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Interdepartmental Neuroscience Program and Department of Psychiatry, Yale University School of Medicine, New Haven,

Connecticut, USA

Abstract

Extracellular signal-regulated kinase (ERK) is activated in vivo

in a number of brain areas by nicotine and other drugs of

abuse. Here we show that nicotine stimulation of cultured

mouse cortical neurons leads to a robust induction of ERK

phosphorylation that is dependent on nicotine concentration

and duration of exposure. Calcium/calmodulin-dependent

protein kinase II activity is necessary for nicotine-induced ERK

phosphorylation and neither cAMP-dependent protein kinase

or protein kinase C appear to be involved. Activity of gluta-

mate receptors, L-type voltage-gated calcium channels,

and voltage-gated sodium channels are also required for

nicotine-induced ERK phosphorylation. Nicotine-induced ERK

phosphorylation was inhibited by high concentrations of

mecamylamine, however it was not blocked by other broad

nicotinic acetylcholine receptor (nAChR) inhibitors (including

hexamethonium and chlorisondamine) or nAChR subtype

selective inhibitors (such as methyllycaconitine, alpha-bun-

garotoxin, dihydro-beta-erythroidine, and a-conotoxin Au1B).

In accord with these pharmacological results, nicotine-induced

ERK phosphorylation was normal in primary cultures made

from b2 or a7 nAChR subunit knockout mice. The a3/b4

nAChR agonist cytisine did not induce ERK phosphorylation

suggesting that a3/b4 nAChRs were not involved in this

process. Taken together, these data define a necessary role

for glutamatergic signaling and calcium/calmodulin-dependent

protein kinase II in nicotine-induced ERK phosphorylation in

cortical neurons and do not provide evidence for the involve-

ment of classical nAChRs.

Keywords: cortical neurons, primary neuronal cultures.
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Nicotine, like many other drugs of abuse, is known to
activate extracellular signal-regulated kinase or mitogen-
activated protein kinase (ERK or MAPK) in vivo (Brunzell
et al. 2003; Valjent et al. 2004). Although nicotine-induced
ERK phosphorylation has been demonstrated in vivo
(Brunzell et al. 2003; Valjent et al. 2004), in cell culture
lines (Nakayama et al. 2001; Dajas-Bailador et al. 2002;
Huang et al. 2005), and in cultured hippocampal neurons
(Dajas-Bailador et al. 2002) there is not a clear understand-
ing of the molecular signaling pathway that results in
nicotine-induced ERK phosphorylation in cortical neurons.

Acute injection of many drugs of abuse (including
nicotine) produces a characteristic neuronal pattern of ERK
phosphorylation, however co-injection of the dopamine D1

receptor antagonist SCH23390 significantly attenuates
drug-induced ERK phosphorylation in many brain areas.
Interestingly, with co-injection of nicotine and SCH23390,
significant increases in ERK phosphorylation remained in
multiple cortical regions, indicating that nicotine-induced
ERK phosphorylation in the cortex is dopamine D1 receptor-
independent (Valjent et al. 2004). Therefore, nicotine may
act directly on cortical neurons to yield increased ERK
phosphorylation, but the mechanism of this effect is currently
unknown.

Investigations into the mechanism of nicotine-induced
ERK phosphorylation have been performed in cell culture
systems where the molecular components of signaling
pathways are more accessible. ERK phosphorylation has
been demonstrated after cAMP-dependent protein kinase
(PKA), protein kinase C (PKC), and calcium/calmodulin-

Received February 7, 2007; revised manuscript received May 31, 2007;
accepted June 4, 2007.
Address correspondence and reprint requests to Marina R. Picciotto,

Department of Psychiatry, Yale University School of Medicine, 34 Park
Street – 3rd Floor Research, New Haven, CT 06508, USA.
E-mail: marina.picciotto@yale.edu
1The present address of Rebecca C. Steiner is the Department of Psy-
chology, School of Life Sciences, University of Sussex, JMS Building,
Falmer, Brighton, BN1 9QG, UK.
Abbreviations used: AIP, autocamtide-2-related inhibitory peptide;

AP5, D-2-amino-5-phosphonovaleric acid; CaMK, calcium/calmodulin-
dependent protein kinase; CNQX, 6-cyano-7-nitroquinoxaline-2,3-di-
one; DHbE, dihydro-beta-erythroidine; ERK, extracellular signal-regu-
lated kinase; FBS, fetal bovine serum; MAPK, mitogen-activated protein
kinase; MLA, methyllycaconitine; nAChR, nicotinic acetylcholine
receptor; NMDA, N-methyl-D-aspartic acid; PBS, phosphate-buffered
saline; PKA, cAMP-dependent protein kinase; PKC, protein kinase C;
SDS, sodium dodecyl sulfate; TBS-T, Tris-buffered saline with 0.05%
(v/v) Tween-20; TTX, tetrodotoxin; a-BTX, alpha-bungarotoxin.

Journal of Neurochemistry, 2007, 103, 666–678 doi:10.1111/j.1471-4159.2007.04799.x

666 Journal Compilation � 2007 International Society for Neurochemistry, J. Neurochem. (2007) 103, 666–678
� 2007 The Authors



dependent protein kinase (CaMK) activation (Sweatt 2004),
however which of these pathways is activated in cortical
neurons has not been defined. Nicotine-induced ERK
phosphorylation involves a7 nicotinic acetylcholine receptor
(nAChRs) and PKA in SH-SY5Y cells and hippocampal
neurons (Dajas-Bailador et al. 2002), and a3/b4 nAChRs
and CaMK in PC12 cells (Nakayama et al. 2001, 2006).

