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PINWHEEL PATTERNS: FROM 2D TO 3D SCHEMAS 

 

 

Abstract 

Pinwheels are generic configurations in architectural layout 
planning.  Planar pinwheels provide familiar schemes for layouts 
which present design ‘in the round’ with a cyclic symmetry. The 
paper examines the 3-D versions of 2-D pinwheels where a 
‘locked’ joint with three rectangular volume elements aligned 
along orthogonal axes is a characteristic feature.  Pairing handed 
versions of these locked joints yields a candidate for a 3-D 
pinwheel schema with six repeated volume elements and 3-fold 
cyclic symmetry. Shape rules, based on spatial relations between 
volumes, generate this and other examples of 3-D pinwheel 
schemas. These schemas are set in a wider analysis of the numbers 
and types of joints in 3-rectangulations in terms of maximal 
bounding planes. The bounding-plane views of the arrangements 
is set alongside more functional volume descriptions which 
enables the elements and relations in architectural form to be 
(re)generated and (re)interpreted both ‘in view’ and ‘in use’. 

Introduction 

Pinwheels are commonly manifested as spiral or handed arrangements of 

architectural elements.  In their purest form they exhibit a cyclic symmetry 

where a shape element is repeated by rotating it incrementally to produce a 

characteristic ‘spiral’ arrangement. Patterns of this type are widespread and 

diverse in architecture where the underlying pinwheel schema of a repeated 

spatial relation appears in two-dimensional plans and structures as well as 

three-dimensional compositions of floors, walls and spatial volumes. This 

paper examines these three-dimensional generalisations with calculations of 
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dependencies among spatial relations of different types and shape rules used to 

generate them. 

A prevalent example of a pinwheel occurs when four elements spin around 

a central void. It is used structurally, decoratively and architecturally. Serlio 

(Serlio 1545: 21v) appears to have been instrumental in proposing pinwheel 

arrangements in floor/ceiling structures for large spans (Fig1). Serlio’s potential 

influence is analysed by (Yeomans 1997:74-83) including examples in near 

contemporary English Tudor mansions such as Wollaton Hall (Yeomans 

1997:76) and in the geometrical and mechanical investigations (Fig 2) by John 

Wallis who was Savilian Professor of Geometry at Oxford between 1649 and 

1703 (Wallis 1670: unnumbered plate). He was a possible influence on 

Christopher Wren, who as Savilian Professor of Astronomy between 1661 and 

1673, developed designs for the roof of the Sheldonian Theatre in Oxford. 

Initial designs appear to incorporate patterns developed by Serlio and Wallis 

for long spans without supporting columns, although the realized design used 

composite trusses rather than pinwheel patterns. 

 

 
 

Fig 1: Pinwheel pattern (Serlio 1545: 21v)  

 

The paper traces the development of these pinwheel arrangements in 

architecture and design. In the first part it analyses the ways that the 

arrangements were used in both two- and three-dimensional configurations of 

architectural elements; floors, walls and the spaces they bound.  The second 

part considers three-dimensional examples and their constituent spatial 

relations in more detail and the third part sets up some notation for describing 

and calculating the distribution of different spatial relations in three-

dimensional spatial arrangements. Finally the paper develops compact 

examples of three-dimensional pinwheel patterns analogous to the two-

dimensional patterns of Wallis and Serlio. Repeating shape rules generate these 

patterns that form schemas for three-dimensional architectural arrangements of 

interlocking elements. 
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Fig 2: Pinwheel patterns from Mechanica (Wallis 1670: unnumbered plate) 

Pinwheels in architecture and design 

Architectural compositions of plane segments and volume elements on an 

orthogonal grid are widespread and this paper focuses on corresponding 2- and 

3-D pinwheels. Common pinwheel type arrangements in 2- and 3-dimensions 

derive from spatial relations between 3-rectangles or cuboids, respectively, as 

shown in Fig 3.  The 2-D arrangement repeats a spatial relation four times with 

resulting C4 cyclic symmetry.  The 3-D-pinwheel repeats a spatial relation three 

times and yields a three-fold C3 symmetry about a diagonal axis on the 

orthogonal grid. The result is a closely interlocked, or ‘locked’ joint, between 

elements.  

 

                 
(a)                         (b) 

 

Fig 3: Spatial relations in (a) 2-D pinwheels and (b) 3-D pinwheels  

 



 C Earl, I Jowers 

 4 

Designers and architects have used these pinwheel arrangements in several 

contexts.  In the twentieth-century artists such as Van Doesberg (Van 

Doesberg 1969) developed abstract spatial configurations whilst designers such 

as Rietveld  (Dettingmeijer et al 2010), applied them extensively in his furniture 

and houses. Colour, textures and functional architectural attributes add further 

dimensions to these compositions by highlighting selected elements and 

relations. The explorations, by Rietveld (Figs 4a,b,c) of spatial relations among 

3-D rectangles used a wide variety of joints between elements including the 

‘locked’ joints. These latter serve to emphasise the three-dimensional character 

of the designs. 

