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Abstract 

The performance of distributed video coding (DVC) greatly 

relies on the quality of Side information (SI). This paper 

investigates a novel way of producing SI by intelligently 

combining macroblocks (MB) produced by two SI generation 

algorithms, namely higher-order piecewise temporal trajectory 

interpolation (HOPTTI) and adaptive overlapped block motion 

compensation (AOBMC). The two algorithms address the 

problem differently. HOPTTI attempts to improve the motion 

estimation using higher order trajectory interpolation while 

AOMBC addresses the blocking and overlapping problem 

caused by inaccurate block matching. By judiciously selecting 

when to incorporate AOBMC with HOPTTI, it would give a 

peak signal-to-noise ratio (PSNR) improvement in SI quality. 

Two switching mechanisms, which exploit the spatial-

temporal correlation at the macro-block level, have been 

investigated and the RST-based intelligent mode switching 

(IMS) algorithm is found to produce enhanced SI quality. 

Experimental results show that the basic mode switching 

algorithm gives a PSNR improvement of up to 1.8dB in SI 

quality compared to using only HOPTTI. The more intelligent 

RST-based switching provides a further PSNR enhancement 

of up to 1.1dB for certain test sequences. 

1 Introduction 

DVC is a practical implementation of the Slepian-Wolf (SW) 

[1] and Wyner-Ziv (WZ) [2] theorems that reverses the 

traditional complex encoder - basic decoder paradigm to one 

where the complexity is incurred at the decoder. This enables 

relatively simple encoder designs which can be readily 

deployed in resource-constrained portable devices [3]. In 

DVC, selected frames (known as key frames) of a sequence 

are encoded using conventional encoding method such as 

H.264 at encoder and send to decoder through a 

communication channel. The frame(s) situated between two 

key frames, known as Wyner-Ziv (WZ) frames are not directly 

transmitted to the decoder. Instead, these frame(s) are to be 

reproduced based on the received key frames. SIs are the 

coarse representation of these WZ frames, which are not 

available at the decoder. Hence the quality of SI has a major 

impact on the resulting DVC output quality [4–7]. SI is 

commonly generated using linear-motion compensated 

temporal interpolation (LMCTI) [3-5] and while this generally 

provides reasonable quality, it does not always afford an 

adequate formulation as motion in real sequences is not always 

linear. More accurate SI have been generated in DVC by the 

modelling of higher-order trajectories [8-11] which includes 

the HOPTTI algorithm [10]. As the higher order trajectory is 

determined by using three or more motion vectors (MV) from 

previous and future frames, HOPTTI is able to model non-

linear motion more accurately and deliver improvement in SI 

quality [10].  

However, due to its use of block matching algorithms (BMA), 

blocking artefacts and overlapping can be observed especially 

where abrupt changes occur in motion trajectory and multiple 

objects occupy the same MB. The twin problem of blocking 

artefacts and overlapping were addressed by incorporating 

adaptive overlapped block motion compensation (AOBMC) 

algorithm [11] with HOPTTI. AOBMC allows the use of a 

raised cosine window in order that MV of neighbouring pixels 

to the MB under investigation can more accurately modify the 

predicted MV. AOBMC have been used to tackle the effects of 

BMA in LMCTI based interpolation and they include motion 

compensated frame interpolation and adaptive object motion 

compensation [12] where AOBMC is used along with a MV 

clustering technique. However, experiments shows that 

HOPTTI combined with AOBMC gives superior performance 

[11]. In some complex sequences where the neighbouring 

pixels to the MB under consideration are not correlated so the 

modification of the MV using them produces erroneous 

results, or where the predicted MV is already accurate, the 

consideration given to neighbouring pixels introduces new 

errors giving rise to situations where original HOPTTI 

outperforms HOPTTI-AOBMC output. It is evident that 

improved SI quality can be achieved if their outputs are 

combined intelligently on a macro-block basis. Using the 

spatial-temporal video content characteristics of sum of 

boundary absolute difference (SBAD) and sum of mean 

absolute difference (SMAD), a mode switching (MS) 

