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ABSTRACT   

The Charge Coupled Device (CCD) has a long heritage for imaging and spectroscopy in many space astronomy 

missions.  However, the harsh radiation environment experienced in orbit creates defects in the silicon that capture the 

signal being transferred through the CCD.  This radiation damage has a detrimental impact on the detector performance 

and requires carefully planned mitigation strategies.  

The ESA Gaia mission uses 106 CCDs, now orbiting around the second Lagrange point as part of the largest focal-plane 

ever launched.  Following readout, signal electrons will be affected by the traps generated in the devices from the 

radiation environment and this degradation will be corrected for using a charge distortion model.  ESA’s Euclid mission 

will contain a focal plane of 36 CCDs in the VIS instrument.  Moving further forwards, the World Space Observatory 

(WSO) UV spectrographs and the WFIRST-AFTA coronagraph intend to look at very faint sources in which mitigating 

the impact of traps on the transfer of single electron signals will be of great interest. 

Following the development of novel experimental and analysis techniques, one is now able to study the impact of 

radiation on the detector to new levels of detail.  Through a combination of TCAD simulations, defect studies and device 

testing, we are now probing the interaction of single electrons with individual radiation-induced traps to analyse the 

impact of radiation in photon-starved applications. 
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1. INTRODUCTION  

The Charge Coupled Device (CCD) has many uses for both ground-based and space-based science applications.  Prior to 

implementation as the focal plane imager or spectrometer for a space astronomy mission, the CCDs must undergo testing 

to determine their performance following time spent in orbit in the harsh radiation environment often encountered. Over 

the last few decades there has been a large amount of research undertaken into the study of radiation damage on CCDs.  

Whilst much is known about how the performance of the detectors will degrade over time following irradiation, there is 

still much to learn about the exact physical processes involved such as the precise defects formed within the silicon 

lattice and their impact. 

Over more recent years, the science goals of space astronomy missions have become evermore demanding on the 

detectors used.  Not only are the measurements required to be more precise, but the signal levels and signal level 

variations to be observed are getting smaller.  The requirement for more precise, lower signal measurements presents an 

interesting area for research into the impact of the harsh radiation environment on the ability of the detectors to achieve 

the science goals of the missions.  We must develop a deeper understanding of the physical processes behind the 

radiation-induced degradation in performance to both guide the mitigation studies before launch and enable the post-

launch correction techniques.  It is only with this fundamental understanding that we will begin to see the consequences 

of radiation damage on applications that require lower and lower signals and evermore precise measurements.  In the 

next section we discuss a selection of missions in which understanding, and mitigating against, the radiation damage to 

the focal plane CCDs is of great importance. 
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2. OBSERVING LOWER SIGNALS IN SPACE ASTRONOMY 

The European Space Agency’s (ESA) Gaia mission was launched in late 2013 with the aim of charting a three-

dimensional map of our galaxy [1].  The focal-plane array contained 106 e2v CCDs, creating an array totalling one 

billion pixels to catalogue one billion astronomical objects.  Pre-launch testing of Gaia CCDs was carried out by Astrium 

(now Airbus Defence and Space), with data from Radiation Campaign 4 analysed at the Centre for Electronic Imaging at 

the Open University, UK, amongst several other institutions.  This data analysis showed that signals averaging as low as 

one electron per pixel (equivalent to a GRVS = 15.75 spectrum) could be transferred through an irradiated Gaia Radial 

Velocity Spectrometer (RVS) [2] CCD under the Gaia operating conditions [3]. 

Euclid, ESA’s mission to map the geometry of the dark Universe, is due to be launched in 2020 [4].  The Euclid Visible 

Instrument (VIS) will contain a focal plane of 36 e2v CCDs, each of 4k × 4k pixels, each 12 µm square [5-7].  Euclid 

VIS will perform weak gravitational lensing measurements, investigating shape changes in galaxies.  Whilst not photon-

starved, the high precision measurements needed for such a study require changes in signal of a few electrons to be 

measured; understanding the radiation damage impact with high certainty is therefore vital [8-9]. 

