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be2v Technologies Limited, 106 Waterhouse Lane, Chelmsford, CM1 2QU, UK ;
cBrookhaven National Laboratory, Brookhaven Avenue, Upton, NY 11973, USA

ABSTRACT

Dynamic charge collection effects in thick CCDs have received interest in recent years, due to the performance
implications for both ground and space based precision optical astronomy. The phenomena manifest as the
"brighter - fatter" effect in Point Spread Function (PSF) measurements, and nonlinearity and signal dependence
in spatial autocorrelation and photon transfer measurements. In this paper we present validation results from
simple, analytically based predictive models for this effect, using an e2v CCD250. The model is intended to
provide estimations for predicting device performance based on design parameters.
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1. INTRODUCTION

Dynamic effects on charge collection in sensors in general, and the “brighter-fatter effect” (hereafter: BFE) in
particular are becoming ever more important; being strongly exhibited in thick, fully depleted, back biased CCDs
such as the e2v CCD250 LSST sensor candidate device, and having been observed also in testing of CCD273
devices for the ESA Euclid mission1–4 .

Much work has been carried out in recent years to address both the cause and correction of the BFE.
The phenomenon is correctly understood as being caused by changes in the drift field structure of CCD pixels
in response to stored charge. This results in the apparent shifting of pixel geometrical boundaries as signal is
accumulated. A detailed modelling and measurement framework based on dynamic pixel boundaries has recently
been developed,5 which shows how accurate coefficients for a first-order electrostatic model of the boundary shifts
can be extracted from calibration data. Electrostatic drift calculations have also been used to give good agreement
in explaining both the BFE and other static effects related to stored or trapped charge in the device volume.6

In this contribution we introduce a physically-motivated model of the parallel transfer direction in a thick,
back biased CCD based on analytical solutions of Poisson’s equation, which can be used to efficiently predict
pixel boundary shifts based on device design parameters and operating conditions. A similar approach may be
useful in treating the serial direction, though it is not addressed in this work. The model is potentially useful in
device design, or when assessing possible performance of different sensors in telescope design studies.

2. CALCULATING CHARGE STORAGE DEPTH

A full analytical description of the buried channel CCD in 2D (or 3D) including the effects of stored charge would
necessitate simultaneous solution of Poisson’s equation and the electron drift-diffusion and continuity equations,
and would certainly be intractable. Previous electrostatic models used to explain the BFE have assumed a point
charge4 for the storage, and we wish to relax this assumption slightly without greatly over-complicating the
model. The approximation used is to first assume that the charge distribution is abrupt and that doping levels
are constant, and that the depletion layer approximation applies, so the background charge in the silicon can
be represented as “blocks” of charge (see Figure 2). Under these conditions, the potential in a 1D MOS device,
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Figure 1. Storage depths of charge packets from the 1D model. The difference between ym1 and ym2 is shown by the
dashed line

including stored charge, can be exactly solved, using the formulae derived by Yin and Cooper,7 which can easily
be adjusted to include a fixed depletion depth, as shown in.8 It would be possible to use a more realistic charge
distribution, at the cost of not being able to solve the model analytically. In principle, an arbitrary charge
distribution may be used in the 2D model described in section 3 below. The 1D model is used to calculate the
storage depth parameters ym1 and ym2 given the storage density Q. The further assumption we make is that
the density of the charge packet, ρ, will be buried

ρ =
−q ·ND

(ym2 − ym1) · L ·B
(1)

where q is the charge on an electron, ND is the number density of donors , L is the collecting gate width
(also assuming no gaps between collecting gates), and B is the distance between channel stops. The obvious
implication of this assumption is that blooming of charge is not an effect included in the model. The storage
density can then be calculated by

Q =
Q0

L ·B
(2)

where Q0 is the charge (in units of electrons) we wish to store in the pixel. The relationship between ym1,
ym2 and Q is shown in Figure 1.

Other parameters required to construct the model are NA, the number density of acceptors,yT the device
thickness and yj the junction depth. NA may be estimated from the reported resistivity of the device,9 and yj
may be estimated by measuring the channel potential of the device, and then adjusting the yj parameter of Yin
and Cooper’s model to obtain agreement. This technique is nevertheless rather inaccurate, but of course may be
much better estimated in the context of a device designer, knowing the doping parameters used in construction.
In the following work, we use the values ND = 1×1016 cm−3, NA = 5×1012 cm−3 and yj = 1.0µm. A schematic
diagram of the device is shown in Figure 3

3. ANALYTIC MODELLING OF CCD PIXELS

Some of the basis for the approach of our model has been previously published,8 but several notable refinements
to the previous approach which will be highlighted and discussed. In particular, it was found that the original
approach to incorporating charge storage into a 2D model of a CCD pixel was insufficiently realistic to closely
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reproduce the observed effects in experimental data. We shall therefore recap the development of the 2D analytical
model here.

