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Data-driven coarse graining in action: Modeling and prediction of complex systems

S. Krumscheid,1, 2, ∗ M. Pradas,1, † G.A. Pavliotis,2 and S. Kalliadasis1

1Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
2Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom

(Dated: October 18, 2015)

In many physical, technological, social, and economic applications, one is commonly faced with the
task of estimating statistical properties, such as mean first passage times of a temporal continuous
process, from empirical data (experimental observations). Typically, however, an accurate and
reliable estimation of such properties directly from the data alone is not possible as the time series
is often too short, or the particular phenomenon of interest is only rarely observed. We propose here
a theoretical-computational framework which provides us with a systematic and rational estimation
of statistical quantities of a given temporal process, such as waiting times between subsequent bursts
of activity in intermittent signals. Our framework is illustrated with applications from real-world
data sets, ranging from marine biology to paleoclimatic data.

PACS numbers: 02.50.-r, 02.50.Tt, 05.40.Fb, 05.45.Tp

I. INTRODUCTION

Over the last few years, there has been an increas-
ing demand for capturing generic statistical properties
of complex systems based on available data only. Such
systems are often strongly influenced by random fluctu-
ations which play a crucial role in the various intrigu-
ing phenomena emerging in temporal observations [1, 2].
Understanding the underlying complex processes of such
phenomena is a common task in many disciplines, but
often it is not possible to estimate statistical properties
directly from empirical data alone because e.g. the phe-
nomenon of interest occurs rarely. On the other hand, of-
ten also a purely reductionist/bottom-up approach is ei-
ther impossible or results in computationally prohibitive
mathematical models.

An alternative approach is to identify a reduced (coarse
grained) model from the experimental data which retains
the fundamental aspects of the original system. This is in
fact at the core of data-driven coarse graining but despite
its fundamental significance, to date there does not ex-
ist a systematic framework for this. Relying exclusively
on the observations and treating the corresponding re-
duced model as a “black box” (that is, in technical terms
using nonparametric estimators [3], see also [4] for a re-
view of such techniques) is, however, not reasonable since
such an approach introduces errors in regions where only
few observations exist [5], e.g. rare phenomena, thus cor-
rupting a model-based analysis. An accurate and more
general procedure is to follow a semiparametric approach
where we postulate a model, i.e. we introduce a paramet-
ric ansatz (in a “grey-box” modeling approach) which is
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consistent with the essential characteristics of the exper-
imental data, such as for example dynamic state transi-
tions.

In this study we outline a unified generic theoretical-
computational framework for data-driven modeling
based on the above semiparametric approach with the
ultimate aim of analyzing complex phenomena arising in
a wide spectrum of different systems. To exemplify the
methodology we use two representative examples of cur-
rent interest, namely experimental observations of the
foraging behavior of marine predators [6], and the tem-
perature record during the last glacial period [7].

The manuscript is organized as follows. Section II
presents the data-driven modeling framework which is
then applied to a test case in Sec. III. Section IV offers
results of the analysis of two real data sets, correspond-
ing to movement pattern of marine predators and climate
transitions during the last glacial period. We conclude
in Sec. V.

II. GENERIC DATA-DRIVEN MODELING

A schematic representation of our methodology is
shown in Fig. 1 and consists of two main steps. The
first one is a model selection (postulate - assess/validate)
procedure, which allows to select a simple coarse grained
model from experimental observations. This model is
then assessed and validated and eventually used in a sec-
ond step to predict different quantities of interest.

We are interested in systems where the underlying
noisy process is continuous in time and thus consider the
following prototypical Itô stochastic differential equation
(SDE):

dX(t) = f(X(t); θ) dt+ g(X(t); θ) dW (t) , (1)

X(t) ∈ Rd for t ≥ 0, where f and g are the drift and diffu-
sion coefficients, respectively, with the latter controlling
the influence of the stochastic driving through a Wiener
process, W (t).
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FIG. 1: (Color online) Flow chart of the data-driven modeling framework: Given observations (data) we postulate a
coarse-grained stochastic parametric model which is fitted (via statistical inference and time series analysis tools,
which we refer to as Enabling Tools I) to the data and refined via a model selection process (see main text). In

particular, via an assessment/validation and fine-tuning procedure we determine the structure of the model and the
minimum number of parameters needed. Once the model has been validated, it is used to predict underlying

statistical properties by using critical phenomena and stochastic processes tools (Enabling Tools II). The far-left
figure is a numerical example of Brownian motion in a two-dimensional potential.

