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Even-integer continued fractions and
the Farey tree

Ian Short and Mairi Walker

1 Introduction

In [13], Singerman introduced a tessellation of the hyperbolic plane that can be
used as a universal cover for any map on a surface (see also [5]). To describe this
universal tessellation, we first define the well known Farey graph, written as G . We
use the upper half-plane model of the hyperbolic plane, denoted by H, along with
the ideal boundary of H, which is the extended real line R∞ (that is, the real line R
with the point ∞ attached). The Farey graph is a subset of H∪R∞, which can be
viewed as a planar graph. The vertices of G all belong to R∞: they are the rationals
together with the point ∞. From now on, we assume that every rational a/b is in
reduced form, meaning that a and b are coprime, and b is positive. The edges of G
are hyperbolic geodesics in H: two rationals a/b and c/d are joined by an edge
of G if and only if |ad−bc|= 1 (with the convention that ∞ is identified with 1/0).
The Farey graph induces a tessellation of the hyperbolic plane (different from the
tessellation mentioned earlier) that also appears in [13], as a universal cover for any
triangular map on a surface. Part of the Farey graph is shown in Fig. 1 (both grey
and black lines).

The Farey tree, which we denote by F , is obtained by removing from G all
vertices that as rationals in reduced form have odd numerator and denominator. It is
a tree with a countably infinite number of vertices, and a countably infinite number
of edges incident to each vertex. The vertices adjacent to ∞ are the even integers.
Part of the Farey tree is shown in black in Fig. 1, and there is another illustration
of F in Fig. 2 without the distraction of the Farey graph. The Farey tree induces
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2 Ian Short and Mairi Walker

a tessellation of the hyperbolic plane, which is Singerman’s universal tessellation –
although the definition in [13] is slightly different to this one. (We remark that in
some other works ‘Farey tree’ refers to a different subgraph of G than F .)

Fig. 1 The Farey tree superimposed with the Farey graph

There are other ways to define G and F . Here is one such way. Let ` denote the
hyperbolic geodesic in H between 0 and ∞. Then the edges of G are the images of `
under the modular group Γ (and the vertices of G are the images of ∞ under Γ ).
We can describe F in a similar manner. Let Θ denote the group generated by the
transformations s(z) =−1/z and h(z) = z+2. This Fuchsian group, called the theta
group, is a subgroup of the modular group of index 3. It consists of those Möbius
transformations z 7→ (az+ b)/(cz+ d), where a,b,c,d ∈ Z and ad− bc = 1, such
that (

a b
c d

)
≡
(

1 0
0 1

)
or
(

0 1
1 0

)
(mod 2)

(see [7, Corollary 4]). The edges of F are the images of ` under Θ (and the vertices
of F are the images of ∞ under Θ ).

We call the vertices of the Farey tree ∞-rationals. They are reduced rationals
whose numerator and denominator differ in parity, together with the point ∞. The ∞-
rationals are the fixed points of one of the two conjugacy classes of parabolic ele-
ments in Θ . The vertices of G that are not vertices of F are called 1-rationals
because they consist of the images of 1 under Θ . They are the reduced rationals
with odd numerator and denominator (called face-centre points in [13]), and they
are the fixed points of the other of the two conjugacy classes of parabolic elements
in Θ . It can easily be shown that Θ acts on F , and in fact each element of Θ is a
graph automorphism of F .

This paper is about an attractive connection between the Farey tree and even-
integer continued fractions. An even-integer continued fraction (or, more briefly, an
EICF) is a sequence of even integers b1,b2, . . . , which may be finite or infinite (or
empty), such that all terms except possibly b1 are nonzero. We denote this continued
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fraction by [b1,b2, . . . ] (and sometimes by [b1, . . . ,bn] if it is finite). The number

b1 +
1

b2 +
1

b3 + · · ·+
1
bn

,

is called the value of the finite EICF [b1, . . . ,bn]. The convergents of a finite or
infinite EICF [b1,b2, . . . ] are the values of [b1, . . . ,bn] for n= 1,2, . . . . If the sequence
of convergents of an infinite EICF converges in R∞ to a point x, then we say that the
EICF converges and has value x. Sometimes we abuse notation and use [b1,b2, . . . ]
to represent its value; this is quite natural – in fact, the distinction between continued
fractions and their values is blurred in most works on continued fractions. An EICF
expansion of a real number x is an EICF with value x.

