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Controlling Spatiotemporal Chaos in Active Dissipative-Dispersive Nonlinear Systems
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(Dated: August 5, 2015)

We present a new methodology for the stabilization and control of infinite-dimensional dynam-
ical systems exhibiting low-dimensional spatiotemporal chaos. We show that with an appropriate
choice of time-dependent controls we are able to stabilize and/or control all stable or unstable so-
lutions, including steady solutions, traveling waves (single and multipulse ones/bound states) and
spatiotemporal chaos. We exemplify our methodology with the generalized Kuramoto-Sivashinsky
equation, a paradigmatic model of spatiotemporal chaos, which is known to exhibit a rich spectrum
of wave forms and wave transitions and a rich variety of spatiotemporal structures.

PACS numbers: 05.45.-a, 05.45.Gg, 47.10.Fg, 47.27.De

The ability to control a desired particular dynamic
state in systems exhibiting chaos, i.e. irregular and un-
predictable behaviour, is a challenging and fundamental
problem in nonlinear science that has attracted consid-
erable attention over the last decades [1]. Chaos and its
control are pertinent in a wide variety of natural phe-
nomena and technological applications, from turbulent
flows [2], coating processes [3], and reaction-diffusion sys-
tems [4] to spatiotemporal instabilities in lasers [5] and
cardiac arrhythmias [6], to name but a few. Not surpris-
ingly many different approaches have been proposed to
control, up to some extent, different aspects of chaotic
dynamics (see e.g. [1] for a review on controlling chaos
for maps or ordinary differential equations).

Despite the considerable attention that chaos control
has received, several important problems have not been
resolved. For example, a rigorous and systematic anal-
ysis of control of partial differential equations (PDEs)
exhibiting low-dimensional spatiotemporal chaos (STC),
which is precisely the purpose of our study, is still lack-
ing. Here we consider an important class of PDEs, ac-
tive dissipative-dispersive nonlinear systems, which are
characterized by the presence of coherent structures, the
nonlinear interaction of which leads to the emergence of
low-dimensional STC. An example of this is the general-
ized Kuramoto-Sivashinsky (gKS) equation, see Eq. (6)
below, which retains the fundamental ingredients of any
nonlinear process involving spatiotemporal transitions
and pattern formation: nonlinearity, instability/energy
production, stability/energy dissipation and dispersion.
Its applications include hydrodynamic thin film instabil-
ities [7] and plasma waves with dispersion [8], and step
dynamics [9]. Although there have been previous studies
on controlling the KS equation (the gKS equation with-
out the dispersion term), e.g. in [10], they mainly fo-
cused on stabilization of the zero solution and for small
spatial domains. But it is large domains in spatially ex-
tended systems that are typically characterized by the
presence of a wide range of characteristic length and time
scales which often lead to complex spatiotemporal behav-
ior. Understanding the precise mechanisms by which low-
dimensional STC can be controlled to a desired state, by

e.g. fully controlling the travelling waves of the system,
has not been addressed as of yet.
In this study, we present a theoretical framework for

stabilizing and/or controlling all stable or unstable solu-
tions, including steady solutions, the position and shape
of traveling waves (single and multipulse ones – referred
to as bound states), arbitrary periodic functions and low-
dimensional STC. Our framework is based on the appli-
cation of an appropriate set of time-dependent controls
to the system, which are given in terms of the solution
we wish to stabilize. We exemplify the methodology with
the gKS equation and we demonstrate both analytically
and numerically that its solution can be controlled to
any desired (unstable or stable) steady state. This has
important consequences for a wide spectrum of applica-
tions, e.g. chemically reacting falling films, where con-
trolling the shape of the interface would have profound
implications on the associated transport processes [7].
a. General methodology.– Consider infinite dimen-

sional dynamical systems described by PDEs of the form:

ut = Au+Du+N (u), (1)

where A and D are a long wave unstable and disper-
sive linear spatial differential operator with constant co-
efficients, respectively, and we assume they admit the
same set of eigenfunctions. N is a nonlinear operator,
and the subscript t denotes time derivative. We con-
sider (1) in a bounded domain with periodic boundary
conditions (PBCs) and deterministic initial conditions,
i.e. u(x, 0) = u0(x) and for simplicity, assume A to be
a self-adjoint operator in L2, so that its eigenfunctions,
denoted as {wj}

∞

j=0
, form a basis of L2 and we can write

u(x, t) =
∑∞

j=0
uj(t)wj(x).