We postulate first several model candidates, i.e. the
functions f and g in (1), based on two criteria: (i) they
must support features which are observed in the empir-
ical data (e.g. state transitions) and (ii) they have to
reproduce functional features observed in a preliminary
nonparametric analysis in regions where most discrete-
time observations of (1) are located. We note that the
second criterion is primarily used as a data-driven mod-
eling guidance. We reiterate, that a fully nonparametric
modeling approach is typically not feasible in practice,
as we will also illustrate in Sec. III. Due to the combi-
nation of phenomena-driven and data-driven aspects we
can instead use a semiparametric approach here. That is,
we consider expansions (e.g. Taylor or Fourier) of both
drift and diffusion coefficients that support aspects ob-
served in the time series. Different models can then be
constructed by varying the number of unknown parame-
ters in the these expansions. The postulated models are
then compared and refined within the framework’s model
assessment/postulation feedback loop by combining sta-
tistical model selection criteria with further data-driven
considerations (e.g. intermittency or shape of the proba-
bility density function).

A. Parametric Inference for SDEs and Model
Selection

Given a model candidate, we proceed then to estimate
the parameter vector θ ∈ Θ ⊂ Rm using a maximum like-
lihood framework due to its favorable theoretical prop-
erties (see e.g. [8, 9]). Specifically, let Xn be the sample
with true parameter θ∗, that is Xn := (Xi)0≤i≤n at sam-
pling times 0 = t0 < t1 < · · · < tn = T with Xi ≡ X(ti).
The maximum likelihood estimator for θ∗ based on the
observations Xn is defined as the maximizer of the likeli-

hood function over Θ

θ̂n ∈ arg max
θ∈Θ

Ln(θ;Xn) , (2)

where Ln(θ;Xn) denotes the likelihood function:

Ln(θ;Xn) =

n−1∏
i=0

pθ(ti+1 − ti, Xi+1|Xi)pθ(X0), (3)

with pθ(x) being the probability density function (PDF)
of the initial condition and pθ(∆t, x|y) denotes the con-
ditional probability density function. The conditional
probability density function is usually not known in
closed-form and we approximate it by adopting the
closed-form expansion due to Aı̈t-Sahalia [10]. The main
idea is to transform the problem into one with transition
densities that can be approximated accurately by means
of an expansion in terms of Hermite polynomials. Trun-
cating this expansion and inverting the transformation,
an approximation of pθ(·, ·|·) can be obtained in closed
form. The coefficients determining this expansion depend
on the considered functional form of both drift and dif-
fusion coefficient in (1) and can become rather involved.
Using a careful combination of symbolic and numerical
computations, it is possible nonetheless to evaluate these
coefficients accurately and efficiently.

It is worth emphasizing that while the MLE approach
works well for data sets (time series) with a single char-
acteristic time scale, it becomes asymptotically biased
when applied to data coming from multiscale stochastic
systems. For such systems, statistical inference method-
ologies that take into account the multiscale nature of
the data set have to be used [11, 12]. We emphasize
though, that the general framework as illustrated in Fig.
1 remains unaltered even in that case.

Once we have obtained the parameter vector and the
corresponding likelihood function for several model can-
didates, we proceed to select a few of them (typically
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two) by making use of two model selection techniques,
namely the sample size corrected Akaike Information Cri-
terion (AICc) and the Bayesian Information Criterion
(BIC), both of which provide measures of the relative
quality of the SDE parametrization (1) based on the
given set of data; see, e.g. [13]. These two techniques
rely on the maximized likelihood function of the consid-
ered model and the available observations Xn, that is

they depend on Ln
(
θ̂n;Xn

)
, where θ̂n denotes the esti-

mated m-dimensional parameter vector defining the SDE
model (1). In particular, the finite sample size corrected
AICc is given by

AICc = 2m(n+ 1)/(n−m)− 2 ln
(
Ln(θ̂n;Xn)

)
,

and the BIC is defined as

BIC = m ln (n+ 1)− 2 ln
(
Ln(θ̂n;Xn)

)
.

We note that both techniques are designed to penal-
ize over-fitted models, that is a parametrization with
many parameters is not as valuable as a parametrization
with fewer parameters unless it significantly improves the
goodness of the fit. The only difference between these
two techniques is how this trade-off between complexity
and goodness of the fit is realized: the AICc penalizes
the number of parameters not as strongly as the BIC
does. In both cases the preferred model is the one with
a minimum value. Although the AICc has demonstrated
to be both theoretically and practically advantageous in
some applications (e.g. in regression problems) [13], we
also monitor the BIC here.