mechanism, which applies a matching criterion (MC) 

introduced by [11] to empirically switch between original 

HOPTTI and HOPTTI-AOBMC, achieved a further 

improvement in SI performance.  However, it was noted from 

[11] that the accuracy of MS, which has direct impact on the 

quality of SI, can be improved further if the switching is 

conducted more intelligently. This leads to an investigation of 

incorporating the rough set theory (RST) for governing the 

video content based IMS. RST has been employed for data 

mining and analysis and characterization for reasoning about 
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data [13] that provides a formal robust method for 

manipulating the various features and attributes in data sets 

and has been successfully employed to increase performance 

in de-interlacing [13], Experimental results shows that the RST 

based classifier IMS can produce significant improvement in 

SI quality.   

The remainder of this paper is organized as follows: Section 2 

reviews the theories of HOPTTI formulation, the AOBMC 

algorithm, and empirical mode switching concept and 

introduces intelligence via the rough set concept. Section 3 

presents quantitative and qualitative results and analysis of this 

SI generation scheme. Section 4 provides some conclusions. 

2 Theoretical foundations 

2.1. HOPTTI Formulation 

In contrast to conventional linear trajectory estimation, 

HOPTTI estimates the motion trajectory of an object by a set 

of piecewise cubic (3rd order) polynomials which allow the 

modeling of the trajectory with variable accelerations. By 

adding a jolt term (rate of change of acceleration) in the 

motion trajectory equation, it provides a more accurate motion 

estimation of objects in the real world.  The motion trajectory   

of an object can be represented by a set of piecewise cubic 

polynomials: 
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where each segment of the trajectory ( )ip t is represented by an 

equation of motion similar to [8] and considering a constant 

jolt given by: 
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For 1, 2.......i n . In (1), n is the number of available key 

frames, while in (2), ji is the average jolt (the rate of change of 

acceleration), ai the average acceleration, vi the average 

velocity between ti and ti+1 and di the initial displacement at ti. 

The trajectory is built using the MVs of MBs in the previous 

and future key frames and using motion compensated 

interpolation to predict intermediate object positions and the SI 

frames [10]. To calculate the four parameters ji, ai, vi and di, a 

minimum of 4 key frames are required, and if it is assumed the 

respective displacements of the blocks at these key frames are 

Ai, Bi, Ci and Di, then the following holds: 
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where T is the time between two consecutive key- frames, 

iiiiii DCCBBA   111 ,,
. 

 

The forward motion trajectory of an object can be evaluated 

using (1) – (6), thus enabling the MV of the object at any time 

between t1 and tn+1 to be accurately interpolated. The backward 

motion trajectory is evaluated the same way as the forward one 

using (1) – (6) as described but in reverse direction i.e. Di, Ci, 

Bi and Ai. 

 

2.2. AOBMC Algorithm 

Though HOPTTI improved SI generation [10] due to more 

accurate motion modeling, the MV estimation using BMA 

algorithm can sometimes have issues of MB overlapping 

caused by inaccuracies in forward and backward trajectories or 

blocky artifacts caused by multiple or deformable objects in a 

single MB. AOBMC has been employed with HOPTTI [11] 

(known as HOPTTI-AOBMC) to tackle the above mentioned 

issues by allowing pixels of the surrounding blocks to 

moderate the predicted MV, as illustrated in Figure 1, then, 

using a raised cosine weighting window enclosing the 

neighboring MBs and the size of the window is determined by 

the reliability of the MV of neighboring MBs and their 

distance from the MB under consideration. This is achieved by 

minimizing SBAD [10], which measures the spatial error of 

the MB under consideration between the reference and current 

HOPTTI frames. Since the original current frame is not 

available at the decoder, the previous key frame is used as the 

reference frame [7]. 