The World Space Observatory-Ultraviolet (WSO-UV) is a major international collaboration led by Russia.  The mission 

aims to study the Universe in the 115-310 nm wavelength range, pushing beyond the reach of ground-based instruments 

[10].  The CCD camera system on board will be required to integrate for up to an hour and read out low signal levels 

with very low noise. 

The Wide-Field Infrared Survey Telescope (WFIRST) is a NASA observatory that is designed to perform wide-field 

imaging and slit-less spectroscopic surveys of the near infrared (NIR) sky [11].  The WFIRST Astrophysics Focused 

Telescope Assets (WFIRST-AFTA) will aim to settle questions in exoplanet and dark energy research, advancing topics 

from galaxy evolution to planetary formation and structure [11].  The WFIRST-AFTA coronagraph instrument is 

currently baselined to use the Electron-Multiplying (EM) CCD [12].  The EM-CCD is similar to a standard CCD but 

includes an additional register, the gain register, that enables the multiplication of signal charge by impact ionisation.  By 

increasing the signal before reaching the output node of the device, the signal is increased whilst the readout noise 

remains constant, thus effectively reducing the readout noise.  With a readout noise level reducible to the sub-electron 

level, the EM-CCD is ideal for use in low-signal situations, however, in orbit the detector, as with all the detectors 

mentioned above, will undergo radiation damage that may have a major impact on the performance of the device. 

3. RADIATION DAMAGE 

When a CCD is used in the focal plane of a space astronomy telescope, it will find in orbit a harsh and unforgiving 

radiation environment.  For many missions such as Gaia and Euclid, the radiation environment is dominated by high 

energy protons.  These protons bombard the detector and can cause displacement damage in the silicon, disrupting the 

uniformity of the silicon lattice.  We shall consider here only the effects in n-channel CCDs as these are the most 

common detector type for current space astronomy missions such as those discussed above.  In reality, a similar process 

to that described below occurs in both n-channel CCDs (for signal electrons) and p-channel CCDs (for signal 

holes) [13-15].   

When a high energy proton effectively knocks a silicon atom out of its lattice position, a vacancy (absence of a silicon 

atom) or vacancies are formed.  The vacancy can diffuse through the lattice until it forms a stable defect, be that with 

another vacancy to form a divacancy or with a doping or impurity atom, such as phosphorous (Si-E) or oxygen (Si-A).  

Each defect creates a new energy level between the valence and conduction bands, forming a “trap” in the silicon.  If 

signal electrons pass over a trap site with sufficient electron concentration, the trap can capture an electron.  The 

captured electron will be released by the trap at a later time, with this time depending on the energy level of the trap and 

temperature of the device.  The process of capture and release can be described using Shockley-Read-Hall theory [16-17] 

in which the capture and emission of signal electrons is described by capture and release time constants (τc and τe 

respectively) for each trap species, Equations 1 and 2, such that the probability of capture or emission can be described 

by Equation 3, where σ is the capture cross-section, n is the electron concentration, mdos and mc are the density of states 

and conductivity effective masses of the electron respectively, vth is the thermal velocity, X is an entropy factor 

associated with the entropy change for electron emission from the trap and finally χ is a factor added to allow for any 

field enhanced emission affecting the trap emission time [18]. 
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As shown in Equations 1, 2 and 3, there are many parameters required to describe each trap species in the silicon.  It is 

currently believed that there are five main traps that dominate in n-channel CCDs, Figure 1.  The data shown in Figure 1 

are based on literature studies and experimental testing over many years, with the literature values iterated towards the 

experimental data.  These five energy levels, and the resulting five emission time constants at any given temperature, 

span over ten orders of magnitude in terms of the emission time constants and therefore any operating conditions that are 

chosen will find at least one traps species to be detrimental to performance. 

 

 

Figure 1.  Trap species currently thought to dominate in n-channel CCDs following proton-irradiation. 