In either of the graphs F or G , we say that two vertices are adjacent or neigh-
bours if they are incident to the same edge. A path in one of these graphs is a se-
quence of distinct vertices v1,v2, . . . such that vi and vi+1 are adjacent for i= 1,2, . . . .
The path is said to be finite if the sequence has finite length, and otherwise it is in-
finite. We say that an infinite path v1,v2, . . . converges to a real number x if the
sequence converges to x in R∞. In these circumstances, we describe v1,v2, . . . as a
path from v1 to x.

Let
tn(z) = bn +

1
z

and Tn = t1 ◦ t2 ◦ · · · ◦ tn, n = 1,2, . . . ,

where b1,b2, . . . are even integers and all except possibly b1 are nonzero. Notice
that the convergents of the EICF [b1,b2, . . . ] are T1(∞),T2(∞), . . . . Now, 0 and ∞ are
adjacent in F , and it is easy to check that adjacency is preserved by the maps tn,
so Tn(0) and Tn(∞) are also adjacent in F . But

Tn(0) = Tn−1tn(0) = Tn−1(∞),

so any two consecutive vertices in the sequence ∞,T1(∞),T2(∞), . . . are adjacent.
Furthermore, the condition bn 6= 0 for n > 2 implies that this walk in F never ‘back-
tracks’: it is a path. Conversely, a short argument shows that the vertices of a path
with initial vertex ∞ are the convergents of a unique EICF. Thus we see that there
is a correspondence between even-integer continued fractions and paths in F with
initial vertex ∞. Finite continued fractions correspond to finite paths, and infinite
continued fractions correspond to infinite paths (and the empty continued fraction
corresponds to the path consisting of the vertex ∞ alone).

For example, the EICF expansion of the rational 8/3 is [2,2,−2], and this con-
tinued fraction corresponds to the path in F represented by the black directed edges
in Fig. 2. The vertices of this path are, in order, ∞,2,5/2,8/3 and the final three of
these are the convergents of the continued fraction.

There is a similar correspondence between integer continued fractions and paths
in the Farey graph that is well known (and the proofs of the validity of the corre-
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Fig. 2 A path in the Farey tree

spondence are similar); see, for example, [1, 9]. However, there are two reasons why
the tree F is better to work with than the graph G : (i) all infinite paths in the tree
converge, and (ii) there is an (almost) unique path from ∞ to each real number (in
particular, as F is a tree there is a unique finite path from ∞ to each ∞-rational). In
terms of even-integer continued fractions, these statements are (i) all infinite EICFs
converge, and (ii) each real number has an (almost) unique EICF expansion. We
explain the meaning of the qualification ‘almost’ later on. Both (i) and (ii) fail for
integer continued fractions, but they do hold for regular continued fractions (the
most familiar type of continued fractions, with positive integer coefficients). Here
we will show that in fact much of the theory of regular continued fractions (from,
for example, [6, Chapters I and II] or [4, Chapter X]) can be reformulated using
even-integer continued fractions. To an extent, this is already known, and has been
demonstrated in works such as [8, 10]. The novelty of our approach is that we de-
velop the theory of even-integer continued fractions geometrically using elementary
properties of the Farey tree.

