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Abstract 9 

Vents and deposits attributed to explosive volcanism occur within numerous impact craters on both 10 

the Moon and Mercury. Given the similarities between the two bodies it is probable that similar 11 

processes control this spatial association on both. However, the precise morphology and localization 12 

of the activity differs on the two bodies, indicating that the nature of structures beneath impact craters 13 

and/or volcanic activity may also be different. To explore this, we analyze sites of explosive 14 

volcanism within complex impact craters on the Moon and Mercury, comparing the scale and 15 

localization of volcanic activity and evidence for post-formation modification of the host crater. We 16 

show that the scale of vents and deposits is consistently greater on Mercury than on the Moon, 17 

indicating greater eruption energy, powered by a higher concentration of volatiles. Additionally, while 18 

the floors of lunar craters hosting explosive volcanism are commonly fractured, those on Mercury are 19 

not. The most probable explanation for these differences is that the state of regional compression 20 

acting on Mercury’s crust through most of the planet’s history results in deeper magma storage 21 

beneath craters on Mercury than on the Moon. The probable role of the regional stress regime in 22 

dictating the depth of intrusion on Mercury suggests that it may also play a role in the depth of sub-23 

crater intrusion on the Moon and on other planetary bodies. Examples on the Moon (and also on 24 

Mars) commonly occur at locations where flexural extension may facilitate shallower intrusion than 25 

would be driven by the buoyancy of the magma alone.  26 
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1. Introduction 33 

It has long been recognized that vents and deposits attributed to explosive volcanism frequently occur 34 

within complex impact craters on the Moon [e.g., Schultz, 1976; Head and Wilson, 1979; Coombs 35 

and Hawke, 1992]. More recently, data from the MErcury Surface, Space ENvironment, 36 

GEochemistry, and Ranging (MESSENGER) spacecraft have revealed that an association between 37 

putative explosive volcanism and impact craters also exists on Mercury [Gillis-Davis et al., 2009; 38 

Thomas et al., 2014b]. Mercury and the Moon are similar in several respects: they are virtually airless, 39 

and have a surface geology that is dominated by a combination of impact cratering and volcanic 40 

resurfacing. The similar localization of explosive volcanic activity on both bodies, therefore, suggests 41 

the action of similar processes.  42 

In the lunar case, it has been proposed that localization of explosive volcanism within impact craters 43 

results from density-trapping of magma in the brecciated zone below the crater [Head and Wilson, 44 

1979]. In this model, a vertically-propagating dike encounters the low density, weak material of the 45 

breccia lens beneath the crater floor and is diverted to form a sill because the density and rigidity 46 

contrast favors lateral propagation rather than continued vertical ascent [Schultz, 1976; Wichman and 47 

Schultz, 1995a]. With continued recharge, this sill propagates horizontally until it encounters higher 48 

lithostatic pressures at the wall zone [Thorey and Michaut, 2014] and the intrusion begins to thicken, 49 

fracturing the floor above. Dike propagation to the surface is commonly favored along zones of 50 

extension at the intrusion margins [Pollard and Johnson, 1973] and results in either effusive 51 

volcanism, forming lava pools, or, if sufficient exsolved gas builds up prior to eruption, explosive 52 

volcanism [Jozwiak et al., 2015]. The products of both of these styles of volcanism are observed at 53 



circumferential fractures in floor-fractured craters (FFCs) on the Moon, so this appears to be a good 54 

explanatory model.  55 

On Mercury, too, there is evidence for sub-crater magma storage prior to eruption. Endogenic pits 56 

surrounded by a spectrally-distinct deposit, interpreted as volcanic vents [Kerber et al., 2009], often 57 

occur in groups within a single crater, indicating a shared proximal source for coeval and/or 58 

sequential eruptions. Moreover, the scale and morphology of vents and deposits are consistent with 59 

accumulation of volatiles in a subsurface magma chamber prior to eruption [Thomas et al., 2014b]. 60 

The occurrence of the majority (79%) of explosive volcanic vents surrounded by putative pyroclastic 61 

deposits within impact craters on Mercury also supports the hypothesis that the subsurface structure of 62 

craters plays a controlling role in the localization of explosive volcanism. However, the specific 63 

character of this volcanism differs from that on the Moon. Floor-fracturing is observed in only one 64 

impact crater on Mercury [Head et al., 2009], and this does not host a pyroclastic vent or deposit. 65 

Additionally, explosive volcanism commonly occurs at and around central uplifts in craters on 66 

Mercury, rather than at the outer margin of the floor [Thomas et al., 2015].  67 

The contrasting character of volcanism and host-crater modification between the Moon and Mercury 68 

indicates that it cannot be assumed that magma rise beneath impact craters on terrestrial bodies will 69 

always result in the eruptive character familiar from the Moon. An investigation into probable 70 

controls on crater-localized magma rise, storage, and explosive eruption on each body has the 71 

potential to enhance our understanding of tectono-magmatic conditions on both bodies. To this end, 72 

we have investigated the dimensions and settings of pits and deposits thought to result from explosive 73 

volcanism within complex impact craters on the Moon and Mercury. Using these data, we have 74 

characterized the energy of eruption and deformation of host craters and thereby placed constraints on 75 

the probable controls on intrusion and eruption. Our findings suggest that the regional stress regime 76 

played an important role in the depth of magma intrusion on Mercury, and may also have done so on 77 

the Moon.  78 



2. Data and methods 79 

2.1 Site selection 80 

We analyzed 16 sites on Mercury and 15 on the Moon where an impact crater hosts candidate 81 

volcanic vents surrounded by a diffuse-margined spectral anomaly generally accepted to indicate a 82 

pyroclastic deposit (Table S1). Only sites occurring within complex impact craters were selected (30-83 