In order to investigate the collection of electrons in a CCD, a solution to the Poisson equation

∇2Φ =
N (y) + n (x, y)

ε (y) ε0
(3)

where Φ is the potential, N (y) is the fixed charge distribution due to ionised dopants, n (x, y) is the stored
electron charge distribution, ε (y) is the relative permittivity, and ε0 is the permittivity of free space. The solution
for Φ is subject to the boundary conditions imposed by the gate potentials:

Φ (x, y) =

{
VG −L

2 < x < L
2

VT elsewhere
(4)

with VG the high gate voltage, and VT the low gate voltage (i.e. the “front substrate” voltage). Both of these
are referenced relative to the substrate at the back surface, taken to be VSS = 0. Thus, a device with a back-side
bias of −70 V, and collecting gate voltage of 15 V corresponds to the values VG = 85 V, VT = 70 V. The potential
is considered to be written as the sum of three distinct components:

Φ = ΦH + ΦP + ΦC (5)

where ΦH is the homogeneous solution (i.e. a solution which satisfies the boundary conditions in (4) but does
not include the charge distribution) which is as derived by Lester and Pulfrey.:10

ΦH = VT +
VG − VT

π

(
tan−1

(
y + dox

x− L
2

)
− tan−1

(
y + dox

x+ L
2

))
(6)

where dox is the oxide layer thickness, and L is the collecting gate width. ΦP is a particular integral solution,
which satisfies vanishing boundary conditions and accounts for the dopant charge density. For a fully depleted
device, where the potential is also forced to obey the boundary condition

Φ (x, T ) = 0 (7)

by virtue of the biasing conditions, the calculation of ΦP is somewhat simpler than the iterative procedure
described by Lester and Pulfrey10 for a device without full depletion, since the depletion depth is constant, and
is equal to the thickness of the device, yT . For this situation (and for values of y ≥ yj) , the particular integral
may be written as

ΦP (x, y) =
−qyj
εsε0

(
ND

2
+NA

)
· y +

q · y2
j

2 · εs · ε0
(ND +NA)

2
+ C (x) ·

(
εo
εs
· y + dox

)
(8)

where C (x) =
q

εo · y + εs · dox

(
−yj · yT

(
ND

2
+NA

)
+
y2
j

2
(ND +NA) +

εs
ε0
· ΦH (x, T )

)
(9)

Finally, ΦC is a potential added to incorporate the stored charge. We find this using the Green’s function.
The fundamental solution G0 (x, y;x′, y′) for the 2D Poisson equation is well known,11 and given by:

G0 (x, y;x′, y′) =
1

4 · π
ln
(

(x− x′)2
+ (y − y′)2

)
(10)

so that the solution for ΦC on an unbounded domain is:

Φ∞C (x, y) =
−q ·ND

4 · π · εsε0

ˆ L
2

−L2

ˆ ym2

ym1

ln
(

(x− x′)2
+ (y − y′)2

)
· dy′ · dx′ (11)



where ym1 is the shallow limit of charge storage and ym2 is the deep limit (which were found for a certain
stored charge Q0 using the 1D model described in Section 2).

We may then use the method of images to construct a solution for ΦC on the bounded domain presented by
the pixel (i.e. the two parallel plates at y = 0 and y = yT ), which results in

ΦC (x, y) =
−q ·ND

4 · π · εsε0

∞∑
n=−∞

(ˆ L
2

−L2

ˆ ym2

ym1

ln
(

(x− x′)2
+ (2 · n · yT + y − y′)2

)
· dy′ · dx′

)

+
q ·ND

4 · π · εsε0

∞∑
n=−∞

(ˆ L
2

−L2

ˆ ym2

ym1

ln
(

(x− x′)2
+ (2 · n · yT − y − y′)

2
)
· dy′ · dx′

)
(12)

At first glance, this expression appears rather unwieldy. Indeed, the series converges quite slowly, and
calculating the infinite sum of double integrals (or, equivalently, the double integral of the infinite sum) to
appropriate precision is computationally expensive. However, in all of the modelling calculations which follow
(except for production of figures showing the shape of potentials), the relevant quantity is not the potential but
the field components, EC,x = −∂ΦC

∂x and EC,y = −∂ΦC
∂y . Note that due to the symmetry of the Green’s function,

differentiating under the integral effectively means that calculating the field components requires only a single
integration,