 
(a) 

 

                       
(b)                               (c)                                (d) 

 

Fig 4: (a) Schroeder House (b) Berlin chair, (c) Steltman chair and (d) a table with a 2-D 

pinwheel arrangement for its supports. Images generated by the authors. 

 

The Schroeder house displays some elements of a pinwheel plan with its 

central ‘spiral’ staircase as well as the 3-D composition of rectangular slabs 

articulating the interior (and exterior) spaces.  The same effect is created in the 
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chairs (Figs 4b, c) with structural rectangular elements, composed in face-to-

face relations. These designs can be viewed variously as arrangements of (i) 3-

D ‘planes’ (or thin cuboids), for walls and roofs bound the volumes of spaces 

and rooms or (ii) of these volumes directly. For the Schroeder House it is 

relevant to observe that the fluid structure of internal architectural spaces, with 

several retractable or folding screens, is set alongside the well defined 3-D 

‘planes’ used to articulate roofs, walls and floors  

In the next section general spatial arrangements of 3-rectangle volumes and 

their bounding planes are analysed in terms of spatial relations, including 3-D 

locked joints and pinwheels. Before doing this historical examples are 

described of how pinwheels provide tight spatial unity in architectural layouts 

especially in presenting design ‘in the round’ such as point blocks and 

individual dwellings. In the twentieth-century both Wright (March and 

Steadman 1974) and Schindler were exponents of the cyclic plan with clear 

nineteenth-century precursors in the architecture of the Gothic Revival and the 

Arts and Crafts movements.  For example Pugin’s domestic designs draw 

heavily on these cyclic configurations. Brittain-Catlin (Brittain-Catlin 2004:101-

105) discusses how Pugin’s pinwheel plans eschew bilateral symmetry in favour 

of a cyclic symmetry.  Fig 5 shows an example in the Grange at Ramsgate, 

Pugin’s own home. Three of the four elements in the pinwheel are picked out 

in the overall layout shown in Fig 5 and the central staircase winds upwards 

with the spiral of the pinweel in the baluster woodwork (Fig 5).  An analysis 

(Brittain-Catlin 2004: 107) of Pugin’s (now demolished) Bishop’s Palace in 

Birmingham displays a 3-D pinwheel arrangement that provides an intricate 

processional route climbing from the entrance to the main reception/audience 

rooms through a sequence of stairs and corridors. 

 
 
Fig 5: The Grange, Ramsgate, (Pugin A W N) overall pinwheel plan and pinwheel 
decorative baluster. Images generated by authors. 
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Orthogonal 3D configurations and their spatial relations  

Among spatial relations between volume elements, face adjacencies 

represent sites for functional connections in architecture, structural design and 

spatial layout of engineering designs. This paper deals with 3-rectangulations or 

orthogonal 3D configurations of cuboids (3-rectangles). A   A key distinction is 

made (Krishnamurti and Earl 1998) between 3-rectangulations containing 

‘locked’ 3-D pinwheels (Fig 3) and those without (termed ‘unlocked’ 

rectangulations). A further distinction is made between densely packed 3-

rectangulations that have no internal voids and loosely packed ones. 3-

rectangulations are analysed (Krishnamurti and Earl 1998) in terms of the 

maximal planes composed from the boundaries of cuboids. In Fig 6 a loosely 

packed 3-rectangulation with six 1x1x3 rectangles has a central cubical void. 

There are locked pinwheel joints at each of the eight joints between 3-

rectangles around the central void with ‘internal’ maximal planes shaped as an 

H and  ‘external’ ones shaped in a +. 

 

 

Fig 6: A 3-rectangulation with six equal 3-rectangles  

 

Face-adjacency is constrained in densely packed, unlocked 3-rectangulations 

(Krishnamurti and Earl 1998) with a rectangular boundary.  In this case 

maximal planes are themselves rectangular. A representation of adjacencies 

between maximal planes as a directed map has no 3-cycles and no other cycles 

that include planes in all three directions. This lack of cycles containing 

maximal planes in all three directions is a characteristic property of unlocked 3- 

rectangulations that are essentially two-dimensional in character.  It is the 

locked pinwheel patterns that exemplify fully three-dimensional arrangements. 