In the current study, we sought to define the molecular
pathway involved in D1 dopamine receptor-independent,
nicotine-induced ERK phosphorylation in cortical neurons.
We addressed this question in experiments using primary
cortical neuronal cultures. Interneuronal communication in
these cultures may play a vital role in nicotine-induced
ERK phosphorylation. Nicotine can increase release of
many different classes of neurotransmitters, including
glutamate (Toth et al. 1992; Gray et al. 1996), GABA
(Lena and Changeux 1997), dopamine (Marshall et al.
1996), glycine (Lopez et al. 2001), and norepinephrine
(Leslie et al. 2002). In primary hippocampal cultures,
nicotine has been shown to enhance release of glutamate
and GABA (Radcliffe et al. 1999). Therefore, nicotine-
induced ERK phosphorylation in primary cortical neuronal
cultures may be subsequent to nicotine-induced neurotrans-
mitter release.

In the experiments described here, we demonstrate that
nicotine does increase phosphorylation of ERK in primary
cortical neuronal cultures, characterize nicotine-induced
ERK phosphorylation over a range of concentrations and
durations of exposure, explore the intracellular signaling
pathway which results in ERK phosphorylation after primary
cortical neuronal cultures are exposed to nicotine, examine
the contribution of glutamate receptors to nicotine-induced
ERK phosphorylation, and examine the contribution of
specific nAChR classes to nicotine-induced ERK phos-
phorylation.

Experimental procedures

Animals

C57Bl/6J (Jackson Labs, Bar Harbor, ME, USA), a7 nAChR

subunit knockout mice, and b2 nAChR subunit knockout mice were

used to generate primary cultures and were genotyped by tail biopsy

and PCR as has been described previously (Picciotto et al. 1995;
Herber et al. 2004). Knockout mice were backcrossed more than 10

generations onto the C57Bl/6J background. Mice from Jackson Labs

were given at least 7 days to habituate to the colony room before

any experimental manipulations were initiated. Mice were between

2- and 7-months-old at the time of use. All mice were group housed

with a maximum of five per cage in a colony room maintained at

22�C on a 12 h light/dark cycle (lights on at 7:00 AM), with food and

water available ad libitum, unless otherwise noted. All animal

procedures were in strict accordance with NIH Care and Use of
Laboratory Animals Guidelines and were approved by the Yale

University Animal Care and Use Committee.

Reagents

Nicotine hydrogen tartrate (Sigma, St Louis, MO, USA), S(-)

nicotine and R(+) nicotine (Chemische Laboratorien, Dr Christoph

Mark, Worms, Germany) or cytisine (Sigma) were dissolved in

phosphate-buffered saline (PBS) pH 7.4 and placed at )20�C until

use. Inhibitors were incubated with the cultures for the following

durations before nicotine stimulation: mecamylamine (20 min;

Sigma), methyllycaconitine (MLA, 20 min; Sigma and Calbiochem,

San Diego, CA), a-bungarotoxin (a-BTX, 20 min; Sigma and

Calbiochem), dihydro-beta-erythroidine (DHbE, 20 min; Sigma),

U0126 (20 min; Calbiochem), H89 (30 min; Calbiochem), KT5720

(30 min; Calbiochem), Rp-cAMPs (a cAMP analog which decreases

PKA activity, 15 min; Sigma), Gö6983 (30 min; Sigma), BAPTA

(15 min; Calbiochem), nifedipine (15 min; Sigma), diltiazem

(15 min; Sigma), dantrolene (30 min; Sigma), KN93 (30 min;

Sigma), Stö609 (60 min; Sigma), autocamtide-2-related inhibitory

peptide (AIP, 60 min; Sigma), tetrodotoxin (TTX, 20 min; Calbio-

chem), D-2-amino-5-phosphonovaleric acid (AP5, 20 min; Calbio-

chem), and 6-Cyano-7-nitroquinoxaline-2,3-dione (CNQX, 15 min;

Sigma). Most inhibitors were used at a stock concentration of 1000·
of the desired stimulating concentration.

Cell culture

Mixed cortical cultures were made from wild type, a7 knockout, or

b2 knockout mice at embryonic day 17 as described previously

(Stevens et al. 2003). Wild type and b2 knockout cultures were

made from an entire litter, whereas a7 knockout cultures were made

from single fetal mice generated from heterozygous matings and

were genotyped after plating because pregnancies could not be

obtained from a7 knockout · knockout matings. Neurons were

dissociated by incubating minced cortices in papain, dispase and

DNAse (0.01% papain; Worthington, Freehold, NJ, USA), 0.1%

dispase (Roche Products, Hertfordshire, UK), and 0.01% DNaseI

(Sigma) in Hanks buffered salt solution (Invitrogen, San Diego, CA,

USA) with penicillin-streptomycin (Invitrogen) for 15 min at 37�C,
triturating cells with a glass pipette, incubating for 15 min at 37�C,
and triturating cells with a fire-polished glass pipette. The cell-

suspension was centrifuged at 500 g for 5 min at 25�C and the cell

pellet was resuspended in Neurobasal medium (Invitrogen) supple-

mented with 10% fetal bovine serum (FBS), B27 supplement

(Invitrogen), sodium pyruvate, L-glutamine, penicillin–streptomy-

cin, and HEPES. Dissociated cortical neurons were cultured on

poly-L-lysine coated six-well plates at 0.65 · 106 cells/2 mL/well.