B. Prediction

The second step is the model-based prediction step
where we use the predictive capabilities of the selected
model to estimate and predict the behavior of several un-
derlying statistical quantities of interest which cannot be
obtained from the original data, e.g. a mean-first-passage
time (MFPT) of the process (see Appendix A for a de-
tailed description of how to compute exit times). The
key point of the proposed framework hence is that it is a
synergistic interdisciplinary approach that combines ele-
ments from physics and mathematics, in particular statis-
tical physics, theory of critical phenomena and stochastic
processes. In the following we apply it first to a synthetic
data set which is used as a test case, and second to two
representative examples for which the underlying model
is not known.

III. TEST CASE

To illustrate the estimation step of our data-driven
coarse-graining framework, we perform a numerical ex-
periment based on a computer-generated time series.
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FIG. 2: Time series of SDE model (4) with
(α, β, γ) = (1,−1, 0.1) over the time interval [0, 1000]

with sampling period ∆t = 0.5.

Model f(x; θ) g(x; θ)

M1
∑1

j=0 θjx
2j+1 θ2

M2
∑3

j=0 θjx
j θ4

M3
∑3

j=0 θjx
j

√
θ4 + θ5x2

M4
∑3

j=0 θjx
j

{
θ4 , if x < θ6

θ5 , if x ≥ θ6
M5

∑5
j=0 θjx

j θ6

TABLE I: A list of considered parametric SDE models
for the test case.

Specifically, we consider the SDE

dX(t) =
(
αX(t) + βX(t)

3
)
dt+

√
γ dW (t) , (4)

for which we set the true parameter vector θ∗ to θ∗ ≡
(α, β, γ) = (1,−1, 0.1). Figure 2 shows a time series on
the time interval [0, 1000] with sampling period ∆t =
0.5 (i.e. n = 2001 observations). The time series was
obtained by integrating the SDE (4) numerically using
the Euler–Maruyama scheme with a step size of δt =
10−3; see e.g. [14] for details. The objective now is to fit
an appropriate SDE model to this time series.

Since the time series shows a transition between two
metastable states, we consider various candidate mod-
els that support metastability. Details of these paramet-
ric models are given in Table I. The outcome of the
framework’s model selection step is then summarized in
Table II. Here the various models are compared with re-
spect to the number of parameters m, the negative value
of the log-likelihood function evaluated at the estimated

parameter vector (i.e. L̂ ≡ Ln(θ̂n;Xn)), and the statisti-
cal model selection criteria. By comparing the selection
criteria for the different models, we find that model M1
is clearly the preferred model among those considered.
That is, the framework’s model selection step does not
only identify the underlying true SDE structure correctly,
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Model m − ln (L̂) AICc BIC

M1 3 943.56 −1881.11 −1864.31

M2 5 934.04 −1858.06 −1830.08

M3 6 838.72 −1665.41 −1631.84

M4 7 859.74 −1705.43 −1666.28

M5 7 853.03 −1692.00 −1652.85

TABLE II: Comparison of different estimated SDE
models for the test case.

it also provides accurate estimates of the coefficients in
Eq. (4) — the relative error of the estimated parameter
vector being approximately 8% — despite the relatively
high sampling period ∆t = 0.5.

The results provided by our framework’s selection are
even more satisfactory when compared with the results
obtained through a fully nonparametric (black-box) ap-
proach, something that has, e.g., been used in [4]. Here,
both the drift f and the diffusion coefficient g are ap-
proximated using their infinitesimal definitions; cf. [15].
Specifically, for the drift function

f(x) = lim
t→0

1

t
E
(
X(t)−X(0)

∣∣X(0) = x
)

≈
∑n−1
i=0 K

(
x−Xi

κ

)
(Xi+1 −Xi)

∆t
∑n−1
i=0 K

(
x−Xi

κ

) =: f̂(x) ,

is used, while the diffusion coefficient is approximated via

g(x)
2

= lim
t→0

1

t
E
((
X(t)−X(0)

)2∣∣X(0) = x
)

≈
∑n−1
i=0 K

(
x−Xi

κ

)
(Xi+1 −Xi)