 

It is only with a full understanding of each trap species present, and all the related parameters, that one can begin to fully 

appreciate the impact on the imaging and spectroscopy of a CCD in-orbit.  As a result of many previous experimental 

studies, we are building an understanding of the trap species present in silicon after proton irradiation and can use this 

knowledge to develop mitigation techniques through novel operation modes and to help the correction of radiation 

damage effects that remain.  
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4. MITIGATION AND CORRECTION 

In Section 3 we have introduced the theory of the damage caused by radiation to CCDs in space.  Five trap emission time 

constants are shown in Figure 1 along with the associated energy levels (below the conduction band) and cross-sections.  

However, these results are based on an array of different data, taken from emission tails in CCD image data, charge 

transfer efficiency measurements and based heavily on literature results obtained through techniques such as Deep Level 

Transient Spectroscopy (DLTS).  All of these techniques either observe a population of many traps in a piece of silicon 

(such as in DLTS) or observe the effect of many traps during readout through the CCD.  In order to produce the most 

effective mitigation and correction strategies, it is vital to know about each trap species in much greater detail. 

The most vital characteristics required are the number density of the traps in the device, the emission time constant at the 

temperature of operation and the capture cross-section (or probability of capture).  It is also essential to combine this 

information, which is in itself interlinked, with knowledge of the charge storage geometry, that is, how the electron 

charge cloud is situated in the device, its volume and charge density.  With this information it is possible to develop 

mitigation techniques to help reduce the effect of radiation damage on the images received from space and to develop 

effective correction algorithms to repair any damage to images that remains. 

4.1 Mitigation techniques 

Before the CCD is placed in-orbit, extensive research is required to determine the impact of radiation on the sensor’s 

performance.  As part of these studies, it is important to develop mitigation techniques that will minimise the impact of 

the radiation damage on the images that are to be taken with the aim of achieving the science goals of the mission.  The 

precise operating conditions of the CCD, from temperature to clock timings, must be optimised to reduce not only the 

readout noise and dark current, but also the Charge Transfer Inefficiency (CTI).  Several methods have been developed 

over recent years, primarily as part of studies for the Euclid mission, that enable the impact of radiation damage to be 

reduced.  These methods do not change the inherent damage caused to the silicon lattice, but because of the 

understanding developed of how charge interacts with different trap species in the device, the impact of the traps can be 

reduced. 

Studies in 2011 through 2012 by Gow et al. [8] and Hall et al. [19] investigated the impact of clock timings on CTI.  The 

timings of interest were those of the transfer from electrode-to-electrode within a pixel, with the pixel-to-pixel timing 

fixed by the readout speed of the device.  It was noted that for a three-phase readout register, “burst mode clocking”, 

transferring charge quickly from phase 1 through 2 and 3 and back to 1 and hence maximising the sampling time for 

reduced readout noise, suffered from CTI that was approximately three time worse than that of “video mode” clocking, 

transferring charge with more even timings between electrodes.  Using knowledge of the properties of the Si-A trap in 

silicon, this factor of improvement found with video mode over burst mode could be explained and a further optimisation 

achieved.  A further improvement of over 20% was achieved through “even mode clocking”, keeping the dwell time 

under each electrode the same.  By keeping the charge as long as possible under each electrode and providing no faster 

transfers, the probability of any captured charge being released back into the charge packet from which it was captured is 

maximised, thus minimising the CTI under any set temperature and readout frequency. 

Through an understanding of how charge is stored and transferred in a CCD, built up through use of Silvaco TCAD 

simulations [20-25], it is possible to “encourage” trapped charge to be emitted back into the charge packet from which it 

was captured, as detailed in Murray et al. (2013) [26].  In a standard device with equal width electrodes, and assuming 

traps are randomly distributed, if a charge packet passes from an electrode under which a trap is present to the 

neighbouring electrode (as part of the standard readout of the device) then if the trap emits in the required time period, 

there is a 50% probability that the trap will emit the capture electron back into the charge packet from which it was 

captured and 50% probability into the next pixel causing a charge tail to form.  It is favourable, for reduced CTI, that the 

electron is emitted back into the charge packet from which it was captured such that there is no net loss of signal.  