Cells were maintained at 37�C in a humidified atmosphere of 5%

CO2. Within 20 h of plating, the media was removed and replaced

with supplemented Neurobasal medium without FBS. Cells were

then fed on day 7 in vitro (1 mL of medium was removed per well

and replaced with 1.5 mL of supplemented Neurobasal medium

without FBS) and stimulated on day 14 in vitro. Care was taken in

dissection to remove all meninges and choroid plexus and use of

embryonic day 17 fetal mice, thus glial cells represented <5% of the

overall population.

Culture stimulations and sample collection

On day 14 in vitro media was removed and 1.5 mL media was

quickly replaced to ensure a consistent stimulating volume.

Inhibitors were added prior to nicotine stimulations (as detailed

above) and were present during nicotine stimulations. Immediately
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following stimulation, the media was removed, wells were washed

with ice-cold PBS, PBS was removed by suction and cell lysis

buffer [50 mmol/L Tris (pH 7.4), 1 mmol/L EDTA, 1 mmol/L

EGTA, 1% sodium dodecyl sulfate (SDS), and 1 mmol/L PMSF]

was added. The plates were then incubated at 4�C on a tilting shaker

for at least 20 min before the lysate was collected and frozen at

)80�C until western blotting.

Western blotting

Approximately 10 lg of each sample was separated by 10% SDS–

polyacrylamide gel electrophoresis and transferred to nitrocellulose

membranes. Blots were blocked with 5% milk in Tris-buffered

saline with 0.05% (v/v) Tween-20 (TBS-T) for 60 min at 25�C,
washed three times in TBS-T for 8 min, and then incubated at 4�C
overnight in primary antibody diluted in TBS-T [anti-ERK (rabbit)

and/or anti-pERK (mouse): 1 : 2000; Cell Signaling Technology,

Danvers, MA, USA]. Blots were washed three times in TBS-T and

incubated for 60 min at 25�C in secondary antibody (Alexa-Fluor

680 goat anti-mouse IgG: 1 : 5000; Molecular Probes, Invitrogen,

Carlsbad, CA, USA and IRDye800 goat anti-rabbit IgG: 1 : 5000;

Rockland Immunochemicals, Gilbertsville, PA, USA) in TBS with

0.1% Tween and 0.001% SDS. Blots were washed three times in

TBS-T and two times in water before scanning with an Odyssey

Infrared Scanner (Li-Cor Biosciences, Lincoln, NE, USA). The

scans were performed with the following scan parameters: inten-

sity = 5.0, for each wavelength (700 and 800 nm), resolu-

tion = 169, quality = medium, and focus offset = 0 mm. The

scanned intensity of the two secondary antibodies’ fluorophores

was then used by the Odyssey Software v1.2 (Li-Cor Biosciences)

to produce individual images for each wavelength, and a pseudo-

color overlay of the 700 (red) and 800 nm (green) scans. The area of

each band was selected for quantitation and the integrated intensity

of the 700 and 800 nm wavelengths was measured by the Odyssey

Software without investigator manipulation. Since Li-Cor uses the

absolute intensities for quantitation, the pseudocolor images are

reflections of the absolute value measured by the program. The

integrated intensity values were then exported to Excel (Microsoft,

Redmond, WA, USA) for further analysis.

Statistical analyses

At least two replicates (wells) for each condition were obtained from

each culture and averaged before statistical analysis. Each ‘n’
represents an independent culture (the average of multiple wells

within that culture). All statistical analyses were carried out using

SPSS v12.0 (SPSS Inc., Chicago, IL, USA). ANOVA tests were

performed for nicotine, cytisine, and each inhibitor with its

corresponding control groups. All significant main effects and

interactions were followed up with the least significant difference

post hoc test. A value of p < 0.05 was considered significant for all

comparisons.

Results

Nicotine induces ERK phosphorylation in a

concentration- and time-dependent manner

The ability of nicotine to increase ERK phosphorylation in
primary cortical cultures has not been characterized, there-

fore we examined nicotine-induced ERK phosphorylation
across a range of concentrations of nicotine and durations of
exposure (Fig. 1a and b). Acute nicotine application induced
a rapid increase in ERK phosphorylation in cultured cortical
neurons that was concentration- and time-dependent. The
highest level of ERK phosphorylation was observed at the
first time point (5 min) and then decayed as the duration of
nicotine exposure increased to 120 min. ERK1 (p44 ERK)
and ERK2 (p42 ERK) exhibited a similar pattern of
phosphorylation, however ERK2 exhibited greater phosphor-
ylation and was chosen for analysis in all subsequent
experiments. Total levels of ERK1 (p44 ERK) and ERK2
(p42 ERK) did not change under any concentration or
exposure time for nicotine (data not shown). Phosphorylated
ERK2 was normalized to total ERK2 and expressed as a
ratio; an ANOVA showed main effects of nicotine concentra-
tion [F(3,167) = 20.157, p < 0.001] and time of exposure to
nicotine [F(4,167) = 8.976, p < 0.001] on pERK/ERK.

Levels of phosphorylated ERK did not change signifi-
cantly following application of 1 lmol/L nicotine, however
concentrations of 10 lmol/L nicotine or above resulted in
significant increases in phosphorylated ERK. For the
10 lmol/L nicotine concentration, phosphorylated ERK
returned to basal levels by 60 min. However, application of
50 and 100 lmol/L nicotine extended the duration of ERK
phosphorylation beyond 60 min, returning to basal levels by
120 min.