120 km diameter on Mercury [Pike, 1988] and 30-140 km on the Moon [Pike, 1980]), so that 84 

subsurface crater-related structures could be considered broadly comparable across the sample set. 85 

On both bodies, examples were drawn from previously identified sites where putative pyroclastic 86 

deposits appear to have been sourced from candidate vents within the crater structure, and where 87 

those vents are evident in topographic data. On this basis, and choosing examples only where the 88 

presence of a pyroclastic deposit is relatively uncontroversial, 15 lunar examples were drawn from 41 89 

possible sites [Wolfe and El-Baz, 1976; Head and Wilson, 1979; Coombs and Hawke, 1992; Gaddis 90 

et al., 2003; Gustafson et al., 2012]. A sample of 16 sites was drawn from 71 identified sites on 91 

Mercury [Kerber et al., 2011; Thomas et al., 2014b]. These selection criteria, choosing examples that 92 

are least-controversial and most amenable to analysis on each body, may mean that the samples do not 93 

reveal the full range of variation in pyroclastic activity within complex craters on either body.   94 

2.2 Pyroclastic deposits 95 

Identification of putative pyroclastic deposits on both Mercury and the Moon relies primarily, at 96 

present, on observation of a diffuse-margined spectral anomaly in orbital images. Deposits believed to 97 

be pyroclastic on Mercury have higher reflectance and a steeper (“redder”) slope of spectral 98 

reflectance versus wavelength than the planetary average. To identify them, we constructed 99 

composites combining reflectance data from the 996 nm, 749 nm and 433 nm filters in 100 

MESSENGER’s 10.5° field-of-view Wide Angle Camera (WAC) in the red, green, and blue channels, 101 

respectively, in which they appear as a bright, orange spectral anomaly (Figure 1a). We constructed 102 

composites from all images created prior to October 17th, 2013 having a resolution of 1000 m/pixel or 103 

better, and also examined the PDS-hosted 1000 m/pixel global color mosaic (March 2014 release). 104 



Lunar pyroclastic deposits are commonly identified by their low albedo relative to highlands material 105 

and a spectral character suggesting varying mixtures of highlands, basaltic and glass components 106 

[Gaddis et al., 2003]. We identified the extent of putative deposits on the basis of a low-albedo, 107 

diffuse-margined anomaly in the 1489 nm apparent reflectance mosaic from the Moon Mineralogy 108 

Mapper (M3) on the Chandrayaan-1 spacecraft, and in a color composite combining 1000 nm, 900 nm 109 

and 415 nm global mosaic reflectivity data from the Clementine spacecraft in the red, green and blue 110 

bands (Figure 1b). 111 

 112 

Figure 1. Spectral anomalies with diffuse margins interpreted as pyroclastic deposits on (a) Mercury and 113 

(b) The Moon. Yellow outline: extent of the spectral anomaly, green outline: rim of candidate vent. (a) 114 

Rilke crater (pit group 8026). Color composite of MDIS WAC images EW0222970395I (996 nm), 115 

EW0222970415G (749 nm), and EW0222970399F (433 nm) (NASA/JPL-Caltech) in the red, green and 116 

blue bands. (b) Franklin crater. Excerpt from the Clementine UVVIS global mosaic with reflectance at 117 

1000 nm, 900 nm, and 415 nm and in the red, green and blue bands. 118 

For both bodies, we digitized the areal extent of the spectral anomaly, taking a conservative approach 119 

by excluding the tenuous outer fringe. This was further refined in lunar examples where the extent of 120 

the low albedo material is apparent as fine-grained material mantling the underlying terrain in high-121 

resolution narrow-angle camera (NAC) images from the Lunar Reconnaissance Orbiter Camera 122 

(LROC). As a means of calculating the maximum specific energy with which particles were ejected 123 



from vents, we additionally measured the maximum distance between a candidate vent (Section 2.3) 124 

and the outer margin of its surrounding continuous deposit at each site. Because the available data 125 

types and the spectral character of deposits differ on the two bodies, the same level of error cannot be 126 

assumed in determination of the position of the outer boundary of the deposit. We estimated it as 2 127 

pixels, but it may be higher, particularly on Mercury where there are no high-resolution images with 128 

which the position of this outer boundary can be refined. This introduces a bias in favor of larger 129 

detected deposits on the Moon. Comparisons of deposit areal extent on the two bodies are therefore 130 

made with caution.  131 

2.3 Volcanic vents 132 

On Mercury, irregular, rimless depressions lacking the characteristic ejecta blanket of impact craters 133 

(known as ‘pits’) are considered candidate volcanic vents [Kerber et al., 2011]. These are readily 134 

identifiable in monochrome orbital imagery taken by the NAC and WAC in MESSENGER’s Mercury 135 