Through a novel clocking method, in which several clock levels are used to shape the potential structure in the device, it 

is possible to reduce the number of traps that would result in deferred charge by a factor of two or more. 

Through use of these, and other, mitigation strategies with carefully selected operating temperatures and readout 

frequencies, it is possible to manipulate the effect of capture and emission of signal by traps in the device.  If a 

combination of mitigation strategies are appropriately combined, it can be possible to dramatically reduce the CTI 

without applying additional radiation shielding or orbital parameters.  However, whilst the impact of radiation can be 
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reduced, some CTI effects will remain, and for this purpose it is necessary to develop appropriate correction algorithms 

to enable software post-processing corrections to be made to the images received from in-orbit.  

4.2 Correction algorithms 

In order to correct against the remaining charge loss and trailing caused by radiation damage in-orbit, it is possible to use 

post-processing, effectively “moving flux back to where it belongs” [27].  There has been extensive research into such 

corrections for the Hubble Space Telescope (HST), with the most recent improvements detailed in Massey et al. (2014) 

[27] and earlier work referenced there within.  In summary, the images received from in-orbit are put through a charge 

transfer simulation, effectively adding further radiation damage effects that should ideally be identical to those in the 

device itself.  Through an iterative process of adding further charge trailing and subtraction of successive images, it is 

possible to   reduce the impact of the radiation damage on the image by up to 98% [27].  The ability of the process to 

correct the images is based very strongly on the ability of the simulation of charge transfer to accurately match that 

experienced in the devices in-orbit. 

Moving forwards towards future missions, it is clear that the correction required is becoming evermore demanding.  For 

Euclid, a 99% correction is required on CTI for the faintest galaxies towards the end of the mission [28].  In order to 

achieve this correction, more detail is required about the trap parameters and it is towards this aim that we discuss below 

the investigation of single defects and the charge storage geometry. 

5. INVESTIGATING SINGLE DEFECTS 

Whilst techniques such as DLTS can give a view of a population of traps, when we are observing small signals in a 

CCD, the precise interactions between an electron and each single trap becomes of vital importance.  For large signals it 

is practical to consider the average effect of a population of traps, with the deferred charge tail allowing correction 

techniques to effectively recombine deferred charge with the original signals.  However, when we consider a single 

electron being transferred, the notion of a deferred charge tail becomes meaningless.  If a single electron is captured and 

later released then its position in the image will change with no evidence remaining of the original detection location.  

Therefore, as we approach the lowest signal levels, a deep and fundamental understanding at the single trap level is 

essential, both for guiding the development of mitigation techniques and for post-processing correction techniques. 

In order to investigate single defects in the CCD a technique has been developed based on the pocket-pumping technique 

described in Janesick (2001) [29].  Using the technique of “trap-pumping” [30-31], so called because we are now 

considering individual traps rather than potential pockets, we can locate individual traps to the sub-pixel level and get a 

measure of their efficiency under the operating conditions of the device.  The repeated transfer of a flat field of signal 

charge to the neighbouring pixel and back under the same clocking schemes as used in standard operation generates a 

high-low signal pair (a dipole) at the location of a trap, Figure 2 (left).  The direction of the dipole (high-low or low-

high) is determined by the position of the trap inside the pixel.  The amplitude of the dipole provides an indication of the 

capture and release efficiency of each individual trap in the device and it is expected that this may provide an input to 

much more accurate correction algorithms in the future [30]. 

An alternative configuration of the trap-pumping technique, described in [32-34,14], allows the probing of specific trap 

parameters in the time domain.  A flat field of signal is clocked back and forth between neighbouring pixels at a constant 

frequency, keeping the dwell time under each phase tph constant.  Noting the amplitude of any dipoles in the image, each 

representing the location of a trap, one can then “pump” at a different clocking frequency (different tph) and repeat across 

a range of timings.  In this way it is possible to scan the resonance of a trap in the time domain and gain a much fuller 

picture of the trap properties for each individual trap
1
 that will impact the CTI of the device. 