EC,x =
−q ·ND

4 · π · εsε0
·
∞∑

n=−∞

ˆ ym2

ym1

[
ln
(

(x− x′)2
+ (2 · n · yT + y − y′)2

)]L
2

−L2
· dy′

+
q ·ND

4 · π · εsε0
·
∞∑

n=−∞

ˆ ym2

ym1

[
ln
(

(x− x′)2
+ (2 · n · yT − y − y′)

2
)]L

2

−L2
· dy′ (13)

EC,y =
−q ·ND

4 · π · εsε0
·
∞∑

n=−∞

ˆ L
2

−L2

[
ln
(

(x− x′)2
+ (2 · n · yT + y − y′)2

)]ym2

ym1

· dx′

+
q ·ND

4 · π · εsε0
·
∞∑

n=−∞

ˆ L
2

−L2

[
ln
(

(x− x′)2
+ (2 · n · yT − y − y′)

2
)]ym2

ym1

· dx′ (14)

By using the definition of logarithms of complex numbers, these integrals can be evaluated directly, giving

EC,x =
−q ·ND

4 · π · εsε0
·
∞∑

n=−∞

(
Υ

(
x, 2 · n · yT + y,−L

2
,
L

2
, ym1, y,m2

)
−Υ

(
x, 2 · n · yT − y,−

L

2
,
L

2
, ym1, ym2

))
(15)

EC,y =
−q ·ND

4 · π · εsε0
·
∞∑

n=−∞

(
Υ

(
2 · n · yT + y, x, ym1, y,m2,−

L

2
,
L

2

)
− Υ

(
2 · n · yT − y, x, ym1, y,m2,−

L

2
,
L

2

))
(16)

where the function Υ (α, β, αl, αh, βl, βh) is given by:

Υ (α, β, αl, αh, βl, βh) = 2 ·
(
βh · ln

∣∣∣∣zhhzlh
∣∣∣∣+ βl · ln

∣∣∣∣ zllzhl
∣∣∣∣)+ z∗h · ln

(
zhl
zhh

)
+ zh ·

(
ln

(
zhl
zhh

))∗
+ z∗l · ln

(
zlh
zll

)
+ zl ·

(
ln

(
zlh
zll

))∗
(17)
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Figure 4. Potential solution components: Contour lines show the potential arising from the homogeneous (ΦH), particular
(ΦP ) and stored-charge (ΦC) components. The streamlines show electron drift trajectories under constant mobility (i.e.
they follow the opposite vector direction to the electric field) arising from each component. Note that the contour line
steps differ between plots.

with:

zh = β + î |α− αh| ; zl = β + î |α− αl|
zhh = −β + βh + î |α− αh| ; zlh = −β + βh + î |α− αl|
zhl = −β + βl + î |α− αh| ; zll = −β + βl + î |α− αl|

where î is the imaginary unit, and the symbol z∗ represents the complex conjugate of z. It is simple to verify
using elementary properties of complex numbers that the range of the function Υ includes only the real numbers.
We find that the evaluation of the single integral of the infinite series can be performed efficiently to acceptable
accuracy using the Levin u-transform technique,12 as implemented in the GNU Scientific Library.13

The various components of the potential and field solutions for a single pixel and how they combine are
illustrated in Figure 4.

The extension of the single pixel solution to multiple pixels is achieved by computing the Fourier series of
the Homogeneous and Particular parts of the potential. The homogeneous multipixel potential Φ′H is given by:

Φ′H (x, y) =
a0

2
+

∞∑
n=1

an (x, y) · cos

(
2nπx

α

)
· dx (18)

with an (x, y) =
2

α

ˆ α
2

−α2
ΦH (x, y) · cos

(
2nπx

α

)
· dx (19)

where the inter-pixel spacing is given by α, and only the cosine terms are required because ΦH is an even
function (cf. (6)). The particular potential ΦP is only very weakly dependant on x, and even then the x



4 2 0 2 4

x (µm)

0

5

10

15

20

y
 (
µ
m

)

63.2

65.6

68.0

70.4

72.8

75.2

77.6

80.0

82.4

Figure 5. Combined single pixel summed solution, showing the potential (contour lines) and resultant electron drift
trajectories (streamlines).

dependency is only introduced by ΦH (x, yT ) (see (9)). So, although the Fourier series is rather unwieldy to
evaluate (especially given the y position dependence of an), a single calculation serves for both the homogeneous
and particular potentials. Again, we find the Levin u-transform invaluable in calculating this series, though
particular care must be taken to preserve numerical hygeine when choosing which terms to include in the
truncated series, due to the evaluation of the arctangent function at very high (though not infinite) values,
implied by the components near x = ±L

2 . The channel charge potential ΦC is then added to the solution. In
principle, this allows the evaluation of boundary shifts given arbitrary stored charge distributions over many
pixels. An interesting principle case to examine is that with a charge in the central pixel and none in the others
(see Figure 6)