The maximal increase in ERK phosphorylation was
observed with 100 lmol/L nicotine applied for 5 min. This
condition was therefore chosen for experiments to investigate
the signaling pathway leading from nAChR activation to
the phosphorylation of ERK. As expected, pre-treatment
with the ERK kinase [MAPK (or ERK) kinase] inhibitor
U0126 effectively blocked the ability of nicotine to cause
an increase in ERK phosphorylation [F(3,8) = 5.282, p =
0.027] (Fig. 1c).

CaMKII is an upstream kinase involved in nicotine-

induced ERK phosphorylation in primary cortical

cultures

To identify the upstream kinase(s) necessary for nicotine-
induced ERK phosphorylation, we examined the effect of
multiple kinase inhibitors on the ability of nicotine to increase
ERK phosphorylation. The pan-CaMK inhibitor KN93 sig-
nificantly attenuated nicotine-induced ERK phosphorylation
in a concentration-dependent manner [F(5,31) = 14.531,
p < 0.001] (Fig. 2a). Investigation into which CaMK may be
responsible for the effect of KN93 revealed that the specific
CaMKII inhibitor AIP blocked nicotine’s effect, similar to
KN93 [F(5,26) = 39.467, p < 0.001] (Fig. 2a). Conversely,
theCaMKkinase inhibitor Stö609 (which inhibits activation of
CaMKI/IV) did not decrease nicotine-induced ERK phos-
phorylation [F(3,12) = 5.791, p < 0.02] (Fig. 2a).
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It has been demonstrated that nAChR stimulation can
activate PKA and PKC (Dajas-Bailador et al. 2002; Dajas-
Bailador and Wonnacott 2004), which are both potentially
upstream of ERK activation. To determine whether PKA or
PKC activity is necessary for the ability of nicotine to
induce ERK phosphorylation, we examined the effect of
PKA and PKC inhibitors in wild type cortical neuronal
cultures. The PKA antagonist H89 did not significantly
attenuate nicotine-induced ERK phosphorylation at concen-
trations of the inhibitor specific for PKA [F(5,28) = 14.313,
p < 0.001] (Fig. 2b). Confirming H89’s inability to block

nicotine-induced ERK phosphorylation via PKA antago-
nism, KT5720 {a PKA inhibitor, [F(5,19) = 15.369,
p < 0.001], Fig. 2b} and Rp-cAMPs {[F(5,18) = 10.647,
p < 0.001], Fig. 2b} had no effect on ERK phosphorylation
after nicotine stimulation. Additionally, the PKC inhibitor
Gö6983 had no effect on nicotine-induced ERK phosphor-
ylation [F(5,14) = 5.496, p < 0.005]. The apparent increase
in phosphorylated ERK observed when Gö6983 was
applied alone did not reach statistical significance
(p > 0.25) (Fig. 2c). Taken together, these data suggest that
CaMKII is the primary upstream kinase necessary for

10 µmol/L

5 0
ERK1 (44kD)
ERK2 (42kD)

pERK1
pERK2

0

50

100

150

200

250

300

350

C
on

tr
ol

5 
m

in

15
 m

in

30
 m

in

60
 m

in

5 
m

in

15
 m

in

30
 m

in

60
 m

in

12
0 

m
in

5 
m

in

15
 m

in

30
 m

in

60
 m

in

12
0 

m
in

5 
m

in

15
 m

in

30
 m

in

60
 m

in

12
0 

m
in

1µmol/L 10 µmol/L 50 µmol/L 100 µmol/L

Nicotine

p
E

R
K

/E
R

K
 %

 o
f 

co
n

tr
o

l

0

50

100

150

200

250

300

350

5 15 30 60 120
Exposure (min)

p
E

R
K

/E
R

K
 %

 o
f 

co
n

tr
o

l

100 µmol/L
50 µmol/L
10 µmol/L
1 µmol/L

ERK

pERK

 5 5

100 µmol/L 50 µmol/L Nicotine

0

*

(31) (5) (5) (5)
(4)

(9)
(5)

(5) (7)
(4)

(15) (6)

(3)
(9)

(6)

(29)
(14)

(11)
(10)

(4)

*

*
* **

*
*

*

**

ERK

pERK

-- + Nicotine
U0126

0

100

200

300

400

C
on

tr
ol

100
µmol/L 5 µmol/L

Nic U0126

p
E

R
K

/E
R

K
 %

 o
f 

co
n

tr
o

l

Nic

* * *

#

15 min15 15  3015 3030  305 15

(a)

(b)

(c)

+ --

Fig. 1 Nicotine elicits an increase in ERK phosphorylation in a time-

and concentration-dependent manner. (a) Quantitation of the ratio of

pERK2 to ERK2 (42 kDa). Mean +SEM, the number of independent

cultures per condition are indicated, *indicates significant difference

from control (p < 0.05). (b) Representative western blots of total and

phosphorylated ERK1 and ERK2 from primary cortical cultures

stimulated with nicotine. The total ERK antibody recognizes phos-

phorylated and unphosphorylated forms of ERK, therefore a double

band is seen when ERK is heavily phosphorylated (for example,

ERK2 in the 100 lmol/L nicotine, 5 min condition). (c) The increase

in ERK phosphorylation observed with 100 lmol/L nicotine for 5 min

is blocked by pre-treatment with the mitogen-activated protein kinase

(or ERK) kinase inhibitor U0126. Representative western blots are
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nicotine-induced ERK phosphorylation in primary cortical
cultures.