Dual Imaging System (MDIS) (Figure 2a-b). We obtained topographic data with which to determine 136 

the volume of these vents by using stereo images (NAC or WAC frames using the 750 nm filter) to 137 

create high-resolution DEMs by photogrammetry using the Ames Stereo Pipeline [Moratto et al., 138 

2010]. Point data were averaged on a 3x3 block of pixels, giving the DEM a horizontal resolution 3 139 

times larger than that of the stereo images used to create it. On the basis of error determinations made 140 

by Thomas et al. [2014b], the vertical error is up to 80 m. 141 

We identified candidate lunar vents by reference to the LROC WAC Global mosaic at 100 m/pixel, 142 

higher-resolution NAC images, and the Lunar Orbiter Laser Altimeter 188 m/pixel DEM. 143 

Identification of vents within putative explosive volcanic deposits is less certain on the Moon than on 144 

Mercury because lunar examples commonly occur within floor-fractured craters. Relatively wide sub-145 

circular regions of the crater-floor grabens, particularly where these occur within an intense part of the 146 

albedo anomaly, are interpreted as the probable source of the surrounding pyroclastic deposit (Figure 147 

2c-d). 148 



 149 

Figure 2. Characteristic appearance of crater-hosted candidate explosive volcanic vents on (a,b) Mercury 150 

and (c,d) the Moon. Green outline = vent rim, yellow outline = extent of surrounding spectral anomaly. 151 

Close-ups (b) and (d) indicated by white rectangles. (a-b) Pit group ID 6083 (MDIS NAC image 152 

EN0251000097M; NASA/JPL-Caltech). (c-d) Atlas crater (excerpt from the LRO WAC Global mosaic). 153 

Volcanic vents commonly form by erosion of wall-rock during eruption and/or by collapse into an 154 

evacuated magma chamber. Therefore the volume of the vent can indicate the energy or volume of 155 

eruption. In order to calculate the volume of material that was lost to form the identified vents, we 156 

calculated their volume below a rim elevation determined with reference to orbital imagery and 157 

topographic products. On both bodies, though to a greater degree in floor-fractured craters on the 158 

Moon, the original surface prior to vent-formation was uneven. To account for this when calculating 159 

the volume lost to form the vent, we used a Natural Neighbor technique within ArcGIS software to 160 

interpolate a surface at the vent rim level on the basis of the surrounding topography, and subtracted 161 

elevations on the vent floor from the elevation of that surface. Because this interpolation technique 162 

estimates elevation values on a local basis, any relief owing to a pre-existing graben crossing the vent 163 

is greatest at the margins of the interpolated area and reduces towards the interior. This means that the 164 



original graben volume is only partially accounted for, and the calculated volume of vents within 165 

grabens should be viewed as a maximum value.  166 

2.4 Host crater dimensions 167 

The intrusion of magma beneath impact craters on the Moon is proposed to result in a reduction in 168 

crater depth [Schultz, 1976]. To explore this, we calculated the host crater depth for all sites in the two 169 

samples, defined as the vertical distance between the average rim crest elevation and the average floor 170 

elevation. In finding the average rim elevation, we excluded parts of the rim crest where major post-171 

formation modification was evident. The average crater floor elevation was defined as the 100 m bin 172 

within which the highest number of DEM pixels in the interior of the crater fell. We compared the 173 

depth thus calculated to the depth calculated using depth-diameter relationships observed in large 174 

populations of mature complex craters [Pike, 1980, 1988]. For craters on the Moon where floor-175 

fracturing is observed, we used two methods to calculate the minimum effective thickness (Te) of 176 

overburden consistent with the observed uplift if this had been the result of sub-crater intrusion, using 177 

material constants as listed in Thorey and Michaut [2014] and Jozwiak et al. [2015], respectively. The 178 

method developed by Thorey and Michaut [2014] uses the finding that uplift will have a convex 179 

morphology if the flexural wavelength of the overburden is less than a quarter of the crater floor 180 

radius. If this uplift extends laterally to the wall zone, the crater floor radius can thus be used to 181 

calculate the minimum elastic thickness of the overburden. This method is appropriate for ten craters 182 

in our sample. Conversely, Pollard and Johnson [1973] calculate the effective thickness of the 183 

overburden based on the magmatic driving pressure required to uplift overlying material to the 184 

observed uplift radius. Though this approach has been criticized [Thorey and Michaut, 2014], we 185 

include the results of this method as a basis for comparison with other studies [e.g., Wichman and 186 

Schultz, 1995a, 1995b; Jozwiak et al., 2012, 2015]. We noted any extensional or compressional 187 

tectonic structures within the crater, making reference to global datasets [Jozwiak et al., 2012; Byrne 188 

et al., 2014], and any evidence (such as burial of the central uplift) for post-crater-formation lava 189 

infilling. 190 



2.5 Regional setting 191 

To assess possible regional controls on the occurrence of explosive volcanism, we studied the 192 

geological setting of each site in detail. This included noting the proximity to and spatial relationship 193 

with extensive lava plains, association with specific substrates and types of tectonic structure, and 194 

proximity to other sites of explosive volcanism. For Mercury, we made reference to the global 195 