We are interested in controlling general classes of solu-
tions to the gKS equation, including constant solutions,
travelling wave solutions or bound states, and nontrivial
steady state solutions, denoted as u, which are (linearly)
unstable. To stabilize and/or control them, we introduce
the following controlled equation:

ut = Au+Du +N (u) +
m
∑

i=1

fi(t)bi(x), (2)
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where fi(t) and bi(x), for i = 1, . . . ,m, represent m con-
trols and m control actuator functions, respectively. We
decompose the solution u into a stable/unstable system
of equations by setting u = uu + us, where uu = PNu
and us = QNu are the slow (unstable) and fast (sta-
ble) modes, respectively, and PN and QN = I − PN are
the corresponding orthogonal projection operators with
N being the number of unstable modes. Equation (2)
can then be rewritten as follows:

zut = Azu +Dzu +G+BF, (3)

where we have defined zu = [uu us]
T , F =

[f1(t) · · · fm(t)]
T
, and G = [PNN QNN ]

T
; and

A =

[

Au 0
0 As

]

, D =

[

Du 0
0 Ds

]

, B =

[

Bu

Bs

]

,

where Au = PNA, As = QNA, Du = PND and Ds =
QND; Bu and Bs are matrices with coefficients bji =
∫

wj(x)bi(x)dx for j = 0, . . . , N and j = N + 1, . . . ,∞,
respectively. The key point in our methodology is that
whenever there exists a matrix K such that the eigenval-
ues of Au + BuK have negative real part, then a set of
controls defined as

F = [f1 · · · fm]T = K(uu − ūu), (4)

where ūu = PN ū, is able to stabilize the (unstable) so-
lutions ū of Eq. (1). The existence of this matrix K is
guaranteed as long as the subsystem described by the
matrices Au and Bu, namely uu,t = Auuu+BuF , is con-
trollable, which is achievable if the pair (Au, Bu) satisfies
the Kalman rank condition:

rank[Au|Bu] = N, (5)

where the matrix [Au|Bu] is obtained by writing consecu-
tively the columns of the matricesAn−1

u Bu, n = 1, . . . , N .
In the following we will rigorously prove this point by us-
ing the gKS equation as a model system.
b. The gKS equation.– Consider:

ut + νuxxxx + δuxxx + uxx + uux = 0, (6)

normalized to 2π-periodic domains [x ∈ (0, 2π)] using
the change of variables ν = (2π/L)2, x = y

√
ν
, t = τ

ν
,

δ = δL√
ν
and u = uL√

ν
, where L is the size of the system

and δL, τ, y and uL are the original parameters, variables
and solution. The parameter δ characterizes the relative
importance of dispersion so that for δ = 0 we recover
the usual KS equation. It is well known that travel-
ling wave solutions of the KS equation can be unstable
and for sufficiently small values of ν, the solutions ex-
hibit chaotic behaviour [11–15]. With the addition of
dispersion (δ > 0) and for small values of δ the dynam-
ics of the gKS equation resembles the KS spatiotemporal
chaotic behavior, while sufficiently large values tend to
arrest this behavior in favor of spatially periodic trav-
elling waves [16–18]. In a regime of moderate values of

δ however, travelling waves or pulses appear to be ran-
domly interacting with each other giving rise to what
is widely known as weak/dissipative turbulence (in the
“Manneville sense” [7, 19, 20]). Our goal is to stabi-
lize and control the travelling wave solutions of (6) in
either of these regimes and hence we have Eq. (2) with
Au = −νuxxxx − uxx, Du = −δuxxx, and N (u) = uux.
Let ū(x, t) be a travelling wave of the form ū =