2

∆t
∑n−1
i=0 K

(
x−Xi

κ

) =: ĝ(x)
2
,

where K(z) = exp(−z2/2)/
√

2π and κ denotes a band-
width parameter, which can be selected via least-squares
cross validation techniques; see, e.g., [16, 17] for details.
Clearly, both nonparametric estimators depend crucially
on the size of the sampling period ∆t and can only be
expected to yield accurate estimates if ∆t� 1. To illus-
trate that this intuitive statement is indeed correct, we
depict in Fig. 3 the true drift and diffusion coefficients
f and g together with the estimators obtained from our
framework (i.e. model M1) and the ones obtained with
a fully nonparametric approach (labeled by NP). While
the results obtained from M1 provide also visually very
accurate approximations of the true drift and diffusion
coefficients used to generate the time series, the nonpara-
metric counterparts deviate significantly from the true
coefficients and show spurious and erratic effects.These
effects are essentially due to the exclusively large sam-
pling period ∆t, as can be seen by repeating the same
experiment with a very small sampling period (not shown
here). As a consequence of these erratic effects, any fur-
ther model-based analysis of the corresponding complex
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FIG. 3: (Color online) Comparison of estimated drift
(top) and diffusion (bottom).

system using the fully nonparametric approach is bound
to be ineffective since the artifacts associated with the
sampling period would introduce nonphysical effects to
the results.

IV. REPRESENTATIVE EXAMPLES OF
REAL-WORLD DATA SETS

A. Movement patterns of marine predators

The study of foraging behavior in marine life is an
active research topic in ecology that has received con-
siderable attention over the last few years. For example,
analysis of the movement displacements of marine preda-
tors has suggested that, in certain cases, e.g. when prey is
sparse, predators adopt an optimal search strategy based
on Lévy flights [6, 18]. Understanding how such complex
behavior is linked to, e.g., environmental conditions and
the available prey distribution [19] or the predator’s phys-
iological capabilities [20], and, more importantly, how to
predict it in terms of simple models, has become a major
goal [21].

We consider the experimental observations of the
movement pattern of an ocean sunfish (Mola mola) ob-
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FIG. 4: (Color online) Analysis of marine predator movements: (a) Diving depth time series of an ocean sunfish
(data from [6]). (b) PDF of the experimental observations (histogram in gray) and the numerical ones obtained from
models M1 and M2. (c) Time series of the fitted coarse grained process X computed by using model M1. (d) PDF of
the waiting times between large bursts of activity computed numerically by using model M1 and M2 (both models

give the same results). The solid line corresponds to a fit with the function P (z) = az−γ exp (−bz) with
γ = 1.54± 0.06. (e) PDF of the total diving length `. The solid line corresponds to a truncated power law

P (`) ∼ `−µ exp (−`/L0) with µ = 1.83± 0.09. Different points correspond to different values of the threshold, which
is used to define the rare events (see text), in the range Xth ∈ [35, 45].

tained by Humphries et al. [6] in a recent study to identify
Lévy flights and Brownian movements in marine preda-
tors. Figure 4(a) shows the time series of the predator’s
diving depth (in positive value with respect to the sea
surface) over a period of 4.5 days. It is evident that
the predator’s behavior is characterized by complex in-
termittent dynamics which we approximate by means of
a stochastic model. To account for the sea surface as
a natural boundary in the problem, and as the diving
depth should be always non-negative, we change vari-
ables to Y = ln (X) so that Y solves an SDE of form

(1) with drift and diffusion coefficients f̂ and ĝ which are
expressed in terms of the new variable Y . As the result
of the framework’s model selection step we obtain the
following two preferred models (see Appendix B for the
full study comparing different models):

M1: f̂(Y ; θ) =
∑5
j=0 θjY

j ; ĝ(Y ; θ) = θ6,

M2: f̂(Y ; θ) =
∑7
j=0 θjY

j ; ĝ(Y ; θ) = θ8.

The dynamics of the diving depth is then given by X =
exp (Y ) with the following generic SDE:

dX(t) = f(X(t); θ) dt+ 2σX(t) dW (t), (5)

which has multiplicative noise and where 2σ equals θ6

or θ8 in models M1 or M2, respectively. Figure 4(c) de-
picts an example of a time series generated from model
M1, and Fig. 4(b) shows the theoretical PDFs associated
with both models superimposed on the experimental his-
togram, observing a good match between them. The fact

that the drift coefficient of model M1 is contained in the
drift of model M2 together with the observation that the
associated model PDFs are almost identical, indicates
the robustness of the parametrization. It is important
to emphasize that although our formulation is based on
stochastic models, which can give rise to unrealistic lo-
cal fluctuations at small time scales, it fully captures the
macroscopic dynamics of the predator and the underlying
quantities of interest.