5.1 Number density of defects 

Through the use of trap-pumping over a range clocking frequencies, with the possible addition of changing the 

temperature to speed up or slow down the emission time constants of a trap species, it is possible to determine the exact 

                                                 
1
 Provided that the radiation level is not so high that there are multiple traps per pixel.  Some traps may require very low 

or very high clocking frequencies to enable the full investigation of their properties. 
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number of defects and their locations within the device.  The peak resonance in the time domain for each dipole can be 

found such that the population of traps can be separated into a series of different trap species.  For each species one can 

then determine the precise locations of any traps in the device.  This information can feed directly into the mitigation 

strategies and the correction techniques described above. 

 

       

Figure 2.  Left:  Example of the dipoles one might expect to see in the presence of traps in a CCD [33].  Right:  Resonance for a 

single trap, with each data point representing the amplitude of the dipole at the specified clock timing, shown across four 

temperatures [33].  The peak in the resonance curve at each temperature is given by the maximum of Equation 4, that being 

tph = 2ln(τe), where τe is the emission time constant at the given temperature. 

 

5.2 Emission time constants 

For a given resonance curve of a trap, Figure 2 (right), the maximum value is given by the maximum value of the 

function shown in Equation 4, as derived in Hall et al. [32], where tph is the dwell time under each phase during 

pumping, τe is the emission time constant of the trap, N is the number of pumping cycles (number of transfers to 

neighbouring pixel and back to the start) and, to a first approximation, Pc is the probability of capture for the trap 

species. 
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Equation 4 therefore gives a tph value for the peak of the resonance signal of 2ln(τe).  The emission time constant can thus 

be found for each trap in a CCD and mapped across a range of temperatures to find the energy levels of the traps.  In this 

way, a population of traps can be separated into the different species of traps present. 

The results achieved so far using this method, tested on both n-channel and p-channel CCDs to probe electron and hole 

traps respectively, provide trap emission time constants with uncertainties of only a few percent [32-34,14].  Not only 

does this technique allow the properties of each trap to be determined independently, but it also allows a new level of 

detail to be examined in terms of the spread of emission time constants and energies for a population of what is believed 

to be the same trap species.  A range of emission time constants of approximately one order of magnitude has been seen 

for what is believed to be a single trap species, such as that shown in Figure 3, with the reason for this variation still 

under investigation. 

5.3 Capture dynamics 

The resonance curves, as shown in Figure 2 (right), follow the form of Equation 4.  The parameter Pc is, to a first 

approximation, the probability of capture for the trap in question.  Through the fitting of this equation to the resonance 
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curve, one can investigate the capture dynamics of each individual trap in the CCD.  Furthermore, by repeating the 

experiment at varying flat-field signal levels, one can determine the capture dynamics as a function of signal size.  

However, to fully understand the results obtained, one must first investigate the way in which the charge cloud sits 

within the CCD, how the electron density varies and how this affects the dynamics of charge capture by traps. 

 

 

Figure 3.  Emission time constants for a series of traps, all believed to be the Si-A, with each line representing the measurements at 

four different temperatures for one individual trap in the same device [33].  The lack of “zig-zagging” of the lines from one 

temperature to the next indicates that the spread in emission time constants is most likely a real effect and not due to uncertainties or 

systematic effects.  The source of this variation is currently under investigation. 

 

6. CHARGE STORAGE GEOMETRY 

As discussed above, the charge storage geometry within the CCD will have a major impact on the CTI effects observed.  

The volume of silicon occupied by the signal charge with sufficient electron density for trapping to occur will determine 

the number of traps that the signal electrons will encounter as they pass through the device.  Assuming a uniform 

distribution of traps in the silicon, the number of traps “seen” by the signal charge will scale linearly with the volume 

occupied (at sufficient electron density).  Furthermore, the electron density at the trap location will determine the 

probability of capture, loosely defined in Equation 4. 