U(x − ct) where c denotes the speed of the travelling
wave solution, and let N = 2l + 1 be the number of un-
stable eigenvalues of the linearized KS equation ut = Au.
Note that the dispersion term Du is antisymmetric in the
space L2(0, 2π). It has the same eigenfunctions as the
KS operator A = −∂4

x − ∂2
x and, due to antisymmetry,

purely imaginary eigenvalues and, in particular, the term
〈Dv, v〉 in Eq. (9) below vanishes. Therefore it does not
affect the linear stability of the system.
We consider u = ū+v to be a solution of Eq. (2), where

v is a perturbation which is described by the following
PDE:

vt −Av −Dv + vvx + (ūv)x =

m
∑

i=1

bi(x)fi(t). (7)

We wish to prove that v can be stabilized with an appro-
priate choice of the controls F , in particular those defined
in Eq. (4). After projecting onto the stable and unstable
modes, we obtain that the linearized controlled equation
for v reads:

zvt =

[

Au +BuK 0
BsK As

]

zv +Dzv +E = Czv +Dzv +E,

(8)
where zv = [vu vs] and E = [PN ((ūv)x) QN ((ūv)x)].
First we point out that the zero solution to the subsys-

tem zvt = Czv is exponentially stable if the eingenvalues
of Au + BuK have negative real part (note that by def-
inition As has eigenvalues with negative real part)[21].
The existence of a matrix K is guaranteed in our case
by construction of the matrix Bu: it is a square matrix,
and since its columns are the discretisation of a delta
function centered at different points, they are automat-
ically linearly independent. This guarantees that it has
full rank and therefore the Kalman rank condition (5) is
satisfied. We can now use a standard Lyapunov argu-
ment, as in [10, 22, 23], to show that the controls defined
in Eq. (4) stabilize the zero solution of the full nonlinear
equation (7).
We first make use of the fact that exponential sta-

bility of the system zvt = Czv implies that there ex-

ists a positive constant a such that the operator Ãv =
Av +

∑m

i=1
bi(x)Kivu, where Ki is the i-th row of the

matrix K, satisfies 〈Ãv, v〉 ≤ −a‖v‖2
L2, and where 〈f, g〉

denotes the L2(0, 2π) inner product. We now define the
function V (v) = 1

2
〈v, v〉 with V (0) = 0 and V (v) > 0 for

v 6= 0. Multiplying Eq. (7) by v and integrating once we
obtain

Vt = 〈Ãv, v〉+ 〈Dv, v〉 −

∫ 2π

0

v2vx dx−

∫ 2π

0

(ūv)xv dx. (9)
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(a)
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FIG. 1: (Color online) Computations of the gKS
equation for δ = 0.5 (see also “movieDelta05.avi” in

Supplemental Material [24]). (a) Uncontrolled
spatio-temporal evolution of the gKS solution.

Controlled gKS solution to (b) a single pulse, (c) a
two-pulse bound state, (d) a three-pulse bound state.

Applying PBCs to the above equation we find that the
second and third terms of its right-hand-side vanish.

As for the fourth integral, we have −
∫ 2π

0
(ūv)xv dx =

− 1

2

∫ 2π

0
ūxv

2 dx ≤ − inf ūx

2
‖v‖2L2 where again we made use

of PBCs. Putting things together we finally obtain

1

2

d

dt
‖v‖2L2 ≤ −

(

a+
inf ūx

2

)

‖v‖2L2 . (10)

We conclude that if the eigenvalues of the matrix Au +
BuK are chosen such that 2a + inf ūx ≥ 0 (note that
inf ūx < 0 and hence a needs to be sufficiently large), we
obtain Vt ≤ 0 and so V is a Lyapunov function for our
system, which proves that its zero solution is stable. This

(a)

(b)

(c)

(d)

FIG. 2: (Color online) Computations of the gKS
equation for δ = 0.1 (see also “movieDelta01.avi” in

Supplemental Material [24]). (a) Uncontrolled
spatio-temporal evolution of the gKS solution.