In Sect. 2–4 we prove some of the more fundamental theorems on even-integer
continued fractions using the Farey tree, covering material that is similar (although
not identical) to part of [8]. Sect. 5–6 contain results that appear to be new. To keep
this account concise, we omit certain relevant topics such as the EICF expansions
of quadratic irrationals and the Hurwitz constant for the theta group (see [11] for a
treatment of the latter topic in the spirit of this paper). Furthermore, for the sake of
brevity, we sometimes skip the details of elementary geometric arguments, so that
the reader gets a feel for the geometric approach without getting bogged down in
details.

2 Infinite continued fractions

In this section we prove that every infinite EICF converges. There are several ways to
do this; for example, we could invoke a more general theorem on the convergence of
continued fractions, or we could use algebraic relationships between the convergents
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to estimate the distance between consecutive convergents. Our approach is to use the
Farey tree to establish the following theorem.

Theorem 1. Every infinite EICF converges to an irrational or a 1-rational.

To prove the theorem, consider any infinite EICF, and let γ be the corresponding
infinite path in F with initial vertex ∞. First we will show that γ cannot accumulate
at an ∞-rational. Suppose, on the contrary, that γ does accumulate at a vertex x of F .
By applying an element of Θ to γ if necessary (which will change the initial vertex
of γ) we can assume that x 6= ∞. Furthermore, by removing the first so many terms
from γ we can assume that it does not pass through x (remember that a path passes
through a vertex at most once). Let a be the initial vertex of γ .

Like all vertices of F , the vertex x has infinitely many neighbours, which ac-
cumulate on the left and right of x. Choose any two neighbours u and v such
that u < x < v, and such that the vertex a lies outside the real interval (u,v), as
shown in Fig. 3. Edges of F do not intersect in H, so we see that because γ accu-
mulates at x, it must pass through one of u, x and v. However, because F is a tree,
any path from a to a neighbour of x must pass through x itself, unless that neigh-
bour happens to lie on the unique path between a and x. Providing we choose u
and v sufficiently close to x that they do not lie on this path, we can be sure that γ

passes through x. This contradicts an earlier assumption, so γ cannot accumulate at
a vertex of F after all.

a u x v

Fig. 3 Two neighbours u and v of the vertex x, and another vertex a

We have just seen that the path γ cannot accumulate at an ∞-rational. Suppose,
in order to reach a contradiction, that γ accumulates at two numbers x and y, each
of which is either irrational or a 1-rational, and x < y. Now, the vertices of F that
lie inside the real interval (x,y) are connected in F to the vertices that lie outside
this interval, so there must be an edge of F with one end vertex u inside the interval
and the other v outside. Edges of F do not intersect in H, so we see that because γ

accumulates at both x and y, it must pass through at least one of u or v infinitely many
times, which is impossible. Thus, contrary to our assumption, γ cannot accumulate
at two numbers, so it converges. The proof of Theorem 1 is now complete.

3 Representing real numbers by even-integer continued fractions

The next fundamental result is about the existence and uniqueness of EICF expan-
sions of real numbers. It is unoriginal (see, for example, [8], where there are a num-
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ber of results similar to parts of this one); however, our method of proof using the
Farey tree is original, and it is simple and elegant.

Theorem 2.

(i) The value of any finite EICF is an ∞-rational, and each ∞-rational has a unique
finite EICF expansion.

(ii) The value of an infinite EICF is either irrational or a 1-rational, and

(a) each irrational has a unique infinite EICF expansion,
(b) each 1-rational has exactly two infinite EICF expansions, each of which even-

tually alternates between 2 and −2.

As F is a tree, and the vertices are the ∞-rationals, we can immediately de-
duce statement (i) of the theorem using the correspondence between even-integer
continued fractions and paths in F . We now turn to statement (ii). The first part
of statement (ii) follows from Theorem 1. It remains only to discuss statements (a)
and (b).

We begin this discussion by looking at EICF expansions of the number 1; here
are two of them:

1 = [0,2,−2,2,−2, . . . ] = [2,−2,2,−2, . . . ].