Calcium is necessary for nicotine-induced ERK

phosphorylation

The activation of CaMKII is critically dependent on an
increase in intracellular calcium and subsequent activation of
calmodulin. We confirmed that calcium is required for
nicotine-induced ERK phosphorylation by demonstrating
that chelating free calcium with BAPTA results in a complete
inhibition of nicotine-induced ERK phosphorylation
[F(3,10) = 13.091, p = 0.001] (Fig. 3a). Additionally, the
L-type voltage-gated calcium channel inhibitors nifedipine
[F(5,29) = 24.479, p < 0.001] and diltiazem [F(3,8) =
14.493, p = 0.001] significantly attenuated the increase in
phosphorylated ERK seen after 5 min exposure to 100 lmol/
L nicotine (Fig. 3b), indicating that L-type voltage-gated
calcium channels may be important for nicotine-induced
ERK phosphorylation. Intracellular calcium release from
the endoplasmic reticulum via ryanodine receptor activation

is not involved in nicotine-induced ERK phosphorylation
as dantrolene (a ryanodine receptor antagonist) did not
attenuate the increase in phosphorylated ERK after 100 lmol/
L nicotine application [F(3,12) = 18.558, p < 0.001]
(Fig. 3c).

Endogenous glutamatergic transmission and neuronal

activity is required for nicotine-induced ERK

phosphorylation

Primary cortical neuronal cultures are synaptically active
after 14 days in vitro and express glutamate receptors (Jones
and Baughman 1991). To silence all spontaneous action
potentials in our cultures, we pretreated the neurons with the
voltage-gated Na+ channel blocker TTX and found that it
completely inhibited nicotine-induced increases in phosphor-
ylated ERK [F(3,12) = 11.244, p = 0.001] (Fig. 4a). Nico-
tine is known to increase glutamate release from axon
terminals (Toth et al. 1992; Gray et al. 1996; Lopez et al.
2001; Wang et al. 2006) and glutamate receptor activity can
modulate ERK phosphorylation (Sweatt 2004). Therefore,

0

100

200

300

400
C

on
tr

ol Nic

100
µmol/L 2 µmol/L 4 µmol/L

KN93

0

100

200

300

400

C
on

tr
ol

100
µmol/L 10 µmol/L 100 µmol/L

AIP

0

100

200

300

400

C
on

tr
ol

100
µmol/L 1 µmol/L

Sto609

Nic Nic NicNic

Nic Nic

9 8 7 7 3 3 8 4 4 4 4 4 4 48 4

0

100

200

300

400

C
on

tr
ol

100
µmol/L 0.1 µmol/L 1 µmol/L

Nic H89

0

100

200

300

400

C
on

tr
ol

100
µmol/L 10 µmol/L 20 µmol/L

Nic RP-cAMPs

Nic Nic Nic Nic
0

100

200

300

400

C
on

tr
ol

100
µmol/L 1 µmol/L 2 µmol/L

Nic KT5720

Nic Nic

8 6 5 5 5 5 6 5 4 4 3 3 6 6 3 3 3 3 

0

100

200

300

400

C
on

tr
ol

100
µmol/L 1 µmol/L 2 µmol/L

Nic Go6983

Nic Nic

4 4 3 3 3 3 

Nic

* * * *

#

#
*

* * * *

#

#

* *

#
#

* *
*

# #

#

* * *

#
# #

* * *

#
#

#

*
*

*

#
#

#

p
E

R
K

/E
R

K
 %

 o
f 

co
n

tr
o

l

p
E

R
K

/E
R

K
 %

 o
f 

co
n

tr
o

l

p
E

R
K

/E
R

K
 %

 o
f 

co
n

tr
o

l

p
E

R
K

/E
R

K
 %

 o
f 

co
n

tr
o

l

p
E

R
K

/E
R

K
 %

 o
f 

co
n

tr
o

l

p
E

R
K

/E
R

K
 %

 o
f 

co
n

tr
o

l

p
E

R
K

/E
R

K
 %

 o
f 

co
n

tr
o

l

ERK

pERK

++ Nicotine

4 µmol/L

ERK

pERK

Nicotine
0.1 µmol/L

KN93

 1 µmol/L H89

ERK

pERK

Nicotine
2 µmol/L Go6983

(a)

(b)

(c) (d)

++

++ +

Fig. 2 Nicotine-induced increases in ERK

phosphorylation are dependent on CaMKII

activity and not on PKA or PKC activity.

(a) Both KN93 and AIP significantly atten-

uate nicotine-induced ERK phosphoryla-

tion, whereas Stö609 does not affect

nicotine-induced ERK phosphorylation.

(b) Pre-treatment with either H89, KT5720,

or RP-cAMPs does not reduce nicotine-

induced ERK phosphorylation. (c) Pre-

treatment with the PKC inhibitor Gö6983
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glutamate receptor activity may be involved in the ability
of nicotine to increase ERK phosphorylation, either by
providing basal excitation of the neurons with which the
nAChR activity reaches a level that is sufficient to induce
ERK phosphorylation, or by nicotine-induced glutamate
release resulting in direct effects at glutamate receptors
to initiate signaling pathways that subsequently lead to
increased ERK phosphorylation (Sweatt 2004). The gluta-

mate receptor antagonists CNQX (an alpha-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid/Kainate recep-
tor antagonist) and AP5 [an N-methyl-D-aspartic acid
(NMDA) receptor antagonist] were used to examine
whether glutamate receptor activity is necessary for the
increase in phosphorylated ERK observed with nicotine
application. Pre-treatment with either CNQX [F(3,16) =
8.407, p = 0.001] or AP5 [F(3,12) = 10.855, p = 0.001]
completely blocked the ability of nicotine to increase ERK
phosphorylation (Fig. 4b and c). Interestingly, these data
indicate that glutamate receptor activity, coincident with
nicotine application, is required for increased ERK phos-
phorylation in cortical neurons.