MESSENGER monochrome and color mosaics, individual MDIS images, and published maps of 196 

smooth plains [Denevi et al., 2013] and tectonic structures [Byrne et al., 2014]. For the Moon, we 197 

referred to published geological maps and the global LROC WAC mosaic.  198 

3. Results 199 

3.1 Vent and deposit scale 200 

The average volume of an individual vent at sites on the Moon (0.54 ± 0.06 km
3
) is significantly 201 

smaller than on Mercury (25.0 ± 2.1 km
3
) (Figure 3a), despite the potential for overestimation of vent 202 

volume on the Moon (Section 2.3). The range in volume across the sample set is also lower: 0.002 ± 203 

0.007 – 6.75 ± 1.96 km
3
 on the Moon and 0.08 ± 0.08 – 454 ± 58.6 km

3
 on Mercury. To investigate 204 

whether these differences are because of a more distributed style of volcanism on the Moon than on 205 

Mercury, we compared the total vent volume at each site on the two bodies and found that this, too, is 206 

significantly smaller on the Moon (average 1.9 ± 0.34 km
3
) than on Mercury (average 47.0 ± 3.9 km

3
) 207 

(Figure 3b). 208 



 209 

Figure 3. Vent volumes on the Moon (blue) and Mercury (red). Both (a) the average volume and (b) total 210 

volume of vents at a site are significantly lower on the Moon than on Mercury (note the logarithmic scale 211 

for the x-axes). 212 

The maximum ballistic range measured for particles forming the observed deposit is generally higher 213 

on Mercury (median value of 18.6 ± 1.2 km, maximum of 50.3 ± 1.2 km) than on the Moon (median 214 

10.7 ± 0.04 km, maximum 46.6 ± 0.04 km) despite the observational bias in favor of detection of 215 

pyroclastic material to greater distances on the Moon and despite higher gravity on Mercury, which 216 

means that particles ejected at equal velocity will have a smaller range than on the Moon. Because 217 

lunar vents commonly occur as a relatively subtle widening of a graben, it is probable that in some 218 

cases particle sources have been missed and the ballistic range overestimated. We therefore also 219 

compare the average geodetic area of deposits within our sample sets. This, too is larger for Mercury 220 

(median 1210 ± 53.2 km
2
, maximum 6990 ± 138 km

2
) than for the Moon (median 231 ± 5km

2
, 221 

maximum 3949
 
± 22 km

2
), supporting the inference that particles were, on average, ejected to greater 222 

distances on Mercury. The maximum ballistic range (X) can be used to calculate the maximum speed 223 

(v) at which pyroclasts were ejected from a vent in a vacuum using the relationship: 224 

2

sin 2
v

X
g

 , 225 

where g is gravitational acceleration and θ is the angle at which dispersal is greatest (45°). This gives 226 

a value of 284 m s
-1

 for the median and 468 m s
-1

 for the greatest ballistic range observed in the 227 

Mercury sample set, and 143 m s
-1

 for the median and 297 m s
-1

 for the greatest ballistic range 228 



observed in the lunar sample set. As the specific energy of particle ejection is approximately 229 

proportional to the volatile mass fraction in the released magma [Wilson, 1980], this indicates a 230 

higher concentration of volatiles in the eruptions on Mercury than on the Moon, for volatile species of 231 

similar molar mass. This is consistent with findings for the entire global populations [Kerber et al., 232 

2011; Thomas et al., 2014b]. 233 

3.2 Tectonic modification of host craters 234 

14 of the sites on the Moon lie within impact craters catalogued as floor-fractured [Schultz, 1976; 235 

Jozwiak et al., 2012], and cover a range of documented FFC types (Table S1). The anomalously 236 

shallow, fragmented floor of the crater Hell, which hosts the remaining site, suggests that this may 237 

also be an FFC. This high correlation to FFCs is also observed in the global population of putative 238 

pyroclastic deposits hosted by complex craters: 12 of the non-sampled 26 host craters are previously-239 

catalogued FFCs, and 9 are flooded by mare lavas that would obscure any floor-fracturing, if present. 240 

One (Grimaldi F) is crossed by a graben of regional extent and vents in another (Messala) are aligned 241 

along grabens in the crater floor. Of the remaining three sites, we suspect that the ‘pyroclastic 242 

deposits’ at Lagrange C and Schluter A are spectrally-distinct impact ejecta, and, though Vitruvius 243 

has not previously been catalogued as a floor-fractured crater, its morphology is consistent with that 244 

of an FFC modified by volcanic deposition. Thus, it appears that floor-fracturing of craters hosting 245 

localized pyroclastic deposits on the Moon is almost ubiquitous. Candidate vents occur in concentric 246 

fractures adjacent to the crater wall at 10 of the sampled sites and adjacent to the crater central uplift 247 

at only two. The crater floor depth ranges from 38% to 83% of the expected depth of a crater of that 248 

diameter. Because the shallow depth of these craters does not appear to result from mare-infilling, and 249 

because of the fractures present on the crater floors, uplift by a sub-crater intrusion is the most 250 

probable explanation of their shallow rim-to-floor depths. 251 

The calculated minimum effective thickness (Te) of crust overlying intrusions capable of producing 252 

the observed uplift ranges from 0.9 to 5.3 km for convex-floored craters using the method of Thorey 253 

and Michaut [2014], and 0.6 to 4.0 km over the whole sample set using the method of Pollard and 254 