 

 

 

 

  

 

 

  

 

 

  

 

 

 

 

Figure 1: Illustration of sample overlapped blocks for 

AOBMC. 
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2.3. Empirical Mode Switching 
To experiment with the idea of combining MBs produced 

by HOPTTI and HOPTTI-AOBMC, a simple MS mechanism 

was introduced. It uses the spatial-temporal properties of the 

video sequence to govern switching between MBs of the 

frames that will benefit from the application of AOBMC and 

those that should retain HOPTTI. Experimental results show 

that improved SI are achievable.  

The spatial-temporal properties of the video sequences are 

measured by SBAD, which defined earlier and SMAD [10], 

which measures the temporal error of the MB under 

consideration between the previous and current HOPTTI 

frames. SBAD and SMAD are used to form the matching 

criterion (MC) for the empirical mode switching. The MC is 

thus defined as: 

(1 )MC SBAD SMAD      

where is a predefined weighting factor. The MS mechanism 

applies a threshold T as follows:  

Calculate MC using (7)  

If MC   T THEN apply HOPTTI with AOBMC 

ELSE use HOPTII alone 

END 

 It can be noted that fixing the weights  and threshold T 

by empirical experimentation limits the actual improvement 

that is achievable as this does not change with the variation in 

video content properties and underlies the fact that the mode 

switching if conducted intelligently, for example using RST 

that learns from spatial-temporal video content data, then SI 

can be further improved. 

 

2.4. RST and Intelligent Mode Switching Algorithm 

Intelligently switching between the HOPTTI and HOPTTI-

AOBMC can not only improve performance but also 

eliminating the need for empirically determining the thresholds 

when new sequence is to be processed. This section hence 

discuss the implementation of an intelligent switching method, 

IMS. RST is a mathematical framework for inducing rules 

through supervised training. The resulting rules can 

subsequently be used to classify objects or patterns. It has been 

applied in video sequence property based switching used 

previously in [13] for de-interlacing. RST was therefore be 

chosen as intelligent mode switching (IMS) mechanism for 

DVC SI generation. 

RST is used to intelligently decide which MBs in the frame 

that will benefit from the incorporation of AOBMC and which 

do not.  Based on the temporal and spatial characteristics of 

the video sequence measured by SMAD and SBAD, the MBs 

of the intermediate SI produced by HOPTTI and HOPPTI-

AOBMC along with their characterization and classification 

decision are represented by a two dimension decision table. In 

RST term, these MBs are known as objects and their 

characterizations are known as attributes.  

The principle of RST can be illustrated in Figure 2 [13], 

where MBS  is a set of the actual imprecise (unknown) 

boundary and MBS X - the universe of discourse comprises 

of MBs of various video sequences, there two classes namely;  

 

 

      

      

      

      

      

      

      

Figure 2: Schematic Illustration of the rough set theory [13]. 

 (a) class of MBs that are known to be benefit from the 

incorporation of AOBMC; 

 (b) class of MBs that will not.  