Are nAChRs involved in nicotine-induced ERK

phosphorylation?

It has been thought that nicotine acts predominantly via
activation of nAChRs to initiate the signaling pathway that
leads to increased ERK phosphorylation. The two most
prominent nAChR classes in the brain are the homomeric
a7 and heteromeric, high-affinity a4/b2 nAChRs. Addi-
tionally, a7 nAChRs have been implicated in nicotine-
induced ERK phosphorylation in hippocampal neurons
(Dajas-Bailador et al. 2002). We therefore stimulated wild
type, a7 nAChR subunit knockout, and b2 nAChR subunit
knockout cultures with nicotine in the absence or presence
of nAChR antagonists. The non-competitive and non-selec-
tive nAChR antagonist mecamylamine inhibited nicotine-
induced ERK phosphorylation in a concentration-dependent
manner in wild type cultures [F(7,49) = 22.668, p < 0.001]
(Fig. 5a). In order to determine whether nicotine was acting
specifically at one class of nAChR to cause an increase in
ERK phosphorylation, more specific antagonists were
tested. None of the competitive nAChR-specific antagonists
[a7 nAChR-specific: MLA and a-BTX; F(5,40) = 22.685,
p < 0.001], heteromeric nAChR-specific: DHbE [F(3,15) =
14.345, p < 0.001], or a3/b4 nAChR-specific: a-conotoxin
Au1B [F(3,15) = 65.329, p < 0.001)] significantly attenu-
ated the increase in phosphorylated ERK observed when
100 lmol/L nicotine was applied for 5 min (Fig. 5b).
Additionally, these nAChR antagonists did not decrease
nicotine-induced ERK phosphorylation when cultures were
stimulated with 10 lmol/L nicotine for 5 min (data not
shown). Stimulation of wild type cultures with cytisine (an
a3/b4 nAChR selective agonist) did not cause an increase
in ERK phosphorylation (Fig. 5c and d). These data
indicate that if nAChRs are necessary for nicotine-induced
ERK phosphorylation, one particular class of nAChRs is
not likely to be necessary for nicotine-induced ERK
phosphorylation. Instead, multiple nAChRs may be able
to initiate the signaling cascade that results in increased
ERK phosphorylation.

To confirm the results obtained utilizing pharmacological
inhibitors, cultures were made from knockout mice lacking
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either the a7 or b2 nAChR subunit and nicotine-induced
ERK phosphorylation was assessed across concentration and
duration of exposure (Fig. 6a and b). A time · dose · geno-
type ANOVA revealed a main effect of time [F(4,280) =
16.169, p < 0.001] and a main effect of concentration
[F(3,280) = 31.827, p < 0.001], however no main effect of
genotype [F(2,280) = 2.038, p > 0.05], and no interactions
(p > 0.05). Therefore, the genetic deletion of either the a7 or
b2 nAChR subunit alone does not alter the ability of nicotine
to induce an increase in ERK phosphorylation in primary
neuronal cortical cultures. Similar to wild type cultures,
pre-treatment of a7 knockout cultures with DHbE
[F(3,8) = 106.629, p < 0.001] or b2 knockout cultures with
a-BTX [F(3,8) = 32.842, p < 0.001] did not inhibit nicotine-
induced ERK phosphorylation (Fig. 6c). Additionally, the
ability of mecamylamine to block nicotine-induced ERK
phosphorylation (in a concentration-dependent manner) was
preserved in both the a7 and b2 knockout cultures (data not
shown).

The data indicate that inhibition or genetic deletion of a
specific class of nAChRs does not alter nicotine-induced
ERK phosphorylation. Multiple nAChR classes may be able
to initiate the nicotinic signaling cascade leading to increased
ERK phosphorylation, therefore we examined the effect of
inhibiting multiple classes of nAChRs simultaneously. A
mixture of a-BTX, a-conotoxin Au1B and DHbE was
unable to decrease nicotine-induced ERK phosphorylation
[F(3,10) = 70.778, p < 0.001] (Fig. 7a). Pre-treatment with
the general nAChR antagonists hexamethonium or chloris-
ondamine before nicotine stimulation was equally ineffective

in blocking the increase in ERK phosphorylation observed in
primary cortical cultures after nicotine stimulation
[F(3,14) = 56.009, p < 0.001 and F(3,10) = 18.672, p <
0.001, respectively) (Fig. 7b and c). Stimulation of mouse
cortical cultures with optically pure S(-) or R(+) nicotine
resulted in increased levels of ERK phosphorylation at
the 5 min [F(4,10) = 5.338, p < 0.05] and 30 min
[F(4,10) = 4.633, p < 0.05] time points. The S(-) and R(+)
nicotine enantiomers each increased ERK phosphorylation to
a level equivalent to stimulation with the nicotine (Sigma)
used for all other experiments, with no significant difference
observed between them (p > 0.15) (Fig. 7d).

