark 4.2 Instead of (A), one can make the following assumption (A*): For large enough times t> 0,
it holds that

Ej

[
∂

∂t
CN (w

ε,0
j )

]
= σ 2. (4.5)

This immediately leads to the result that the fast modes satisfy Wk ∼ N (0, σ 2) where the variance can
be defined by the power spectral density as in the case of complete uncertainty; see also Section 5.

To keep the considerations simple, we only account for a spatial random process and keep the time
deterministic in Theorem 4.1 (and Assumption (A)).

Proof. To maximize (4.4) under Assumptions (A) and (B), we apply the following constraints:

(CI)

⎧⎪⎨
⎪⎩
∫ ∞

−∞
fk(r) dr = 1,

Ek[∂tCN (w
ε,0
k )] :=

∫
fk(w̃

ε,0
k )∂tCN (w̃

ε,0
k ) dw̃ε,0k = δk(t),

(4.6)

where (4.6)2 is a consequence of assumption (i).
Hence, maximizing the entropy SI subject to the constraints (4.6) leads to

∫ ∞

−∞
δfk(w̃

ε,0
k )

{
log

(
fk(w̃

ε,0
k )

ν(w̃ε,0k )

)
+ ν(w̃ε,0k )+ λ0 + λk∂tCN (w̃

ε,0
k )

}
dw̃ε,0k = 0, (4.7)
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where λ0 and λk are Lagrange multipliers associated with the constraints (4.6). In order to give (4.6)2 a
precise meaning, we write down the explicit form of the equation belonging to each Fourier coefficient
of the fast mode variable w = QN u solving (2.29).

We briefly show what the constraint (4.6)2 means:

Ek[∂tCN (w
ε,0
k )] = −

∫ ∞

−∞
fk(w̃

ε,0
k )(w̃

ε,0
k )

2

(
2iλ

k

α
V0 − 1

ε
ρw

k

)
dw̃ε,0k

= δk(t). (4.8)

We recall that V0 = const. Due to conservation of mass. Since (4.7) should hold for arbitrary variations
δfk , we obtain the following expression for the probability density function:

fk(w̃
ε,0
k )=

1

Zk
ν(w̃ε,0k ) e−λk∂tCN (w̃

ε,0
k ), (4.9)

where Zk := eν(w̃
ε,0
k )+λ0 is called the ‘partition function’, which is determined by the normalization con-

straint (4.6)2, i.e.

Zk := Zk(λk)=
∫ ∞

−∞
νk(w̃

ε,0
k )e

−λk∂tCN (w̃
ε,0
k ) dw̃ε,0k . (4.10)

Since the constraint (4.6)2 is quadratic in its nature, we represent it by

λk∂tCN (w̃
ε,0
k )= −λk(w̃

ε,0
k )

2ρ̃w
k = − 1

2σ 2
k

((w̃ε,0k − μk)
2 − μ2

k), (4.11)

where ρ̃w
k := 2iλ(k/α)V0 − ρw

k /ε and

σ 2
k = 1

2λkρ̃
w
k

, and μk = 0. (4.12)

With identities (4.11) and (4.12) the probability density function (4.9) can be written as

fk(w̃
ε,0
k )=

1

Zk
c−1

Wk
σk

√
2πN (μk , σk , w̃ε,0k ) (4.13)

for |k|>N , where N is the normal distribution given by

N (μk , σk , w̃ε,0k )=
1

σk

√
2π

e−((w̃ε,0k −μk)
2)/2σ 2

k , (4.14)

which is characterized by the following moments:

∫ ∞

−∞
N (μ, σ , w) dw = 1,

∫ ∞

−∞
N (μ, σ , w)w dw =μ and

∫ ∞

−∞
N (μ, σ , w)w2 dw = σ 2 + μ2.

(4.15)
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The first property in (4.15) together with the normalization condition (4.6)1 allow us to define the parti-
tion function Z by

Zk = c−1
Wk
σk

√
2π (4.16)

for |k|>N .

Remark 4.3 The measure ν(w) :=∏|k|>N (1/cWk ) is the probability density function if we only have a
priori information. Usually, it is a non-trivial task and basic considerations of symmetries are required
to find this measure ν.

The probability density function fk admits then the simple form as a product of Gaussian distribu-
tions, i.e.

fk(w̃
ε,0
k )= N (μk , σk , w̃ε,0k ) (4.17)

for |k|>N . With the second and third property in (4.15) and the constraint (4.6)2, i.e. (4.8), we obtain,
for all |k|>N ,

δk(t)= Ek[∂tCN (ωk)] = −(ρ̃w
k {σ 2

k + μ2
k}). (4.18)

We conclude with (4.18) that the Lagrange parameter λk is

λk(t)= e2ρw
k t/(2ρw

k W 2
0 (0)). (4.19)

The important information contained in formula (4.19) and (4.12)1 is that we do not have to assert
to each Fourier mode k its standard deviation k2σ 2

W . We only need to determine once the Lagrange
parameter λ1 via (4.19). From (4.18) and the property μ̄k =μ−k , we obtain that the mean satisfies
μk = 0 for all |k|>N . �

Hence, the approach of maximizing the generalized information entropy allows one to systemat-
ically determine the probability distribution function fk(wk) of the Fourier modes for the unresolved
degrees of freedom W . The stochastic partial differential equation for the resolved degrees of freedom
is then obtained by computing the probability distribution of W as the inverse Fourier transform of the
sum of normally distributed unresolved Fourier modes and by assuming that the probability distribution
for W derived in the long-time regime also holds for the unresolved modes of the initial conditions.