Simulations have been carried out to investigate the charge storage characteristics in a variety of CCDs using Silvaco 

TCAD software [35] in three dimensions, with an example two-dimensional cut shown in Figure 4 (left).  In order to 

achieve the best results possible, the simulations must include full processing information which has been obtained from 

e2v for the simulations detailed below through the collaborative link between e2v and the Open University.  The 

simulations have been validated against experimental data where possible to give a level of confidence in the results 

presented. 

Using the electron density simulated in Silvaco along with parameters gained from fitting Equation 4, it is possible to 

gain an indication of the location of each trap within the charge cloud.  For example, if a trap has a high value for Pc at 

low signal levels then the trap is most likely to be found within the centre of the charge cloud.  If a trap has a low value 

for Pc that increases slowly as the signal level increases then this trap is most likely to be towards the outer edges of the 

charge cloud. 
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Figure 4.  Left:  Cut through 3D Silvaco simulation of charge storage in a CCD [23].  Right:  One-dimensional profile through the 

left-hand charge storage simulation, showing the steep increase in density (noting the logarithmic electron density scale) [23]. 

 

In order to better represent the three-dimensional characteristics of the charge cloud, it would be favourable to be able to 

define the volume occupied by the signal (with sufficient electron density for trapping to occur) with a simple function.  

One such method to obtain a functional form for the charge storage variation with signal size is described in two papers 

by Clarke et al. (2012) and in Hall et al. (2012) [23-24,36].  For any given trap species and dwell time under an 

electrode, one can convert the electron density into a probability of capture using Shockley-Read-Hall theory (Section 3).  

In this way, it is possible to convert from electron concentration versus distance, as shown in Figure 4 (right), to the 

probability of capture versus distance.  The sharp increases in electron concentration are exaggerated further still in 

probability space to give a relatively clear indication of trappable charge cloud size in each dimension.  A simple cuboid 

model can then be created by multiplying the three dimensions, giving rise to the functional form shown in Figure 5. 

Previous studies have modelled the resulting function through the use of a power law [37], such that the volume 

occupied varies with signal to the power β.  In our own studies, however, we propose the use of an additional parameter 

to describe the specific behaviour observed at lower signal levels, Equation 5, where α, β and ɣ are all constants that will 

vary from one trap species and dwell time to another. 

 ( )volume "seen" by charge cloud = signal +
β

α γ        (5) 

In order to gain further trust in the simulations and the functional form of Equation 5, we have compared the raw 

function to experimental data, Figure 6, and run a Monte Carlo charge transfer simulation that makes use of the function 

for charge capture dynamics, Figure 7, as detailed in Hall et al. (2012) [23].  The consistency between the proposed 

functional form of Equation 5 and the experimental data gives confidence in the simulations and allows further analysis 

to be made of the impact of this functional form on radiation damage effects in CCDs.  

One of the most fascinating insights that such modelling delivers is the impact of dwell time on the volume of silicon 

“seen” by the charge packet with sufficient probability of capture for charge to be lost to traps.  As the dwell time 

increases, using Shockley-Read-Hall theory, the probability of capture increases such that the volume increases, Figure 

5.  When we discuss dwell time, we refer to the time spent by the charge packet in any one location.  The integration 

time is therefore generally a period in which there is a very long dwell time (in relation to the transfer times during 

readout).  For Euclid, for example, the integration time is several hundred seconds.  For Gaia, the Time Delay and 

Integration (TDI) mode of operation means that any background signal will, on average, be present in approximately half 

the device at all times (the background will only sit under the electrodes that are “on” at any one time).  We can use this 

information to explain why the presence of a low-level background signal can act to fill traps for much higher signals.  

During integration, or under TDI mode operation, the low-level background signals will fill traps in a volume that is 

larger than that in which they would fill traps during faster readout.  Once the charge starts to be read out of the device, 
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the larger signals that are being transferred through the device see a smaller volume than that experienced during 

integration and the low-level background signals will have filled many of the traps that these signals encounter.  It is 

important to note, however, that during a static integration, the background will only provide this shielding effect in the 

silicon under electrodes that are “on” during integration; the barrier phase traps will remain empty until a higher signal 

passes through them during readout. 