The concentrations of mecamylamine that produce a
decrease in nicotine-induced ERK phosphorylation are
sufficient to block nAChRs, however NMDA receptors are
also likely to be antagonized at these concentrations (O’Dell
and Christensen 1988; Papke et al. 2001). Therefore, we
cannot determine whether the inhibitory effect of mecamyl-
amine on nicotine-induced ERK phosphorylation is due to its
action at nAChRs as the NMDA receptor antagonist AP5
also blocks this effect, however nicotine is not known to
activate the NMDA receptor directly. Taken together, these
data do not identify a classic nAChR-mediated mechanism
that initiates the signaling cascade leading to increased ERK
phosphorylation after acute application of nicotine to primary
cortical cultures. Instead, the data presented here indicate that
several classes of nAChRs (including a7, b2 subunit-
containing, and a3/b4 nAChRs) are not necessary for
nicotine-induced ERK phosphorylation in primary cortical
neurons.
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Discussion

Nicotine induces a rapid and robust increase in ERK
phosphorylation in primary cortical cultures that is both
concentration- and time-dependent. We also show that the
signaling pathway resulting in nicotine-induced ERK
phosphorylation in primary cortical neurons involves volt-
age-gated sodium channels, glutamate receptor signaling,
calcium, L-type voltage-gated calcium channels, and CaM-
KII. In addition, activation of known nAChR subtypes does
not appear to be responsible for nicotine-induced ERK
phosphorylation, indicating that nicotine may be acting
through a novel, undefined mechanism in cultured cortical
neurons. Neither the a7 nor the b2 nAChR subunit is

required to observe increased levels of phosphorylated ERK
after nicotine stimulation, and pharmacological evidence
indicates that activation of a3/b4 nAChRs alone is not
necessary or sufficient to increase ERK phosphorylation.

Calcium/calmodulin-dependent protein kinase II activity is
necessary for nicotine-induced ERK phosphorylation in
cortical neurons because the non-specific CaMK inhibitor
KN93 and the CaMKII inhibitor AIP block, whereas Stö609
(a CaMK kinase inhibitor, subsequently blocking activation
of CaMKI/IV) does not alter nicotine’s ability to increase
ERK phosphorylation. These data are consistent with
findings in PC12 cells with respect to the magnitude of
nicotine-induced ERK phosphorylation observed and the
involvement of calmodulin and CaMK (Nakayama et al.
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2001); however nicotine-induced ERK phosphorylation in
SH-SY5Y cells and rat hippocampal neurons is fundamen-
tally different in the magnitude of response and the
requirement of PKA activity (Dajas-Bailador et al. 2002).
PKA or PKC activity is not involved in nicotine-induced
ERK phosphorylation in primary cortical neurons. There is a
profound difference in the nAChR subtypes expressed in the

hippocampus and cortex. a7* nAChRs are expressed at
highest levels in the hippocampus, whereas mRNA encoding
the a4 subunit is extremely low in this brain area and a4/b2*
nAChRs are more highly expressed in the cortex than in the
hippocampus (Seguela et al. 1993; Picciotto et al. 1995; Orr-
Urtreger et al. 1997; Marubio et al. 1999). Thus, the report
that hippocampal neurons require PKA activation (Dajas-
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Bailador et al. 2002), whereas nicotine-induced ERK phos-
phorylation in our cortical cultures requires CaMKII activa-
tion (and is independent of PKA) may be the result of
inherent differences between these neuronal classes based on
species (rat vs. mouse) or brain region of origin (hippocam-
pal vs. cortical), or by the stage of neuronal maturation at
which the experiments were conducted (8 vs. 14 days
in vitro), which is likely to result in large differences in
synapse maturity (Weiss et al. 1986).

The increase in ERK phosphorylation observed after
nicotine stimulation was dependent on calcium, as in rat
hippocampal neurons (Dajas-Bailador et al. 2002), and
influx of calcium via L-type voltage gated calcium chan-
nels, similar to nicotine-induced ERK phosphorylation in
PC12 cells (Nakayama et al. 2001). The results with
nifedipine and diltiazem must be interpreted cautiously

however, because these inhibitors have also been shown to
inhibit nAChR activity (Donnelly-Roberts et al. 1995;
Herrero et al. 1999; Wheeler et al. 2006). It is unlikely
that the inhibition observed with nifedipine and diltiazem is
due to nAChR antagonism as the only nAChR antagonist
that decreased nicotine-induced ERK phosphorylation was
mecamylamine (also an NMDA receptor antagonist) and all
other nAChR antagonists did not alter nicotine-induced
ERK phosphorylation. Interestingly, the ryanodine receptor
antagonist dantrolene did not affect nicotine-induced ERK
phosphorylation, indicating that release of calcium from
intracellular stores is not necessary for nicotine to increase
ERK phosphorylation. It is likely, however, that calcium
influx through L-type calcium channels is critical for the
activation of calmodulin and subsequently CaMKII, up-
stream of ERK phosphorylation.
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duces an increase in ERK phosphorylation at 5 and 30 min, and is
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An interesting result of this report is that nicotine-
induced ERK phosphorylation in cortical neurons requires
the activity of both alpha-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid and NMDA receptors and
voltage-gated sodium channels. There are two likely
explanations for this interaction. Basal glutamatergic tone
may be necessary for nicotine to excite the neurons beyond
some threshold that is necessary for ERK phosphorylation
or, alternatively, nicotine may stimulate release of glutamate
from axon terminals, which in turn activates glutamate
receptors and the intracellular signaling pathway that leads
to an increase in ERK phosphorylation. These hypotheses
are not mutually exclusive, and both may occur. Glutamate
receptor activation is known to induce ERK phosphoryla-
tion in primary cortical neuronal cultures (Chandler et al.
2001; Mao et al. 2004). The finding that the voltage-gated
sodium channel blocker TTX completely inhibits nicotine-
induced ERK phosphorylation suggests that the overall
activity of cortical neurons is critical for their ability to
respond to nicotine.