We emphasize that the RG approach suggests multiplicative noise as a compensation for the
unresolved modes unlike the commonly obtained additive noise by Mori–Zwanzig’s mode reduction
(Zwanzig, 1973). Moreover, an estimate (3.6), which can be correspondingly derived by additionally
accounting for the Galerkin error, shows that the influence of the stochastic force decreases for decreas-
ing ε := 1/N4.

5. Direct approach: Replacement of Gε by white noise

The result of Lemma 3.5 also enables for a direct approach to model the unresolved degrees of freedom
as completely unknown. Such a kind of complete uncertainty is generally described by white noise



296 M. SCHMUCK ET AL.

W(x) with zero mean and a variance equal to the power spectral density. It is very common and widely
accepted to model uncertainty by white noise. Hence, we replace εGε(U(t), vε) in Equation (3.14) by

Nε(x, t) := ε exp(−Ct/ε)W(x), (5.1)

where W(x) ∈ L2(Pα) is the Gaussian random variable as motivated above, i.e. with zero mean μ
and suitable variance σ . It is immediately clear that Nε is a compatible replacement of Gε since (5.1)
satisfies a bound corresponding to the one in Lemma 3.5. One can follow Stinis’ approach (Stinis, 2004),
for example, in order to determine μ and σ by a maximum likelihood method.

6. Discussion and conclusions

We have formally developed a new stochastic mode reduction strategy with a rigorous basis by obtaining
appropriate error estimates. The analysis can be summarized in three key steps as follows:

(1) RG method: The RG technique (Moise &Temam, 2000; Moise & Ziane, 2001) turns out to be a
formal and feasible method to decompose the gKS equation into slow vε and fast variables wε, respec-
tively. The equation for the slow modes vε represents a Galerkin approximation of the gKS equation
plus an additional perturbed force term εGε which also depends on the infinite-dimensional renormal-
ized fast modes W . An important property of the RG technique is that it can be easily extended to higher
space dimensions; see Moise &Temam (2000) with respect to the RG method and Biswas & Swanson
(2007) for an existence theory of the KS equation in higher space dimensions. We also remark that the
dispersion term, i.e. uxxx, does not affect the mode reduction analysis.

(2) Error bounds: We rigorously characterize the formal RG method (1) by qualitative error esti-
mates (Theorem 3.1). These estimates further allow for an additional direct mode reduction strategy
which is much simpler and straightforward but not as systematic. The basic idea is to replace the per-
turbed force term εGε directly by white noise. A physical motivation for such a simplified reduction is
the fact that white noise is a well-accepted random model for complete uncertainty.

(3) Maximum entropy principle: Owing to the lack of a Hamiltonian structure and an invariant mea-
sure, we apply Jaynes’ maximum entropy principle (Jaynes, 1957a,b) to define the renormalized fast
modes W as a random variable. This random variable then, together with the renormalized approxi-
mation of the slow variable vε, provides a systematic explanation for the appearance of a noisy low-
dimensional gKS equation. In contrast to optimal prediction we obtain optimality in the sense of maxi-
mum entropy here.

There are three main features of the new low-dimensional gKS equations:
(i) Reliable and efficient numerics: The low-dimensional formulation developed here should allow

for reliable (since information from the unresolved degrees of freedom is included) and efficient (since
low-dimensional) numerical approximations. In fact, we systematically account for the unresolved
degrees of freedom by the steps (1) and (2). This is especially of importance since the choice of slow
and fast variables depends on the physical problem and is often not clear. For instance, by considering
the gKS in large domains, it is possible to introduce a further scale which accounts for the unstable
modes. Hence, we can study three different scales such as ‘unstable modes’, ‘slow stable modes’ and
‘fast stable modes’. The main question is then how to account for the unstable and the fast stable modes
in an equation for the resolved slow modes only.

Moreover, the error estimates from step (2) provide a qualitative measure on how to choose the
dimension of the slow variable. This is also the main advantage of mode reduction considerations over
pure convergence analyses of Galerkin approximations (e.g. numerical schemes) where one completely
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neglects the unresolved degrees of freedom. Hence, straightforward discretization strategies might lose
model relevant information in the neglected degrees of freedom. This is a major motivation to include
rigorous mode reduction strategies as an important part of the development of computational schemes.
We further remark that this is a major reason why the addition of noise to deterministic partial differ-
ential equations shows good results and is currently a topic of increasing interest. It is also important
to emphasize that one of the key points for the presented methodology to be computationally efficient
is precisely because we add the noise a posteriori after solving the reduced model, something which is
computationally simpler than solving the full system at every time step.