Johnson [1973] (Figure 4). Where there is a piston-like uplift and the crater is not large (e.g., Haldane, 255 



Kopff), intrusions are expected to be significantly shallower [Thorey and Michaut, 2014]. Because Te 256 

is the thickness of a single layer with the observed flexural rigidity, and crater floor materials are 257 

heterogeneous and may contain some weaker layers, the true thickness of the overburden is expected 258 

to be considerably greater than Te. If, after Wichman and Schultz [1995a], we approximate it as 6 × 259 

Te for lunar FFCs, and if we approximate the transient crater depth as one third of the transient crater 260 

diameter (Dtr) [Grieve and Cintala, 1982] and calculate Dtr as Dt
0.15

D
0.85

 after Croft [1985] where Dt 261 

(the transition diameter between simple and complex impact craters on the Moon) is 17.5 km [Pike, 262 

1980] and D is the observed rim‒rim diameter, in all cases the approximated intrusion depth is equal 263 

to or less than that of the transient crater below the crater floor. This may indicate that intrusion 264 

occurred along the base of the fallback breccia zone but, given the uncertainty of the estimated values 265 

used in these calculations, this cannot be considered proven.  266 

Extensional crater floor fractures are not observed at the sites on Mercury. Minor thrust faults cross 267 

two of the host craters. Otherwise, apart from central uplifts and relief proximal to candidate vents, 268 

the floors are flat, and there is no evidence of flexure over a larger region beyond the crater floor. 269 

Crater depths vary from 57% to 120% of the value predicted by the depth-diameter ratio for fresh 270 

craters observed by Pike [1988], and fall well within the range of depth-diameter ratios for complex 271 

craters observed by Baker and Head [2013] (Figure 5). Anomalously shallow craters have larger 272 

diameters, as has been observed for non-fresh impact craters on Mercury in general and attributed in 273 

large part to post-formational modification by infilling [Barnouin et al., 2012]. A smooth, shallow flat 274 

floor with only a small central peak projecting above it at six of the sampled sites indicates that this is 275 

a probable modification mechanism. Thus, our findings support post-formational shallowing of host 276 

craters, but there is no evidence that this occurred by tectonic uplift. At fourteen of the sixteen sites, 277 

vents occur at the crater center.  278 



 279 

Figure 4. Effective thickness (Te) of overburden consistent with (a) crater floor radius where there is 280 

convex uplift (Thorey and Michaut [2014] method) and (b) uplift radius (Pollard and Johnson [1973] 281 

method) within sampled lunar FFCs compared with the estimated depth of the transient crater below the 282 

present-day crater floor (dtc). dln is 6x Te, an estimate of intrusion depth. 283 

 284 

Figure 5 Depth versus diameter of craters on Mercury, comparing those in this study with larger 285 

populations of complex craters measured by other authors. Black line indicates the d-D relationship 286 

observed by Pike [1988] for mature complex craters.  287 



3.3 Association with regional geological units and tectonic structures 288 

Craters hosting pyroclastic deposits in the lunar sample set commonly superpose, are adjacent to, or 289 

are in areas annular to extensive basin-filling mare deposits. The distance to the edge of a major mare 290 

deposit ranges up to 340 km, with a mean distance of 90 km. Conversely, sites on Mercury are not 291 

commonly adjacent to morphologically young large-scale lava plains, which range from 90 to 1540 292 

km distant, 800 km on average (Figure 6).  293 

The sampled sites on Mercury are often in regions hosting many other sites of putative explosive 294 

volcanism. Seven sites overlie the relatively low-reflectance LRM substrate. This relationship is 295 

particularly apparent in an elevated, extensively thrust-faulted region centered on 136.8° E, 45.4° S, 296 

where four of the sampled craters lie within 350 km of each other, along with many other centers of 297 

putative pyroclastic volcanism (Figure 7). In this region, the lowest-reflectance surface material 298 

comprises the walls and proximal ejecta of large (> 80 km diameter) relatively fresh craters. The 299 

depth to which such craters excavate can be estimated as > 15 km [Croft, 1985], indicating that this 300 

substrate is present to considerable depth. At three of the sampled sites the crater also hosts hollows, 301 

which are rimless depressions thought to form by loss of a relatively volatile substance from the 302 

planet’s surface [Blewett et al., 2013; Thomas et al., 2014a]. 303 



 304 

Figure 6. Sampled (yellow circles) and all (red circles) sites with putative pyroclastic activity on (a) the 305 

Moon and (b) Mercury (white outline: extent of smooth volcanic plains [Denevi et al., 2013]). Base 306 

images: LRO WAC global mosaic and MDIS global color mosaic. 307 



 308 

Figure 7. A cluster of sites of explosive volcanism on LRM substrate on Mercury. Dots: yellow = sampled 309 

sites, red = not in sample set. White lines: contractional landforms [Byrne et al., 2014] (mosaic of color 310 

composites combining MDIS WAC images EW1012828676I, EW1012828668G and EW1012828664F, and 311 