We can check that the value x of the second continued fraction is 1 by observing
that x must satisfy

x = 2+
1

−2+
1
x

,

and the only solution of this equation is x = 1. (The value of the first continued
fraction can be obtained in a similar manner.) The paths in F corresponding to
these two continued fractions are shown marked by arrows in Fig. 4.

Fig. 4 Two paths that converge to 1

In fact, the two EICF expansions that we have found are the only EICF expan-
sions of 1. To see why this is so, let α denote the left-hand path (that passes through
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0) and let β denote the right-hand path (that passes through 2). Observe that in the
Farey graph G , every single one of the vertices in these two paths is connected to 1
by an edge (in fact, they are the full collection of neighbours of 1 in G – see Fig. 1).
Two such edges are shown in Fig. 5, on either side of 1.

Fig. 5 Two neighbours of 1

Suppose now that γ is an infinite path in F from ∞ to 1. Aside from the initial
vertex ∞, this path must lie entirely to the left or entirely to the right of 1 (because
any path in F that passes from one side to the other of 1 must pass through ∞).
Suppose that it lies to the left – the other case can be handled in a similar way. Then
because edges in the Farey graph do not intersect, γ must pass through all of the
vertices of α . There is only one such path that does this, namely α itself, so γ = α .

We summarise this discussion in a lemma.

Lemma 1. The number 1 has precisely two EICF expansions, namely

[0,2,−2,2,−2, . . . ] and [2,−2,2,−2, . . . ].

If x is any 1-rational, then there is an element g of Θ such that g(1) = x. It follows
that g(α) and g(β ) are infinite paths from g(∞) to 1. By connecting ∞ to g(∞) we
obtain two walks from ∞ to 1 (each may have repeated vertices), which we can
modify by adjusting a finite number of terms to give two paths from ∞ to 1. Thus we
obtain two EICF expansions of x. We can reverse this argument to see that these are
the only EICF expansions of x. This gives us the following corollary of Lemma 1.

Corollary 1. Every 1-rational has precisely two EICF expansions.

In the next section we will see that if x and y have infinite EICF expansions,
and g(x) = y for some transformation g in Θ , then it is possible to remove a finite
number of consecutive terms from the start of the EICF expansions of x and y to
give two expansions that agree. It follows that an EICF expansion of a 1-rational
eventually alternates between 2 and −2. (Conversely, it is straightforward to show
that any real number with an infinite EICF expansion that eventually alternates be-
tween 2 and −2 is a 1-rational.) Furthermore, one can check that the two continued
fractions

[b1, . . . ,bn,2,−2,2, . . . ] and [b1, . . . ,bn−1,bn +2,−2,2,−2, . . . ]

have the same value, so the two EICF expansions referred to in Corollary 1 are of
these forms.
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We have now proved statement (b) of Theorem 2, which leaves only state-
ment (a). Let us prove the uniqueness assertion of (a). Suppose then that α and β

are two infinite paths from ∞ to a real number x. The two paths may coincide for a
certain number of vertices: let w be the final vertex for which they do so. Choose an
element g of Θ such that g(w) = ∞. Let α ′ and β ′ be the paths obtained from g(α)
and g(β ), respectively, after removing all vertices that occur before ∞. Then α ′

and β ′ are infinite paths from ∞ to g(x), such that the second vertex u of α ′ is dis-
tinct from the second vertex v of β ′. The vertices u and v are even integers, so there
is an odd integer q (a 1-rational) that lies between them on the real line. Neither α ′

nor β ′ can pass from one side of q to the other, and since they converge to the same
value, that value must be q. Therefore g(x) is a 1-rational, so x is also a 1-rational.

This argument shows that each irrational has at most one EICF expansion. Let us
now show that each irrational has at least one such expansion. One way to do this is
to use an algorithm of a similar type to Euclid’s algorithm: in this case the ‘nearest
even-integer algorithm’ does the trick. However, we prefer to justify the existence
of an expansion using the Farey graph and tree.