(ii) No Hamiltonian structure; no invariant measure: Many classical mode reduction strategies rely
either on a Hamiltonian structure or an invariant measure. Based on the three steps (1)–(3), the new
asymptotic reduction strategy circumvents such dependencies. For example, when classical optimal
prediction methods (Chorin et al., 1998) fail because of such deficiencies, the stochastic renormalization
provides optimality in the sense of maximum information entropy and hence proves to be a promising
alternative.

(iii) The role of noise: We gain a rigorous understanding of the origin of noise and the way it appears
in the gKS equation. This is especially of interest due to numerical evidence provided together with a
heuristic motivation in Chow & Hwa (1995) for instance.

Clearly, there are open questions and future perspectives. For example, motivated by the compara-
tive study initiated by Stinis (2006), it would be of interest to numerically analyse and compare available
mode reduction strategies such as adiabatic elimination (VanKampen, 1985), invariant manifolds (Foias
et al., 1988a) and optimal prediction (Chorin et al., 1998) with the new RG approach developed here.
Since the statistically based optimal prediction (Stinis, 2004) is performed for a truncated KS equation,
it provides a convenient set-up for comparison with the new and more generally applicable method
suggested here.

Another question is how can we apply the RG method to the derivation of a low-dimensional approx-
imation for a gKS equation investigated under three scales, i.e. ‘slow unstable modes’, ‘slow stable
modes’ and ‘fast stable modes’ or to explore the possibility of obtaining low-dimensional approxima-
tions of equations where noise is present from the outset, e.g. Pradas et al. (2011b, 2012).

The RG method is based on a natural splitting into linear and non-linear terms by the variation
of constants formula. Recent studies, e.g. by Holden et al. (2011a,b), make use of such a splitting via
a suitable numerical scheme for equations with Burgers’ non-linearity. Hence, the reliability and effi-
ciency of the renormalized low-dimensional gKS equation motivate the application of such numerical
splitting strategies to the new reduced equations derived here. Finally, we emphasize that efficient low-
dimensional approximations are of great interest for numerical scrutiny of long time asymptotes. We
shall examine these and related issues in future studies.
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Appendix

We prove the following lemma:

Lemma A.1 R2(j) is an empty set.

Proof. Let us first recall the definition of the second resonance, that is,

ρw
k + ρw

l = ρw
j , (A.1)

where the indices satisfying (A.1) belong to R2(j). We further remind the reader of the convention
according to (2.3)

ρw
k = 1

N4

(
−ν
(

k

α

)2

− iδ

(
k

α

)3

+ κ

(
k

α

)4
)

. (A.2)

Taking the imaginary parts of (A.1), one obtains

(
k

α

)n

+
(

l

α

)n

=
(

j

α

)n

, (A.3)

for n = 3. Taking the real parts, one only gets

− ν

((
k

α

)2

+
(

l

α

)2
)

+ κ

((
k

α

)4

+
(

l

α

)4
)

= −ν
(

j

α

)2

+ κ

(
j

α

)4

. (A.4)

In what follows, we transform (A.4) into an expression which convinces us that there are no indices k
and l that satisfy (A.4). To this end, we make use of the fact that j = k + l which reads after taking the
square on each side as

j2 = (k + l)2 = k2 + l2 + 2kl. (A.5)

Multiplying now (A.4) by α2 gives

− k2 − l2 + κ

α2ν
(k4 + l4)= −j2 + κ

α2ν
j4, (A.6)

and after applying (A.5) on the right-hand side, we obtain,

− k2 − l2 + κ

α2ν
(k4 + l4)= −k2 − l2 − 2kl + κ

α2ν
(k2 + l2 + 2kl)2, (A.7)

and hence becomes

r − 3kl = 2(k2 + l2), (A.8)

where we set r := α2ν/κ , which is positive.
Equation (A.8) cannot be satisfied by any integers k and l if (i) N2 � 8

7 r or if (ii) L, ν and κ are not
proportional to π . �
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Remark A.1 We note that without assuming either that (i) L, ν, κ are not proportional to π or that (ii)
N2 � 8

7α
2ν/κ , we obtain two explicit solutions for k and l via (A.8) over a depressed cubic equation, i.e.

k = (r(−64 ∓
√

642 + 3922r/27))1/3 − 392r

3(r(−64 ∓
√

642 + 3922r/27))1/3
,

where the same expression also defines l. Herewith, it remains to check whether, for a given r ∈ R, the
solutions k and l are integers and whether they satisfy |k + l|>N , |k|>N and |l|>N .