( )LR MBS is the lower approximation corresponding to MBs 

that we are sure they belong to class (a) and therefore used as 

the training set, ( )UR MBS is the upper approximation 

corresponding to all MBs that possibly belong to class (a) but 

require further testing. The rough set theory states that there is 

an indiscernible relation in the universe of discourse which 

may be induced by a given set of attributes ascribed to the 

objects of the domain which corresponds to each MB being 

examined. During training, the objects in the decision table 

will be compared. The ones with a unique set of attributes will 

be retained and those are not will be eliminated.The remaining 

objects in the decision table can be seen as a set of rules that 

will be used to classify unseen objects 

2.4.1.  Rough Set Object, attributes and Decision Tables 

Most specifically, a decision table is used for describing the 

objects of the universe of discourse and it consists of a two 

dimensional table where each row is an object and each 

column is an attribute, except the last column, which contains 

the decision. For this work, each row represents a different 

MB of a video sequence while each column contains a 

different attribute describing the MB. While some attributes 

are raw data, others can be obtained through some rules or 

based on prior knowledge from empirical experimentation. For 

example, the outputs of SBAD and SMAD can be further 

divided into three categories, Small (Sm), Medium (Me) and 

Large (La) to give extra attributes to describe the objects as 

shown in Table 1 and 2. These extra attributes can make an 

object (MB) more distinguishable and reduce the classification 

difficulty. The RST for the HOPTTI and HOPTTI-AOBMC 

switching is formulated into a system of attributes and objects 

in a decision table as shown in Table 2, where Id the 

identification number of the MB, Raw pixel is the average 

pixel intensive of the MB, Raw SMAD and Raw SBAD are 

the respective measures of the temporal and spatial errors, and 

Cond. SMAD and Cond. SBAD are extra attributes generated 

by the attribute filtering rules, and the DECISION column 

indicates whether the MB should be chosen from HOPTTI or 

MBS 

RL (MBS) 

RU (MBS) 

X 
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HOPTTI-AOBMC. These resemble a human expert 

completing a puzzle by placing the appropriate pieces together, 

but in the context of DVC, it is the reconstruction of the SI by 

intelligently selecting MBs from HOPTTI and HOPTTI-

AOBMC frames based on the categorization of SBAD and 

SMAD. 

 

 

 

Label  Rules  Output 
Cond. 

SMAD 
IF SMAD 8 THEN Sm 

Cond. 

SMAD 
IF SMAD 8

16 

THEN Me 

Cond. 

SMAD 
IF SMAD 16 THEN La 

Cond. SBAD IF SBAD 8 THEN Sm 
Cond. SBAD IF SBAD 8

16 

THEN Me 

Cond. SBAD IF SBAD 16 THEN La 

 

Table 1: Filtration rules for attributes discretization. 

 

 

 

 

 

Table 2: Sample attributes of American Football sequence. 

3 Results 

In this study, the universe of discourse composes of the set of 

objects that are the MBs of HOPTTI and HOPTTI-AOBMC 

frames generated from the Coastguard, Hall and the American 

football sequences. These sequences are chosen because they 

contains a wide variety of global and local motions of different 

speeds. They are very commonly used for evaluating video 

coding performances [refs]. The RST based IMS algorithm is 

developed using the publicly available WEKA® command line 

RST classification software developed by the University of 

Waikato [14]. To evaluate the classification   performance of 

IMS a ground truth is produced. The ground truth is obtained 

by artificially making the original WZ frame available such 

that PSNR of the MBs of the intermediate SI frames produced 

by both HOPTTI–AOBMC and HOPTTI algorithms can be 

calculated and compared. For each MB, the algorithm that 

produces the higher PSNR is chosen as the desired algorithm 

for that MB. Therefore, the ground truth is a table containing 

the desired algorithm for each MB. The training of IMS is 

conducted using the ground truth data from the coastguard 

sequence as it exhibits both global and multiple object 

motions. After the training, IMS is used to predict the desired 

algorithm of the MBs of the all three test sequences. An object 

is classified based on the similarity of its attributes to that of 

the trained objects. 

Table 3 shows the PSNR of the sequences generated by 

HOPTTI, the empirical mode switching algorithm and the 

RST based IMS. Table 4 shows the switching (classification) 

accuracy and the PSNR comparisons between mode switching, 

IMS and the ground truth. As can be seen IMS consistently 

outperforms the mode switching algorithm both in terms of 

percentages of correctly mode switched and PSNR, with 

improvement of up to 3dB over HOPTTI. 

 

Table 3: Average PSNR (dB) for mode switching, IMS and 
HOPTTI for selected test sequences. 

 

 

 

Table 4: Block based analysis for mode switching 

(empirical) versus IMS for the selected test sequences. 

 

 

 

Sample frames of the American Football sequences showing 

perceptual improvements are illustrated in Figure 3, where 

both qualitative and quantitative performance are improved as 

we go from all the MBs being HOPTTI to AOBMC and from 

basic mode switching to IMS with the ghosting disappearing 

and PSNR increasing. 