Controlled gKS solution to (b) a single pulse, (c) a
two-pulse bound state, (d) a three-pulse bound state.

choice is possible as long as the pair (Au, Bu) satisfies the
Kalman rank condition for controlability [21]. Therefore,
by using the controls defined in Eq. (4) we can stabilize
the travelling wave solution ū of the original equation,
and the controlled equation is written as:

ut −Au−Du + uux =

m
∑

i=1

bi(x)Ki(uu − ūu). (11)

It should be noted that with our methodology not only
travelling waves but also arbitrary periodic functions, say
g(x, t), which are not necessarily solutions of Eq. (6), can
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be stabilized by adding an extra forcing term as follows:

ut −Au−Du + uux =

m
∑

i=1

bi(x)fi(t) + L(g), (12)

where L(g) = gt − Ag − Dg + ggx. The same argu-
ment described above for (11) is still valid for (12). For
example, we can choose to stabilize the solution to a si-
nusoidal function g(x) = sin (x) for which case we have
L(g) = (ν − 1) sin(x)− δ cos (x) + 1

2
sin(2x).

c. Numerical results.- We look at the numerical so-
lution of the controlled gKS equation (11) for different
values of δ. In particular, we start by controlling its
travelling waves ū(x, t) = U(x− ct) ≡ U(ξ) satisfying

−cUξ + νUξξξξ + δUξξξ + Uξξ + UUξ = 0. (13)

We solve this equation by making use of a continua-
tion numerical scheme as one of the parameters (δ or
ν) is varied while the other one is kept fixed. Once we
find U(ξ), we can construct multipulse initial guesses by
taking different solutions centered at different positions,
i.e. U0(ξ) = U(ξ1) + · · · + U(ξn), where n is the num-
ber of pulses we want to control. With this initial guess
for Eq. (13) we can find steady bound states (travelling
waves) of two or more pulses [18, 25].
Time-dependent computations of (11) are performed

by making use of a Galerkin truncation up to M modes
for the spatial dependence and a backward differentiation
formula of order 2 for time integration [15, 26]. Unless
specified, the domain size is set to L = 20π, for which
there are N = 21 unstable modes and therefore, we use
m = 21 equidistant controls and truncate the system at
M = 32 modes. We use point actuator functions, i.e. the
functions bi are delta functions: bi(x) = δ(x− xi). Point
actuators are routinely used in engineering applications,
for example in controlling thin-film flows where the gKS
equation is applicable. In this case, which is one of the
main motivations of our study, point actuators represent
liquid that is pumped in or out of the system [10, 27, 28].
Figure 1 shows the numerical results for δ = 0.5,

the uncontrolled solution of which is characterized by
pulses which are continuously interacting with each other
[see Fig. 1(a)], a dynamic state usually referred to as
weak/dissipative turbulence [18, 19]. With our method-
ology we can control this chaotic solution to a desired
number of pulses traveling as a bound state, as shown
in Figs. 1(b,c,d) where the gKS solution is controlled
to a single solitary pulse, a two-pulse bound state, and
a three-pulse bound state, respectively. We next look
at δ = 0.1 where the travelling waves are unstable
and hence the spatiotemporal dynamics is fully chaotic
[see Fig. 2(a)]. Again, we can control the solution
to either a single pulse [Fig. 2(b)], a two-pulse bound
state [Fig. 2(c)], or a three-pulse bound state [Fig. 2(d)].
A natural and important question is whether the pro-

posed control methodology is robust, in particular with
respect to changes or uncertainty in the parameters that
appear in the equation, such as ν or δ. The robustness

FIG. 3: (Color online) Spatiotemporal evolution of the
gKS solution with δ = 0.5 controlled to the periodic
function sin

(

2π
L
x
)

(see also “moviePeriodic.avi” in
Supplemental Material [24]).