EW0230923343I, EW0230923363G and EW0230923347F; NASA/JPL-Caltech).  312 

4. Discussion 313 

4.1 Scale and energy of eruption 314 

Consistent with findings for the global population [Kerber et al., 2011; Thomas et al., 2014b], the 315 

maximum velocity at which pyroclasts were ejected at our sampled sites of explosive volcanism on 316 

Mercury is greater than at those on the Moon. Additionally, vents are larger on Mercury, though the 317 

higher gravity dictates that dikes should be narrower and mass fluxes lower [Wilson and Parfitt, 1989] 318 

than on the Moon. If the vents formed primarily through erosion of wall-rock during eruption, larger 319 

vents indicate higher eruption energy, consistent with the high ejection velocity. This in turn supports 320 

the inference, made on the basis of global dataset, of an on average higher volatile mass fraction in the 321 

released magma in explosive volcanism on Mercury than on the Moon [Kerber et al., 2011; Thomas et 322 

al., 2014b]. 323 



Volcanic vents can also form through collapse or subsidence into a magma chamber, and have been 324 

proposed to do so on Mercury [Gillis-Davis et al., 2009]. If this process contributed to vent-formation 325 

on both planets, the larger vent size on Mercury indicates higher volume eruption. Unfortunately, the 326 

low resolution of the topographic data on Mercury at present precludes calculation of the erupted 327 

volume; so, the importance of this process cannot be investigated. A further method by which a large 328 

vent can form is by sequential eruption at closely-spaced loci, forming a compound vent. There is 329 

evidence that this does occur on Mercury [Rothery et al., 2014]. If eruption were more localized at 330 

sites on Mercury, this process would lead to larger vents. However, as the summed vent volume at 331 

each site is significantly higher on Mercury than the Moon, overlapping vents on Mercury cannot be 332 

the prime explanation for the contrast in vent volume.  333 

4.2 Implications for sub-crater magma storage on Mercury  334 

The high incidence of floor-fracturing in complex craters hosting pyroclastic deposits on the Moon 335 

and its absence at such sites on Mercury requires explanation. Floor-fracturing on the Moon is 336 

proposed to occur due to sub-crater magmatic intrusion. An alternative hypothesis, that it occurs due 337 

to viscous relaxation [Hall et al., 1981], has been found to be inconsistent with the geometry and 338 

spatial variability of most FFCs [Wichman and Schultz, 1995a; Jozwiak et al., 2012]. Therefore, the 339 

absence of floor-fracturing within complex impact craters on Mercury may simply indicate that dikes 340 

propagate directly to the surface without a period of near-surface magma storage. At sites where a 341 

small-scale pyroclastic deposit surrounds a single vent, we cannot preclude this possibility. However, 342 

there are multiple vents at five of the sampled sites, and at another there are two large vents close by 343 

in an overlapped crater (Figure 8). This suggests the presence of a magma reservoir in the shallow 344 

subsurface from which multiple eruptions were sourced, either in a coeval or a sequential manner. 345 

Additionally, unless Mercury’s mantle is exceptionally enriched in volatiles, the high eruption 346 

velocities necessary to form the more extensive spectral anomalies by pyroclastic volcanism strongly 347 

suggest a period of storage prior to eruption, during which volatiles became concentrated through 348 

magmatic fractionation [Thomas et al., 2014b]. We note that the maximum ballistic range indicated 349 

by the extent of putative pyroclastic deposits is not significantly larger at sites where the presence of 350 



multiple vents provides supporting evidence for pre-eruption crustal storage than at other sites. This 351 

may indicate that, as on the Moon, sub-crater storage occurs prior to eruption in all or most cases.  352 

 353 

Figure 8. Two intersecting craters hosting vents surrounded by putative pyroclastic deposits (-72.2° E, -354 

19.6° N). Pit outlines: green = vent at sampled site 5023, blue = vents not within the sample set. Base 355 

image: mosaic of MDIS NAC images EN0219177174M and EN0219092124M (NASA/JPL-Caltech).  356 

One possible contributing factor to a lack of surface deformation in response to a subsurface intrusion 357 

on Mercury is that the overburden is stronger than on the Moon. This could result from more 358 

voluminous impact melt [Grieve and Cintala, 1997] or less porosity [Collins, 2014] due to higher 359 

impact velocity and gravity, or from infilling by massive lavas prior to the proposed explosive 360 

volcanic activity. Numerical and physical modeling is necessary to determine the degree to which 361 

these factors could affect the bulk strength of sub-crater-floor materials, though the differences would 362 

need to be large if they were to account for the total lack of surface deformation seen in host craters 363 

on Mercury.  364 



The major factor governing surface deformation above a magma body is the depth of intrusion. 365 

Deeper intrusion on Mercury would be consistent with the common localization of vents at the 366 

crater’s central uplift, which are expected to be bounded by multiple high-angle, deep-going faults 367 