Nicotine may act at nAChRs to activate the signaling
cascade that results in increased ERK phosphorylation,
however we have found a surprising lack of evidence
implicating an involvement of the classes of nAChRs
thought to be most prevalent in cortical neurons. The general
nAChR antagonist mecamylamine inhibited nicotine-induced
ERK phosphorylation in a concentration-dependent manner,
however, at the concentrations of mecamylamine where the
nicotine effect is inhibited this antagonist is no longer
specific for nAChRs and could also be blocking NMDA
receptor function (Papke et al. 2001). Because the NMDA
receptor antagonist AP5 can completely abolish nicotine-
induced ERK phosphorylation, it is possible that the effect of
mecamylamine is not due to its action at nAChRs. This
interpretation is supported by the observation that two other
general nAChR antagonists (hexamethonium and chloris-
ondamine) do not attenuate nicotine-induced ERK phos-
phorylation.

The two most abundant nAChR classes in the brain are
the a7 homomeric and b2 subunit-containing heteromeric
nAChRs. It has previously been reported that a7 nAChRs
are necessary for nicotine-induced ERK phosphorylation in
rat hippocampal neurons (Dajas-Bailador et al. 2002).
Nicotine-induced ERK phosphorylation was completely
unaffected in cortical cultures made from either a7 nAChR
subunit or b2 nAChR subunit knockout mice. This
surprising result was supported with data from pharmaco-
logical nAChR inhibitors that are specific for either a7
nAChRs (MLA and a-BTX) or b2-containing heteromeric
nAChRs (DHbE) that demonstrated no inhibition of
nicotine-induced ERK phosphorylation in wild type cul-
tures or in the a7 and b2 knockout cultures, indicating that
redundancy between the a7 and b2 subunit-containing
nAChRs is unlikely.

Nakayama et al. (2006) have demonstrated that the a3/b4
class of nAChRs is responsible for nicotine-induced ERK
phosphorylation in PC12 cells, both by mimicking the effects
of nicotine with an agonist that is selective for a3/b4
nAChRs (cytisine; Mulle and Changeux 1990) and by
blocking them with an antagonist that is selective for these
nAChRs (18-methoxycoronaridine) (Nakayama et al. 2006).
Contrary to the findings in PC12 cells, cytisine did not
induce ERK phosphorylation in primary cortical neuronal
cultures and a-conotoxin Au1B (an a3/b4 nAChR-specific
antagonist) did not inhibit nicotine-induced ERK phosphor-
ylation, indicating that a3/b4 nAChR activation is not
sufficient to increase ERK phosphorylation in this system.
Similar to what was observed with other general nAChR
antagonists (hexamethonium and chlorisondamine), the
application of the selective nAChR antagonists a-BTX, a-
conotoxin Au1B, and DHbE in combination did not block
the ability of nicotine to increase ERK phosphorylation in
wild type cultures.

Finally, stimulation of mouse cortical cultures with either
the S(-) or R(+) enantiomer of nicotine alone increased ERK
phosphorylation levels, although there was a trend for the
S(-) enantiomer to be somewhat more effective (p = 0.19).
The previously reported nicotine enantiomer-specific effects
at different subtypes of nAChRs are mixed. The function of
the S(-) and R(+) enatiomers was found to be equivalent at
the neuromuscular junction (Ikushima et al. 1982), but the
S(-) form is more potent than R(+) nicotine in increasing
blood pressure (Ikushima et al. 1982), antinociception,
spontaneous activity, and rotarod performance (Martin et al.
1983). There are two conflicting reports on the stereoselec-
tivity of the effects of nicotine on dopamine release from
striatal synaptosomes with one study reporting the S(-)
enantiomer as more potent (Rapier et al. 1988) and another,
using higher doses, reporting equivalence between the two
enantiomers (Connelly and Littleton 1983). The lack of
strong stereoselectivity observed here is consistent with the
idea that nicotine-induced ERK phosphorylation in cortical
neurons may be mediated through a molecule that is not a
known central nAChR.

Taken together these data outline a signaling pathway in
primary cortical neurons, initiated by nicotine stimulation
and involving voltage-gated sodium channels, glutamate
receptors, calcium, L-type voltage-gated calcium channels,
CaMKII, and MAPK (or ERK) kinase to result in increased
ERK phosphorylation. We do not find evidence for a
significant role for the a7, a4/b2, or a3/b4 nAChR subtypes
in nicotine-induced ERK phosphorylation in primary corti-
cal cultures, implicating a non-classical nAChR-mediated
mechanism that is yet to be explained. Nicotine could act
through a receptor not previously identified as responsive to
nicotine, or it could have a more direct effect [similar to
nicotine’s ability to reduce free radical generation by
binding directly to complex I of the respiratory chain in
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mitochondria, independent of nAChRs (Cormier et al. 2001;
Xie et al. 2005)].
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