We now use models M1 and M2 to accurately and confi-
dently compute several quantities describing the dynam-
ics of the predator. First, based on the bimodal PDF
we define three regions of interest (habitats) as follows.
Region I, which is the low-depth preferred habitat, corre-
sponds to X < XI, where XI = 10.5 m is the local mini-
mum between both peaks of the PDF. Region II, which is
the deeper preferred habitat, is defined as XI ≤ X < XII,
where XII = 41.3 m is the inflection point of the PDF
for depths larger than the second maximum; and Region
III, which consists of unlikely and rare events, is defined
as depths X ≥ XII [see Fig. 4(b)]. Based on these defi-
nitions, we can compute several transition times, obtain-
ing for example that, based on model M1 (model M2), the
predator spends on average approximately τ = 1.24 h
(τ = 1.41 h) in Region I before diving into II (see Ap-
pendix B). We look next at the PDF of the waiting times
T between two consecutive deep dives, i.e. the periods
for which X ≤ Xth at a stretch, where Xth is a chosen
threshold (typically around XII). Figure 4(d) shows the
results obtained with models M1 and M2 (both models
give virtually identical results) observing that the PDF
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of T (which is normalized to its mean value) follows a
truncated power-law, P (T ) = aT−γ exp (−T/T0), with
exponent γ ' 1.54 which does not depend on Xth. In-
terestingly, this particular type of PDF (with exponent
close to 3/2) has been observed ubiquitously in many
different biological and physical systems exhibiting in-
termittent behavior (a signature usually of critical phe-
nomena), from neuronal activity in the cortex [22], elec-
troconvection of nematic liquid crystals [23], fluid flow
in porous media [24] to colloidal quantum dots [25] and
noise-induced transitions in infinite dimensional dissipa-
tive systems [26]. By studying the mean first passage
time (MFPT) properties, the exponent 3/2 was obtained
recently for SDEs of the form (5) with lineal multiplica-
tive noise term [27].

Finally, we analyze the statistics of the total diving
length during a rare event, which we denote as `(Xn), for
a single time series Xn = (Xi)0≤i≤n. We define the total

traveled length as ` ≡ `(Xn) =
∑n−1
i=0 |Xi+1−Xi| ·w(Xi),

where w(z) = 0 for z ≤ XII and w(z) = 1 other-
wise, and compute the PDF of `. We conclude that
for long distances it follows a truncated power law,
P (`) ∼ `−µ exp (−`/L0) with exponent µ = 1.83 ± 0.09
[see Fig. 4(e)]. It is noteworthy that the statistics of `
follow a similar behavior with the statistics of the ex-
perimental step length defined in [6] where an exponent
of µ = 1.92 is reported indicating that the predator fol-
lows a Lévy flight description within a certain range step
length.

B. Climate transitions during the last glacial
period

Ice core records from Greenland reveal many intrigu-
ing phenomena of Earth’s past climate and in particular
records covering the last glacial period, approximately
from 70 ky (1 ky = 1000 y) until 20 ky before present, are
dominated by repeated rapid climate shifts, the so-called
Dansgaard–Oeschger (DO) events [28], which are char-
acterized by abrupt transitions from cold to warm peri-
ods. While the origin of these shifts is still actively de-
bated [29], there seems to be a general consensus that DO
events are transitions between two metastable climate
states: a cold stadial and a warm interstadial state. Un-
derstanding how long it takes between DO events would
potentially yield indicators for the causes, and earlier re-
search based on previously obtained ice core records, re-
ported a periodic occurrence of the DO events with pe-
riod of approximately τDO ≈ 1.5 ky [30], which has been
subsequently refined to 1.47 ky [31, 32]. However, recent
work based on the newer and more accurate North Green-
land Ice Core Project (NGRIP) record has reported that
there is not significant statistical evidence supporting the
periodicity hypothesis and it is argued that DO shifts are
most likely due to stochastic events [33, 34]. Here we use
our data-driven framework to investigate the DO events
without relying on the periodicity hypothesis.

We consider the δ18O isotope record (as a proxy
for Northern Hemisphere temperature) during the last
glacial period which was obtained from the NGRIP [7],
see Fig. 5(a). We observe a noisy temporal signal where
the temperature increases up to a warm state until it
abruptly goes down to a colder state (corresponding to
an DO event), giving rise to a bimodal histogram, see
Fig. 5(b). To account for transitions between two states,
we consider two different parametrizations in the SDE
model (1) (see Appendix C for full model candidate com-
parison):

M1: f(X; θ) =
∑3
j=0 θjX

j ; g(X; θ) = θ4,

M2: f(X; θ) =
∑3
j=0 θjX

j ; g(X; θ) =

{
θ4 if X < θ6

θ5 if X ≥ θ6

.