(a)

(b)

FIG. 4: (Color online) Computations of the KS
equation δ = 0 for the extended domain L = 200 (see
also “movieDelta0.avi” in Supplemental Material [24]).
(a) Uncontrolled solution. (b) The zero solution is

stabilized by using m = 63 controls.

of our method can be proved rigorously using techniques
from control theory, e.g. [29, Thm. 6]. This analysis
will be presented elsewhere. For the purposes of this
work, we have performed numerical experiments to test
the robustness of the controls, observing that small vari-
ations in either δ or ν do not affect significantly their per-
formance. See “moviePertubDelta.avi” and “moviePer-
tubNu.avi” in the Supplemental Material [24].
As emphasized in the previous section, arbitrary pe-

riodic solutions can also be stabilized. Figure 3 shows
the gKS solution for δ = 0.5 forced to evolve as the si-
nusoidal function, sin

(

2π
L
x
)

. We also consider a large
domain of L = 200 for δ = 0, which supports rather
complex chaotic behaviour [see Fig. 4(a)], and control it
to the zero solution [cf. 4(b)]. Finally, in all computations
we measured the energy spent by the controls by using
their L2 norm which is defined as E1(t) =

∑m

i=1
fi(t)

2.
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FIG. 5: (Color online) Energy E1(t) spent by the
controls for L = 20π and for (a) δ = 0.1 and (b) δ = 0.5.

The energy of the controls for δ = 0.1 and δ = 0.5 is
shown in Fig. 5 where it is evident that it rapidly evolves
to almost zero - a similar behaviour is also observed for
δ = 0 and L = 200 (not shown).
To conclude, we have presented a generic methodology

for controlling (unstable or stable) steady-state solutions
and STC in dissipative systems. We have exemplified
our methodology with the controlled gKS equation and
demonstrated that with the appropriate choice of con-
trols its solution can be forced to evolve to any desired
state, including the unstable zero solution, single travel-
ing waves, bound states of traveling waves for which we
can control the number of waves, or arbitrary spatially
periodic functions.
We have focused on dissipative systems exhibiting low-

dimensional STC, however, the control framework devel-
oped here is sufficiently general to allow for its appli-
cation to a wide spectrum of other nonlinear systems,

e.g. reaction-diffusion systems, the control problem of
which was studied recently in [4]. In particular, these au-
thors investigated the control of the position over time of
traveling waves of the FitzHugh-Nagumo equation with
controls that are proportional to the translational sym-
metry mode, and, given a prespecified protocol of mo-
tion, they obtained an integral equation for the control
function. We believe, however, that our framework offers
several distinct advantages, since it enables us to control
unstable travelling waves and multipulse solutions but
also chaotic behavior in a rigorous and systematic fash-
ion and at a low computational cost.It can also be ap-
plied to other types of nonlinear evolution PDEs, such as
the Ginzburg-Landau or the KPZ equations. Finally, it
should be emphasized that our framework can be readily
extended to noisy systems [30], e.g. to controlling the ki-
netic roughening process of a stochastically growing sur-
face. We believe that our results will motivate further
analytical and numerical studies in these directions.
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Dauphiné, and S. Kalliadasis, Physica D 239, 2000
(2010); D. Tseluiko and S. Kalliadasis, IMA J. Appl.
Math. 79, 274 (2014).

[19] P. Manneville, Macroscopic Modeling of Turbulent Flows,
Vol. 230 (Lecture Notes in Physics, Springer-Verlag
Berlin Heidelberg, 1985).

[20] T. Kawahara and S. Toh, Phys. Fluids 2103, 31 (1988).
[21] J. Zabczyk, Mathematical Control Theory: An Introduc-

tion (Birkhauser, 1992).



6

[22] P. D. Christofides, Proceedings of the 37th IEEE Confer-
ence on Decision & Control , 4646 (1998).

[23] P. D. Christofides and A. Armaou, Syst. Control Lett.
39, 283 (2000).

[24] See Supplemental Material at [] for different movies of the
controlled spatiotemporal solution of the gKS equation.

[25] C. Duprat, F. Giorgiutti-Dauphiné, D. Tseluiko,
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