We define a Farey interval to be a real interval whose endpoints are neighbouring
vertices in the Farey graph G . If [a/b,c/d] is a Farey interval (where, as usual, the
fractions are given in reduced form), then it is easily seen that

[a/b,(a+ c)/(b+d)] and [(a+ c)/(b+d),b/d]

are both Farey intervals – let us call them the Farey subintervals of [a/b,c/d]. Now,
any irrational x belongs to a Farey interval [n,n+1], where n is the integer part of x,
and by repeatedly choosing Farey subintervals, we can construct a nested sequence
of Farey intervals that contains x in its intersection. The width of one of these inter-
vals [a/b,c/d] is ∣∣∣a

b
− c

d

∣∣∣= ∣∣∣∣ad−bc
bd

∣∣∣∣= 1
bd

,

so we see that the sequence of widths of this nested sequence of Farey intervals
converges to 0.

Let us now restrict attention to those infinitely many Farey intervals I1 ⊃ I2 ⊃ ·· ·
from the sequence for which one of the endpoints of In is a 1-rational vn (and the
other endpoint un must then be an ∞-rational). Let γn be the unique path from ∞

to un in F . Any path in F from ∞ to a vertex inside In−1 must pass through un−1
(because un−1 and vn−1 are neighbours in G , as illustrated in Fig. 6, and edges of G
do not intersect). Therefore γn−1 is a subpath of γn. It follows that there is a unique
infinite path γ that contains every path γn as a subpath. The path γ passes through
all the vertices un, which accumulate at x, so γ must converge to x. This completes
the proof of Theorem 2.



Even-integer continued fractions and the Farey tree 9

un−1 vn−1

γ

Fig. 6 The path γ passes through un−1

4 Serret’s theorem on continued fractions

This section is about a counterpart for even-integer continued fractions of a well-
known theorem of Serret on regular continued fractions. Before we state our theo-
rem, we must introduce the extended theta group, which is the group Θ̃ generated
by the theta group and the transformation r(z) =−z. This group acts on R∞, and it
also acts on the set of ∞-rationals. In fact, elements of Θ̃ preserve adjacency in F ,
so Θ̃ acts on the abstract graph underlying F . We say that two real numbers are
equivalent under the action of Θ̃ if they lie in the same orbit under this action.

Our version of Serret’s theorem for even-integer continued fractions follows. It
is similar to [8, Theorem 1], but not quite the same because even-integer continued
fractions are defined differently in that paper.

Theorem 3. Two real numbers x and y that are not ∞-rationals are equivalent un-
der Θ̃ if and only if there are positive integers m and n such that the EICF expansions
of x and y,

x = [a1,a2, . . . ] and y = [b1,b2, . . . ],

either satisfy am+i = bn+i for i = 1,2, . . . or am+i =−bn+i for i = 1,2, . . . .

Serret’s theorem for regular continued fractions is similar, but uses an extension
of the modular group rather than the theta group, and the possibility am+i = −bn+i
for i = 1,2, . . . is absent.

Crucial to the proof of this theorem is the following lemma.

Lemma 2. If a real number x has an EICF expansion [a1,a2, . . . ], then an EICF
expansion of −x is [−a1,−a2, . . . ].

There is no obvious analogue of this lemma for regular continued fractions be-
cause the coefficients of regular continued fractions are (almost) all positive.

The lemma can be proven with the Farey tree by observing that the paths
from ∞ to x and from ∞ to −x are reflections of each other in the imaginary axis.
However, in this case, we will prove the lemma using Möbius transformations.
Let ta(z) = a+ 1/z, where a is even; this transformation belongs to Θ̃ . Observe
that rtar = t−a. We are given that an EICF expansion of x is [a1,a2, . . . ], which im-
plies that ta1ta2 · · · tan(∞)→ x as n→ ∞. Now
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t−a1t−a2 · · · t−an(∞) = rta1ta2 · · · tan r(∞) = rta1ta2 · · · tan(∞).