 

 

 

 

AMERICAN FOOTBALL 
 

Id Raw 

pixel 

Raw 

SMAD 

Raw 

SBAD 

Cond. 

SMAD 

Cond. 

SBAD DECISION 

7 110.3 19.77 38.02 La La HOPTTI 

99 
107.7 10.36 21.80 Me La 

HOPTTI-

AOBMC 

Sequences 
HOPTTI 

[10] 

MODE 

Switching 

 

IMS  

 

Coastguard 36.4 38.5 39.45 

Hall 38.5 40.7 41.42 

American 

Football 
24.5 26.6 27.04 

Sequences 

 

Mode 

Switching 

 
IMS 

 

Grou

nd 

Truth 

Coastguard 

% correct 

switch 
78.1% 

 

94% 
100% 

PSNR dB 38.5 39.45 40.2 

Hall 

% correct 

switch 
75.6% 87% 100% 

PSNR dB 40.7 41.42  41.8 

American 

Football 

% correct 

switch 
88.2% 95.5% 100% 

PSNR dB 26.6 27.04 27.7 
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   Frame #97             SI  

      Original                     Frame  HOPTTI             

                                          PSNR=24.6dB 

SI Frame AOBMC                                      

PSNR=28.8dB                                     

original frame No: 97 Cubic Traj HOPTTI SI frame No: 97 PSNR: 25.1761

 

original frame No: 97 Cubic Traj HOPTTI+AOBMC+AMS SI frame No: 97 PSNR: 26.7502

 

   Frame #97              SI for empirically      

                                              Switched  
      Original                        

                                          PSNR=29.0dB 

SI for  IMS  
                                    

PSNR=29.8dB                                     

original frame No: 93 Cubic Traj HOPTTI+AOBMC+AMS SI frame No: 93 PSNR: 25.6594

 

original frame No: 93 Cubic Traj HOPTTI+AOBMC+AMS SI frame No: 93 PSNR: 25.6594

 

Figure 3: Sample frames for American Football showing the SI quality 

obtained using  HOPTTI [10], AOBMC [10], empirically Switched HOPTTI-

AOBMC and IMS. 

In term of rate distortion (RD) performance results show that 

not all the improvement in SI from the SI generation module is 

carried to the final codec output. While SI improvement is up 

to 3dB the final codec output is only up to 2dB improvement 

over HOPTTI. The overall RD results for Hall sequence 

chosen to accommodate both multiple object sequence and 

objects in motion in a sequence is shown in Figure 4. The 

result is that RST based IMS outperforms HOPTTI, H.264 No 

Motion and H.264 intra while the H.264 inter remains the 

upper limit that outperforms Switched RST. The RD results 

for the Hall sequence show that at low bit rates RST based 

IMS outperforms H.264 inter. This is mainly due to the fact 

that the residue in H.264 which accounts for major 

performance only kicks in at medium to high bit rates and 

DVC is therefore more competitive at low bit rates. 
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Figure 4: RD Curves showing RST based IMS  

PSNR performance for Hall sequence @ 15f/s 

4 Conclusion 

This paper presents a novel RST based intelligent mode 

switching algorithm for DVC SI generation. It can intelligently 

combine the best MBs from the SI generated by two 

algorithms addressing two SI generating issues. The IMS 

employed further improves the PSNR produced the empirical 

mode switching and HOPTTI by up to an additional 0.95dB 

and 3.1dB respectively and demonstrated the ability to remove 

overlapping and blocking artefact in SI.  The switching 

performance analysis further shows that intelligent switching 

approach improves the classification accuracy by up to 16 

percentage point over empirically switched MB based 

switching. Furthermore, qualitative (visual) results show that 

SI produced by IMS is significantly sharper than that produced 

by HOPPTI, HOPTTI-AOBMC and the basic mode switching 

algorithm. It can be concluded that improved quality of SI can 

be achieved by intelligently combining MBs from SI generated 

by algorithms that were aided to addressing different SI 

generating issues.  
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