4. PIXEL BOUNDARY CALCULATIONS

The boundary of a pixel is found numerically using the Brent minimization method, again as implemented in
GSL, to locate the zero crossing of the x-going electric field. Some examples of calculated boundary shifts are
shown in Figure 7. These boundary shifts are for the boundary nearest the stored charge, and as expected,
the shift is inwards, so that the pixel containing the charge becomes smaller. This quantity is referred to by
Guyonnet et al5 as δ0

0,0. The shape of the boundaries supports the evidence observed by most authors that
the BFE is almost achromatic, (i.e. the boundary does not move much beyond the first few µm of the device).
However, the curvature of the boundary does appear to increase with higher stored charge, so it is possible that
chromaticity becomes a more relevant factor for devices near saturation.

We can also readily calculate an average over depth for the boundary (neglecting the first few microns of
device), and find that the value of δ0

0,0 against stored charge is well fit by a quadratic equation (see Figure 8). In
observations of BFE, it is generally reported that the correlations measured increase linearly with signal,14 and
from the model of Antilogus et al,4 we see that this is used to justify a linear model between boundary shifts δi,j
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and constant coefficients aij :
δXi,j
p

=
Qi,ja

X
i,j

2
(20)

it should be noted here that in the fits we have calculated, the quadratic coefficient is ∼0.1% the level of
the linear coefficient. Given that the linear shift is already small, it is likely that if the boundary shift truly is
quadratic, that this is not observable in experimental data.

Although we have not described a model dealing with the serial direction, it is observed that under normal
gate biasing conditions correlations in the parallel direction are much larger than those in the serial direction.
Assuming that the boundary shift is in fact linear with charge, then we can estimate the nonlinearity of the
photon transfer curve β using the equation from Guyonnet:

β = −
∑
x

ax00 (21)

Though we only have access to two of the necessary 4 terms, we should find that our estimates of β are
low but comparable to experimental data. We are particularly interested in whether the value of this quantity
changes with back side bias as our model predicts (Figure 8)

5. EXPERIMENTAL MEASUREMENTS

Although the ideal experimental test of correlated charge collection effects is probing the impulse response of
the CCD directly by projecting small light spots onto pixels, it is experimentally much simpler to measure the
statistics of flat field illumination, including the nonlinearity of the Photon Transfer Curve (PTC) and spatial
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autocorrelation. It seems that necessary ancillary pixel data for BFE compensation is also available by this
method.5

PTCs were taken on an e2v CCD250 cooled to −100 ◦C at Brookhaven National Laboratory. Measurements
were collected for 5 different backside bias voltages from 0V to -70V, and at two wavelengths, selected using a
monochromator. An example PTC is shown in Figure 9. Image pairs were taken at 32 exposure times for each
PTC. Around 10 bias frames were also taken for each curve, and subtracted from each frame before differencing.
The curves were fit using the expression

σ2
s = β 〈s〉2 +

〈s〉
K

(22)

with 〈s〉 the average signal, σ2
s the spatial variance, K the camera gain, and β the PTC nonlinearity. The

full well capacities observed in our data are much lower than that reported for other CCD250 devices tested
in the literature (around 140ke-), though it is not known whether this is due to the operating conditions or a
manufacturing defect in the particular device tested.

Unfortunately, slight fluctuations in the illumination level between exposures appear to be present in the
dataset (see Figure 10). Frame pairs where a >1% discrepancy in mean value between the frames were not used
in calibration or PTC fitting, but the resulting differenced frames did not provide enough statistics to accurately
measure pixel to pixel correlation values. The measured values for the nonlinearity parameter β, however, do
still appear to show reasonable agreement with our model (see Figure 11).



6. CONCLUSIONS

We have presented a method of solving the Poisson equation in a fully depleted, thick CCD which shows at least
qualitative agreement with experiment in predicting some aspects of the brighter-fatter effect. There is, however,
still much further work to complete. A much more sensitive experimental evaluation is required, and covering
a larger parameter space (including the influence of front substrate voltage, and the phases used to collect
charge, the effects of both of which are in principle calculable by the model). Verification against finite element
simulations including solution of the continuity equations as well as the Poisson equation are also necessary to
validate the accuracy of the model.

Work is ongoing to adapt the Green’s function solution to include the effects in the serial direction of the
device, which will lead to a more useful and full model. We are also performing random walk calculations based
on the solutions presented here, which can be used to predict device PSF. The high fields in the device are likely
to necessitate inclusion of velocity saturation, which is also at present not included.

It is nevertheless hoped that the work presented may be of use in evaluating device parameters for future
applications where correlated charge collection effects are relevant.
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