[Scholz et al., 2002; Senft and Stewart, 2009; Kenkmann et al., 2014]. These are zones of weakness 368 

along which dike propagation from relatively deep reservoirs to the surface would be favored. On the 369 

basis of buoyancy alone, deeper intrusion on Mercury is not favored. All other factors being equal, the 370 

higher gravity on Mercury means that a smaller thickness of overburden produces a given lithostatic 371 

pressure, leading to a shallower level of neutral buoyancy (LNB). Moreover, density contrasts 372 

between magmas and the crust also favor deeper intrusion on the Moon. Magmas forming picritic 373 

glasses believed to have been erupted in lunar pyroclastic eruptions are calculated to be denser (2850 374 

– 3150 kg/m
3
 [Wieczorek et al., 2001; Vander Kaaden et al., 2015]) than the highlands crust within 375 

which most of our sample occurs (Table S1) (bulk density 2550 kg/m3 [Wieczorek et al., 2013]), 376 

rendering it necessary to invoke conditions such as excess pressure at the base of the crust [Head and 377 

Wilson, 1992] and superheating of the source magma [Wieczorek et al., 2001] to explain the surface 378 

eruption of these magmas in the highlands. Conversely, elemental abundance data show a continuity 379 

of compositions between smooth volcanic plains and the heavily-cratered regions within which our 380 

sampled sites on Mercury occur [Weider et al., 2015], supporting the inference from spectral data that 381 

these heavily-cratered surfaces may simply be ancient volcanic plains [Murchie et al., 2015]. This 382 

suggests that, contrary to deeper magma storage being favored, hot, volatile-bearing Hermean 383 

magmas are expected to be so buoyant that effusive eruption will occur without a period of sub-384 

surface storage, except where the crust has anomalously low density. Thus in addition to the evidence 385 

presented here for deeper magma storage beneath impact craters on Mercury than on the Moon, the 386 

additional problem arises that the observed frequent occurrence of volcanic activity within impact 387 

craters [Thomas et al., 2014b], where ascent should be least favored (due to underlying low-density 388 

breccia), is the opposite of what is expected on the grounds of magma buoyancy.  389 

However, the above applies only if an LNB is reached, whereas there is abundant evidence [e.g., 390 

Takada, 1989] that it is rarely reached in nature. The level of magma rise is commonly controlled by 391 



the presence of rheological or rigidity contrasts in the overburden [Menand, 2011]; indeed the rigidity 392 

and density contrast at the base of the impact crater brecciated zone is proposed to account for the 393 

depth of sub-crater magma intrusion on the Moon. However, a deeper low-rigidity zone on Mercury 394 

does not appear to be supported. Modeling suggests that, due to higher average impact velocities, it 395 

will instead be shallower [Cintala, 1979; Barnouin et al., 2011]. Another important control on the 396 

depth of magma storage, and one that provides a good explanation for both volcanism within impact 397 

craters on Mercury and its depth relative to that on the Moon, is the regional stress field. This has 398 

been compressive on Mercury through much of the planet’s history [Strom et al., 1975], while 399 

compressive tectonics are observed only at a small scale and in the recent past on the Moon [Watters 400 

et al., 2010]. On Earth, upper-crustal magma storage is deeper in compressive than in extensional 401 

regimes [Chaussard and Amelung, 2014]. Numerical simulations support this observation, showing 402 

that in a compressive regime, vertically-propagating dikes deflect to form a sill at greater depths than 403 

otherwise [Maccaferri et al., 2011]. The importance of the stress regime is greatest at the intermediate 404 

crustal levels considered here (below strength-limited very shallow levels < 3 km, and above the 405 

brittle-ductile transition). Under a compressive regime, magma chamber rupture tends to occur only 406 

where pre-existing structures are present in the overlying rock. Beneath an impact crater, the deep-407 

going structures bounding the central uplift may act as preferential sites of chamber rupture should the 408 

magma become positively buoyant. These structures may explain why explosive volcanism occurs 409 

preferentially in impact craters on Mercury. 410 

This begs the question of how the magma, once stalled, becomes positively buoyant, and how dikes 411 

are able to propagate to the surface despite the regional compressive stress. A major factor that 412 

enhances magma buoyancy is the presence of exsolved volatiles. As magma ascends from depth, 413 

volatiles are able to exsolve due to pressure-release. Additionally, if the magma is stored in the sub-414 

surface, fractional crystallization of volatile-poor minerals leads to concentration of volatiles in the 415 

remaining melt and more exsolution occurs [Bower and Woods, 1997], forming a progressively-416 

thickening low-density foam layer at the roof of the chamber [Parfitt et al., 1993]. Both deeper magma 417 

storage and a compressive tectonic regime favor buildup of exsolved volatiles because they enable a 418 



magma chamber to remain stable up to a higher value of overpressure than it would under different 419 

conditions [Currenti and Williams, 2014].  420 

However, because deeper storage (and thus higher pressure) inhibits the exsolution of volatiles, it may 421 

inhibit this process of exsolution, depending on the depth and volatile species involved. The evidence 422 

presented here suggests a second mode by which the volatile-content of magma can be enhanced 423 

during subsurface storage. Half of the sites sampled occur where LRM is visible at the surface. This 424 

substrate is proposed (on the basis of the apparent loss of a component of it to form hollows) to be 425 

volatile-rich [Blewett et al., 2013; Thomas et al., 2014a]. The occurrence of LRM within the walls and 426 

central uplift of many impact craters on Mercury suggests that it is present at depth at many locations 427 