 

    

Figure 5.  The volume of “trappable” signal within a pixel as a function of signal level, as described in the main text.  The dashed line 

shows the volume for one trap species at one temperature and for one dwell time, with the functional form shown in the lower right 

equation.  As the dwell time increases, the curve shifts upwards as indicated.  

 

    

Figure 6.  Charge loss per transfer for increasing signal levels.  Experimental data from Extended Pixel Edge Response (EPER) data 

is shown by the points, with the functional form of a simple power law shown by the dashed line (i.e. without the additional ɣ 

parameter).  The power law is insufficient to accurately map the functional form of the data and the ɣ parameter is required. 
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Figure 7.  Fractional charge loss measurements (dots) from experimental data [38] at two different radiation levels of 8 × 109 and  

1.6 × 1010 protons per cm2 (50 MeV equivalent) compared to the Monte Carlo charge transfer simulation (black crosses) described in 

Hall et al. (2012) that uses the functional form shown in Equation 5, adapted from [23]. 

 

7. CONCLUSIONS 

When the readout of large signals is affected by radiation damage, the smearing observed can be corrected through the 

techniques discussed in Section 4.2.  However, for low signal levels, the process must be considered more carefully.  

Taking the signal down to the single electron level, one cannot then consider a single image to show an object being 

smeared against the direction of transfer through the CCD.  A single electron will either make it through the device 

without being captured or it will be effectively moved in position through the process of capture and emission by a trap.  

In the case where the electron is trapped and emitted, it is only through the taking of many images that an image may 

begin to be reconstructed and an averaged “charge tail” allowed to form.  It is therefore of greatest importance that all 

possible mitigation techniques are considered. 

This is not to say that small signals cannot be transferred through a radiation damaged device.  The results discussed in 

Section 2 from the pre-launch radiation studies for Gaia demonstrated that small signals, averaging less than one electron 

per pixel, could be transferred through the CCD, albeit for an extended “block” of signal and averaged over many 

frames.  The results observed from the pre-launch testing for Gaia demonstrate the importance and significance of 

performing sufficient characterisation and optimisation before launch for any space astronomy mission using CCDs. 

Further to the mitigation and correction strategies previously described, there are several additional options that might be 

considered.  A Supplementary Buried Channel (SBC) can be added to the CCDs, similar to that used for the Gaia 

devices.  The SBC effectively creates a very narrow channel with a small capacity through which small signals can be 

transferred.  The smaller volume that is occupied by these small signals results in the signal “seeing” fewer traps and 

therefore suffering less from the radiation induced traps present in the main buried channel of the device.   

Looking towards the future, studies are underway to investigate the properties of various silicon defect complexes, 

specifically looking for those that are formed more favourably than, for example, the Si-A [39-41].  This research, 

combining hybrid density functional theory with the trap-pumping studies described in Section 5, whilst in its early 

stages, has the potential to further improve mitigation against radiation-induced CTI through the use of isovalent doping. 
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Finally, it should be noted that the majority of studies undertaken in the literature are performed following room-

temperature irradiations.  Devices are often irradiated at room temperature and unconnected to the drive systems to be 

later cooled to the temperature of the mission and characterised for parameters such as CTI.  In orbit, however, the 

situation is somewhat different.  The device will usually be cold and running during the extended irradiation over the 

course of the mission.  For this reason, we are moving towards the use of cryogenic irradiations, that is, to irradiate the 

device whilst running and cold, keeping the device cold from the point of irradiation until the testing is completed.  This 

is of course a more complex procedure than the standard room temperature irradiation, but the results observed, such as 

in Gow et al. (2015) [42] and Murray et al. (2014) [13], suggest that this is an important change to be made to the test 

procedure to get a more realistic indication of the performance degradation that might be expected in-orbit. 
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