Figure 5(b) depicts the model-based PDFs in comparison
with the histogram of the original time series, illustrating
a very good agreement between them. Due to its piece-
wise constant diffusion coefficient, the PDF associated
with model M2 also captures the drop in the histogram
around X = −42. It is noteworthy that although from
a purely model selection criteria point of view model M1
appears to be marginally preferable (see Appendix C),
M2 is a rather novel model in this field and shows strong
statistical resemblance with the NGRIP data; something
that should advocate the use of models with a state de-
pendent diffusion coefficient also in other fields. Model
M1 has been postulated before as a dynamical model for
the NGRIP record [29, 35], however, in these studies, the
accuracy of the model was not assessed and predictions
were not made, as is done here. Moreover, the estima-
tion procedure was ad hoc in that it made use of the same
data set repeatedly several times.

Using the identified models, we compute the average
time τDO between DO events during the last glacial pe-
riod by using the MFPT techniques described in Ap-
pendix A. In particular, we calculate the time τDO

as the average time to exit from a warm state plus
the average time to exit from a cold state, obtaining
τDO ≈ 1.602 ky (τDO ≈ 1.511 ky) from M1 (M2) which
are in very good agreement with the values previously re-
ported (the most accurate being 1.47 ky [31, 32]). Note,
however, that these values were obtained by considering
a deterministic periodic model, something recently ques-
tioned [33, 34], whereas the values reported here are from
a purely stochastic model.

We next look at the statistics of both the residence
times in the cooler state, i.e. the waiting times τw between
DO events, and the duration τd of the DO events. To this
end, we define a threshold Xth separating the two states
to be at around the signal’s mean value −42.13. Figures
5(d,e) show the PDFs for both magnitudes (normalized
to their corresponding mean value) highlighting that they
follow an exponential behavior, P (z) = exp (−z) for z =
τw/〈τw〉 or τd/〈τd〉 which can be understood analytically
as follows. We first note that the SDE for the variable X
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FIG. 5: (Color online) Analysis of paleoclimatic data during the last glacial period: (a) Paleoclimatic record time
series [7]. (b) PDF of the experimental observations (histogram in gray) and the numerical ones obtained from

model M1 and M2. (c) Time series of the fitted coarse-grained process X computed by using model M2. (d) and (e):
PDF of the residence times τw at the cooler state and PDF of the duration τd of the DO events, normalized to their

mean values, and for different values of the threshold (Xth ∈ [−42.5,−42]). The solid lines correspond to
P (z) = exp (−z). As in Fig. 4 both models give very similar or almost identical results.
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FIG. 6: Particle model for the climate transitions
during the last glacial period: Schematic representation
of the dynamics of a particle fluctuating around one of

the local minima of the potential V (X; θ) obtained from
the empirical data (dashed line). The solid line

corresponds to an effective harmonic potential which is
used to model the local dynamics before the particle

jumps into the other equilibrium state. The dashed-dot
line corresponds to the position of the threshold.

can be rewritten as:

dX = −∂XV (X; θ)dt+ g(X, θ)dW (t), (6)

where V (X; θ) represents the potential function of the
system so that f(X; θ) = −∂XV (X; θ). From the em-
pirical data we obtain that this potential is described by
a function with two minima (see Fig. 6), one of them
being stable (cold state) and the other one metastable
(warm state). To study the statistics of the waiting times,

consider the duration for which the variable X remains
around one of the local minima until it jumps to the
next state, the transition point of which is defined via
the threshold. We can approximate this local dynamics
with a simpler model corresponding to a particle fluc-
tuating around a harmonic potential, i.e., we consider
Eq. (6) with an effective potential given by:

Ve(X) = V0 +
a

2
(X −X0)2, (7)

where V0 corresponds to the minimum value of the poten-
tial and a and X0 are effective parameters, respectively
(Taylor expansion around the cold state), see Fig. 6.
The dynamics of Eq. (6) can then be reduced to the
well-known Ornstein–Uhlenbeck SDE dX(t) = a

(
X0 −

X(t)
)
dt+θ4dW (t), for which the first-passage properties

are known to exhibit an exponential behavior [36, 37]. It
is noteworthy that this type of process appears in many
other areas such as mathematical finance [38] and neu-
ronal dynamics [39], thus unifying seemingly unrelated
complex systems. A similar argument can be used to
explain the behavior of the duration time τd.