where it is not apparent at the surface. It is thus possible that it is the assimilation into the magma of 428 

volatiles from wall rock of this composition during subsurface magma storage that leads to an 429 

enhanced volatile concentration in the magma chamber and therefore higher eruption velocities in 430 

explosive eruptions on Mercury than on the Moon. In this model, when LRM is encountered by 431 

magma at depth, its volatile-content lends explosivity to volcanic eruptions, while when it is exposed 432 

at the surface, the volatiles are lost less dramatically to form hollows. 433 

This hypothesis is potentially testable: if fractional crystallization plays a major role in concentration 434 

of volatiles in explosively-erupted magmas on Mercury, pyroclastic deposits will be fractionated 435 

relative to effusive lava compositions, while if the volatile-content is derived from country rock, 436 

pyroclastic deposits need not be so fractionated. Though the resolution of compositional data 437 

currently available is not sufficient to perform this test, this is expected to be remedied by the 438 

forthcoming BepiColombo mission, set to arrive at Mercury in 2024. 439 

4.3 Implications for the Moon and other planetary bodies 440 

The absence of floor-fracturing in complex impact craters hosting explosive volcanism on Mercury 441 

may have implications for the causes of the association of these phenomena on the Moon. As noted in 442 

Section 4.2, unlike Mercury, the Moon is not in a state of global compression to the degree occurring 443 

on Mercury. Thus, forces favoring deeper intrusion have not been present through most or all of the 444 



Moon’s geological history and this alone may be sufficient for magmatic driving force to induce 445 

intrusion shallow enough to cause crater floor-fracturing [Schultz, 1976]. Additionally, however, 446 

many of the sampled lunar sites hosting pyroclastic volcanism, and the majority of lunar FFCs in 447 

general, occur in the zone annular to mare-filled impact basins, which have a protracted history of 448 

flexural extension in response to the mare load. It has been proposed that this stress state has favored 449 

magma ascent from depth in these regions [Solomon and Head, 1980; McGovern et al., 2014]. We 450 

suggest that it may additionally have favored shallow intrusion beneath suitably-located impact 451 

craters. This would be consistent both with observations of shallow magma chambers in extensional 452 

regimes on Earth [Chaussard and Amelung, 2014], and with experimental results that show 453 

propagation of magma-filled cracks to higher levels than the magma’s LNB where there is upwardly-454 

increasing tensile stress [Takada, 1989]. The calculated Te of crust overlying intrusions that could 455 

account for the deformation in the sampled lunar craters would allow magma storage within the 456 

fallback breccia lens rather than at its base. The occurrence of floor-fractured craters, as well as 457 

ancient mare pools [Schultz and Spudis, 1979], in the highlands far from mare basins indicates that 458 

stresses related to mare basin loading are not the only conditions capable of enabling the rise of 459 

basalts to the surface at supra-basin elevations. However, the high concentration of floor-fractured 460 

craters around basin margins is consistent with the hypothesis that these stresses favor their formation. 461 

FFCs also occur on Mars, and are concentrated along the boundary between the southern highlands 462 

and northern plains [Schultz and Glicken, 1979; Bamberg et al., 2014], where there is evidence for a 463 

history of extension [Watters and McGovern, 2006]. While some of the fractures may form by fluvial 464 

processes [Sato et al., 2010], others appear to have a magmatic genesis similar to that proposed for 465 

FFCs on the Moon [Schultz and Glicken, 1979; Bamberg et al., 2014]. For example, the floor-466 

fractured crater Lipany has abundant evidence for volcanic activity and none for fluvial activity and 467 

lies at the margin of the Isidis basin, a region with a long history of extensional tectonics [Scott and 468 

Dohm, 1990]. This indicates that some Martian FFCs and associated volcanism may be attributable to 469 

flexural extension in a manner similar to those on the Moon. 470 



5. Conclusions 471 

A comparison of the scale of vents and surrounding deposits attributable to pyroclastic volcanism 472 

within complex impact craters on the Moon and Mercury indicates that eruptions had a significantly 473 

higher average energy on Mercury. On the Moon, this activity commonly occurs in craters with 474 

uplifted, fractured floors, but no such deformation is detected in host craters on Mercury. This 475 

evidence is most consistent with deeper magma storage prior to eruption on Mercury, in a magma 476 

chamber inhibited from upwards rupture by regional compression. Once stalled in such a reservoir, 477 

the eventual upward propagation of magma that results in a high-energy eruption is likely to have 478 

been promoted by concentration of volatiles by fractional crystallization and/or by incorporation of 479 

volatiles from wall rock.  480 

The comparison with Mercury indicates that the absence of regional compressive stress was important 481 

in allowing shallow intrusions to form on the Moon. Further, because lunar FFCs are most common in 482 

circum-mare basin regions, which have been in flexural extension for much of their history due to the 483 

mare load, it is possible that it is not only the absence of compression but the action of extensional 484 

stresses that favored shallow intrusion in these craters. The concentration of FFCs on Mars in zones 485 

that have undergone long-term regional extension is supportive of this hypothesis, and suggests that 486 

crustal extension may play a controlling role in the formation of floor-fractured craters on terrestrial 487 

bodies in general.  488 
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