So t−a1t−a2 · · · t−an(∞)→ r(x) =−x as n→ ∞. Therefore an EICF expansion of −x
is [−a1,−a2, . . . ].

Let us now prove Theorem 3. Suppose first that y = g(x), where g ∈ Θ̃ . We
wish to prove that there are positive integers m and n such that am+i = bn+i
for i = 1,2, . . . or am+i = −bn+i for i = 1,2, . . . . Since Θ̃ is generated by the trans-
formations r(z) =−z, t(z) = 1/z and h(z) = z+2, it suffices to prove the assertion
when g is each of r, t, h and h−1. It is straightforward to do so when g is one of the
final three transformations, and the remaining case when g equals r is an immediate
consequence of Lemma 2.

For the converse, suppose that x= [a1,a2, . . . ], y= [b1,b2, . . . ] and either (i) am+i =
bn+i for i = 1,2, . . . , or (ii) am+i = −bn+i for i = 1,2, . . . . By replacing x by −x if
necessary, and invoking Lemma 2, we can assume that (i) holds. Observe that

x = ta1 · · · tam([am+1,am+2, . . . ]) and y = tb1 · · · tbn([bn+1,bn+2, . . . ]).

Hence y = tb1 · · · tbnt−1
am · · · t

−1
a1

(x), so x and y are equivalent under Θ̃ . This completes
the proof of Theorem 3.

5 An alternative characterisation of convergents of even-integer
continued fractions

In this section we describe an alternative way to characterise the convergents of the
EICF expansion of any irrational x. The characterisation can easily be adapted to
allow x to be rational.

Theorem 4. A finite ∞-rational u is a convergent of the EICF expansion of an irra-
tional x if and only if there is a 1-rational v adjacent to u in the Farey graph such
that x lies between u and v on the real line.

The second part of the theorem is illustrated in Fig. 7.

u vx

Fig. 7 The irrational x lies between the ∞-rational u and the 1-rational v

If there is a 1-rational v of this type, then the edge in the Farey graph G between u
and v separates ∞ from any vertex of G that is sufficiently close to x on the real line.
So any path from ∞ to w must pass through one of u or v – and if the path lies
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in F , then it must pass through u. In particular, this demonstrates that u must be a
convergent of the EICF expansion of x.

The converse implication of Theorem 4 is a direct consequence of the following
lemma (which is a slightly stronger statement).

Lemma 3. Let u and w be two consecutive convergents in the EICF expansion of an
irrational x, in that order. Then there is a 1-rational v adjacent to each of u and w
in the Farey graph such that both w and x lie between u and v on the real line.

Since u and w are adjacent in F , they are also adjacent in G . There are two other
vertices in G that are adjacent to both u and w, precisely one of which (call it v) does
not lie between u and w on the real line. Let γ be the path of convergents of the EICF
expansion of x. If γ enters the interval between u and v, then it must pass through u
to get there, and it cannot leave the interval. Similar comments apply to the interval
between w and v. Now, u cannot lie in the interval between w and v because if it
did, then, as we have just seen, the path γ would pass through w before it passed
through u. So w lies in the interval between u and v (as illustrated in Fig. 8), and x
lies in that interval too. This completes the proofs of Lemma 3 and Theorem 4.

u w v

Fig. 8 A triangle in the Farey graph

6 Approximating irrationals by rationals

One of the principal uses of continued fractions is in the field of Diophantine ap-
proximation, which is concerned with approximating real numbers by rationals. In
this section we prove an analogue for even-integer continued fractions of a classic
result of Lagrange on regular continued fractions.

We call an ∞-rational a/b a strong ∞-approximant of a real number x if for
each ∞-rational c/d such that d 6 b, we have

|bx−a|6 |dx− c|,

with equality if and only if c/d = a/b.

Theorem 5. An ∞-rational is a strong ∞-approximant of an irrational x if and only
if it is a convergent of the EICF expansion of x.