V. CONCLUSIONS

To conclude, we have presented a framework that al-
lows to extract reliable statistical properties from a short
set of available data (experimental observations) in a ra-
tional, systematic and efficient manner. Our approach
aims to find a coarse grained (reduced) description of
the full system which in turn necessitates the introduc-
tion of an appropriate stochastic process to account for
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the unresolved degrees of freedom [40, 41]. The systems
under consideration must be such that a coarse grained
model exists, something which quite often can be rigor-
ously proved by making use of multiscale techniques [42].
We have exemplified the methodology with two repre-
sentative examples from the areas of marine biology and
climate modeling. The two chosen examples belong to
two generic classes of systems described by truncated
power-law and exponential PDFs linked to the presence
of multiplicative and additive noise, respectively, thus
connecting complex systems whose dynamics is difficult
if not impossible to model and subsequently understand,
with well-studied stochastic processes. Moreover, the
SDE models are versatile and enable us to consider both
regular diffusion processes but also intermittent systems
characterized by bursts of activity. The fact that fun-
damentally different phenomena can be described by the
same type of model, Eq. (1), is a testimony of its wide ap-
plicability. Another key point is that the semiparametric
approach we follow here is sufficiently flexible in that it
allows other approaches, e.g. nonparametric which tend
to be more restrictive, or even analytic if the governing
model is known, to be easily adapted into our method-
ology. Our hope is that the outlined methodology can
be applied to many other settings such as ranking pro-
cesses [43] or cellular networks [44], to name but a few.
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Appendix A: Exit from a domain

For a given SDE model such as (1), we wish to compute
the mean first passage time (MFPT), which is defined as
follows. For a domain D ⊂ Rd we wish to know how long
it takes on average for the process X to leave the domain
D for the first time when the process is initially started
at x ∈ D:

τ(x) := E
(
inf {t ≥ 0: X(t) 6∈ D , X(0) = x}

)
. (A1)

Note that if x 6∈ D, then τ(x) = 0 by definition. To ap-
proximate τ one typically resorts to Monte-Carlo tech-
niques based on numerically solving the SDE (1) [45].
For small dimensions (i.e. d ≤ 3), an alternative way of
approximating τ is to exploit the relation between sta-
tistical properties of the solution to SDE (1) and partial

Model f̂(y; θ) ĝ(y; θ)

M1
∑5

j=0 θjy
j θ6

M2
∑7

j=0 θjy
j θ8

M3
∑3

j=0 θjy
j θ4

M4 ĝ(y; θ)2
∑3

j=0 θjy
j
√
θ4 exp(−θ5y)

M5 ĝ(y; θ)2
∑5

j=0 θjy
j
√
θ6 exp (−θ7y)

TABLE III: Specifications of the considered SDE
models for the transformed process Y = ln (X).

differential equations (PDEs). In fact, τ solves the de-
terministic PDE

f · ∇τ +
1

2
ggT : ∇∇τ = −1 in D ,

equipped with appropriate boundary conditions on ∂D;
see, e.g., [15, 37]. The boundary conditions (e.g. reflec-
tion or absorption on ∂D) depend on the problem at
hand, i.e. on the statistical property one is interested in.
The fact that τ solves a PDE is particularly useful in one-
dimension (d = 1). In this case, the two point boundary
value problem can be solved analytically. Let D := (l, r),
then the MFPT τ(x), x ∈ D, can be written as

τ(x) =− 2

∫ x

l

∫ y

l

exp (ψ(z)− ψ(y))

g(z)
2 dz dy

+ c1

∫ x

l

exp (−ψ(y)) dy + c0 ,

where ψ(x) = 2
∫ x
l
g(z)

−2
f(z) dz and the constants c0, c1

are determined from the boundary conditions. The accu-
racy of the approximation of τ obtained from this inte-
gral form is then given by the tolerance of the numerical
quadrature rule, which is typically 10−8 [46].

Appendix B: Model Selection for Representative
Example A

For the transformed (auxiliary) process Y = ln (X),
we considered the parametric models shown in Table III.
For these models, Table IV then summarizes the outcome
of the framework’s model selection step (cf. Fig. 1). Here
the different models for the auxiliary process Y are com-
pared with respect to the number of parameters m, the
negative value of the log-likelihood function evaluated at

the estimated parameter vector (i.e. L̂ ≡ Ln(θ̂n;Xn)),
the statistical model selection criteria, and whether or
not the estimated model provides a normalizable proba-
bility density function (PDF) for the original process X.
The symbol “X” in the last column of Table IV means
that the estimated model provides a normalizable PDF,
while the “×” means that it does not. As explained in
the Sec. II, the preferred SDE parametrization is the one
which has the smallest value with respect to a model
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Model m − ln (L̂) AICc BIC PDF of X

M1 7 −59331.0 −118648.0 −118588.2 X

M2 9 −59335.2 −118652.4 −118575.5 X

M3 5 −59094.9 −118179.8 −118137.1 X

M4 6 −74000.1 −147988.2 −147937.0 ×
M5 8 −74366.3 −148716.6 −148648.3 ×

TABLE IV: Comparison of different SDE models for the
transformed process Y = ln(X) related to the foraging

data of a marine predator.

selection criteria, i.e. with respect to AICc or BIC. Se-
lecting a model based only upon the values of these sta-
tistical model selection criteria could result in the choice
of an SDE model with unrealistic properties, in the sense
that the model might not provide a normalizable PDF
contrary to the empirical observations. Combining both
aspects, Table IV thus reveals that models M1 and M2
are the two preferable models among those providing a
normalizable PDF. In fact, the AICc selects model M2
as the preferred model, while the BIC favors model M1
(an interpretation of the magnitude of these differences
is given in [47]).

1. Numerically computed transition times

Once we select the SDE model we can use it, of course,
to study additional transition times between the differ-
ent habitats of the marine predator compared the one
presented in the main text. We recall the definitions
of the marine predator’s habitats. Based on the bi-
modal PDF three regions of interest (habitats) can be
defined as follows (see Fig. 5b and associated text in the
manuscript). Region I, which is the low-depth preferred
habitat, is defined as depths which are shorter than the
local minimum between peaks of the PDF that is located
at XI = 10.5 m and so Region I corresponds to X < XI.
Region II, which is the deeper preferred habitat, is de-
fined as XI ≤ X < XII, where XII = 41.3 m is defined
as the inflection point of the PDF for depths larger than
the second maximum. Finally, Region III, which con-
sists of unlikely and rare events, is defined as the depths
X ≥ XII.

Based on these definitions, we look at how long it
takes on average to make the transition from Region I
to II. Specifically, based on model M1 (model M2), the
individual spends on average approximately τ = 1.24 h
(τ = 1.41 h) in lower depths corresponding to Region I
before diving to deeper depths of Region II. Conversely,
when situated in its deeper favorable habitat II, it takes
on average approximately τ = 4.48 h (τ = 4.87 h) before
ascending to Region I according to model M1 (model M2).
On the other hand, we also look at the statistics of the

rare events when the individual dives deeper into Region
III. We compute the transition time that it takes for the

Model f(x; θ) g(x; θ)

M1
∑3

j=0 θjx
j θ4

M2
∑3

j=0 θjx
j

{
θ4 , if x < θ6

θ5 , if x ≥ θ6
M3

∑5
j=0 θjx

j θ6

M4 g(x; θ)2
∑3

j=0 θjx
j

√
θ4 exp(−θ5x)

M5 g(x; θ)2
∑5

j=0 θjx
j

√
θ6 exp(−θ7x)

M6
∑5

j=0 θjx
j

√
θ6 + θ7(x− θ8)2

TABLE V: Specifications of the considered SDE models
for X describing the δ18O isotope record.

Model m − ln L̂ AICc BIC PDF of X

M1 5 1123.4 2256.8 2281.3 X

M2 7 1188.1 2390.4 2424.6 X

M3 7 1111.3 2236.8 2271.0 ×
M4 6 5180.0 10372.1 10401.4 X

M5 8 4969.6 9955.3 9994.4 X

M6 9 1193.7 2405.7 2449.6 X

TABLE VI: Comparison of different SDE models for the
climate data.

individual to dive from Region II deep into Region III,
specifically we consider dives to 150 m or deeper. We ob-
tain that it takes on average approximately τ = 44.32 h
(τ = 48.18 h) in view of model M1 (model M2).

Appendix C: Model Selection for Representative
Example B

For Example B we postulated the SDE models shown
in Table V for the process X. The results of the model
selection step are then summarized in Table VI, where
these different SDE models for the process X are again
compared with respect to the number of parameters m,
the negative value of the log-likelihood function evalu-
ated at the estimated parameter vector, the statistical
model selection criteria, and whether or not the esti-
mated model provides a normalizable PDF.

Comparing both model selection criteria in Table VI
(i.e. AICc and BIC) for parametrizations that provide a
normalizable PDF (indicated by the symbol “X” in the
last column), we find that model M1 offers the preferred
parametrization with respect to these criteria. Due to
its excellent agreement with the features shown by the
histogram of the empirical data (see main text), we also
selected model M2 for the subsequent analysis.
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