Lagrange’s theorem for regular continued fractions is similar (see [6, Theo-
rems 16 and 17]), but uses rationals rather than ∞-rationals.
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There is no need to assume that x is irrational in the theorem – subject to minor
modifications of the theorem we can allow x to be any real number – but it is the
irrational case that interests us most, and the proof is marginally simpler with the
assumption that x is irrational.

Fig. 9 Ford circles based at the ∞-rationals

Our proof uses Ford circles, and is similar to the proof of Lagrange’s theorem
from [12]. Ford circles are a collection of horocycles in H used by Ford to study
continued fractions in papers such as [2, 3]. We say that a horocycle is based at an
element x of R∞ if the horocycle is tangent to R∞ at x. Given a reduced rational u =
a/b, the Ford circle Cu is the horocycle based at u with Euclidean radius rad[Cu] =
1/(2b2). There is one other Ford circle C∞, which is the line y = 1 together with the
point ∞. Two Ford circles intersect in at most a single point, and the interiors of the
two circles are disjoint. In fact, one can check that the Ford circles Ca/b and Cc/d are
tangent if and only if |ad− bc| = 1. Therefore the full collection of Ford circles is
a model of the abstract graph underlying the Farey graph: the vertices of this graph
are represented by Ford circles, and two vertices are adjacent if and only if the Ford
circles are tangent. Similarly, the collection of Ford circles based at ∞-rationals is
a model of the abstract graph underlying the Farey tree; this model is illustrated in
Fig. 9. When studying even-integer continued fractions, it is helpful to consider both
the Farey tree and this alternative model of the tree using Ford circles.

We now relate Ford circles to strong ∞-approximants. Let u = a/b. Notice that
if v = c/d, then d 6 b if and only if rad[Cu]6 rad[Cv]. For any real number x, let

Ru(x) =
1
2
|bx−a|2.

Using elementary geometry, it can be shown that Ru(x) is the Euclidean radius of
the horocycle based at x that is externally tangent to Cu. With this terminology, we
can describe a strong ∞-approximant of a real number x as an ∞-rational u such that
for each ∞-rational w with rad[Cu]6 rad[Cw], we have Ru(x)6 Rw(x), with equality
if and only if w = u. We will use this definition of strong ∞-approximants together
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with Theorem 4 to prove Theorem 5. Our proof omits several elementary geometric
details.

Suppose first that u is a convergent of the EICF expansion of x. Theorem 4 tells us
that there is a 1-rational v adjacent to u in the Farey graph such that x lies between u
and v on the real line. If w is an ∞-rational distinct from u with rad[Cu] 6 rad[Cw],
then w must lie outside the real interval between u and v, so Ru(x) < Rw(x), as
illustrated in Fig. 10. Therefore u is a strong ∞-approximant of x.

w u vx

Fig. 10 Ford circles based at u, v and w and horocycles based at x

Conversely, suppose that u is an ∞-rational that is not one of the conver-
gents w1,w2, . . . of the EICF expansion of x. Choose a convergent wn such that
rad[Cwn+1 ]< rad[Cu]6 rad[Cwn ]. By Lemma 3, there is a 1-rational v adjacent to each
of wn and wn+1 in the Farey graph such that both wn+1 and x lie between wn and v
on the real line. On the other hand, the radius of Cu is larger than that of Cwn+1 , so u
does not lie between wn and v, as illustrated in Fig. 11. Therefore Rwn(x) < Ru(x),
so u is not a strong ∞-approximant of x. This completes the proof of Theorem 5.

wn wn+1 v ux

Fig. 11 Ford circles based at u, v, wn and wn+1
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7 Concluding remark

We have seen that a good deal of the theory of even-integer continued fractions
can be understood by viewing such continued fractions as paths in the Farey tree.
It may be of interest to study paths in other maps on surfaces, and investigate their
relationship with continued fractions.
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