In order to explore general configurations of face-adjacent 3-rectangles in 

loosely packed arrangements, the joints between cuboids are classified 

according to their incident maximal planes (Earl 1978).  Joints can be classified 

as three types. Type 1 has three maximal planes, one having a convex corner at 
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the joint. Type 2 has three planes each having a convex corner, and type 3 is 

the ‘locked’ joint with three maximal planes and three concave corners. This 

paper considers these configurations of face-adjacent 3-rectangles with joints 

of types 1, 2 and 3.  Those with only joints of type 1 and 2 are called unlocked 

and those with type 3 joints are locked. Fig 7 shows examples of these three 

types.  The types of joint are distinguished by their subscripts. Type 1 joints X1 

and C1 have one convex and one concave corner respectively on the maximal 

planes.  Type 2 joints X2 and C2 have two convex and two concave corners 

respectively, whilst the pinwheel joint C3 has three concave corners and the 

external corner X3 has three convex corners.  Fig 7 shows examples of these 

joints that are adjacent to exterior or internal voids, indicated by the ‘zero’ 

superscripts X0 and C0. The joint C0
0 is distinguished as a special case of a type 

1 joint at the partial face adjacency of just two 3-rectangles.  

 

 

 

 

 

 
 

Fig 7: Type 1 joints (X1
0 and C1

0 plus C0
0), type 2 (X2

0 and C2
0) and type 3 (X3

0 and C3
0) 

 

In the joints shown in Fig 7, C3
0 has three concave corners of maximal 

planes and is also counted on three convex corners of 'exterior' planes. These 

exterior planes may not be maximal planes. C2
0 has concave corners of two 

maximal planes and is also counted on one concave corner and two convex 

corners of exterior planes. C1
0 has a concave corner of one maximal plane and 

a convex corner of one maximal plane and is also counted on one concave 

corner and two convex corners of exterior planes. X1
0 has a convex corner of 

one maximal plane and is on convex corners of two exterior planes and a 

concave corner of a third. X2
0 is not on the concave corner of maximal plane 

but on convex corners of two exterior (and maximal) planes and the concave 

X1
0 X3

0 

X2
0 

C0
0 

C2
0 

C3
0 

C1
0 
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corner of one exterior plane. X3
0 has convex corners of three maximal planes 

all exterior. C0
0 has one concave corner on a maximal plane and two convex 

corners of exterior planes.  

Types C0
3 C0

2 C0
1 have concave corners of three, two and one maximal 

planes respectively at the joint. Types X0
3 X0

2 X0
1 have three, two and one 

convex corners of maximal planes, respectively, at the joint. Each exterior joint 

is at the corner of exactly one 3-rectangle except for type C0
0 and type C0

3 when 

the joint is open to the outside on both sides (in which case it is not at the 

corner of any cuboid) or interior locked joint (when it is at the corners of two 

cuboids). The locked configuration of just three rectangles in Fig 4 has a C0
3 

joint with no cuboid corners.  Note that interior joints are only of types X1 or 

C3 that are both at the corners of two 3-rectangles. Arrangements of four 3-

rectangles clustered at a joint, where two maximal planes cross, are excluded. 

Maximal planes do not have corners, either convex or concave, at such joints. 

To conclude this examination of cuboids, joints and maximal planes in 3-

rectangulations two further examples are presented, before developing an 

analysis of dependencies among the numbers of different types of joints in the 

next section. Maximal planes P in the locked 3-rectangulation of Fig 8 have 

holes created by a 'through' cuboid A. All the eight ‘interior’ joints are locked 

C3
0 pinwheels and the ‘exterior’ joints are types C1

0 or X1. 

 

Fig 8: Locked 3-rectangulation with a ‘through’ cuboid A. Maximal planes, both interior 

and boundary, have either ☐, H or + shapes.  

 

The second example is drawn with an overall shape bounded by a 4x4x4 

cube (Fig 9). It consists of six 3x3x1 cuboids aligned face to edge. Obvious 

symmetries of the shape are the rotations about the diagonal axes of the cube 

and a central inversion. The six cuboids surround a central 2x2x2 internal void. 

Each maximal plane is L-shaped.  Effectively this configuration is formed from 

a pair of 3-D locked pinwheels C3
0.     

A

P

A

Error! Bookmark not defined. 

 
X1 

C1
0 
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Fig 9: A 3-rectangulation with six equal cuboids, a central void, two concave corners 

and internal L-shaped maximal planes. 

 

The cyclic shape in Fig 9 is similar to a composition in Froebel’s sixth gift 

(that uses 2x2x1 cuboids) and may have contributed to Wright's exercises in 

spatial composition (MacCormac, 1974; Stiny 1980) The geometric and 

generative analysis of general compositions of face adjacent cuboids 

complements previous analysis (Krishnamurti and Earl 1998) of 3-

rectangulations with ‘unlocked’ joints that have an underlying two-dimensional 

structure.  The locked rectangulations are essentially three-dimensional.  

The compact examples in Figs 6, 8 and 9 present 3-D architectural schemas 

in three dimensions that are analogous to the 2-D pinwheels of Serlio and 

Wallis. Each of these schemas is generated by repetitions of spatial relations 

using shape rules (Stiny 1980). The next section provides generative 

descriptions. 

Generative descriptions of pinwheel schemas 

The 3-rectangulation in Fig 9 is generated through repeating a face 

adjacency spatial relation with aligned edges as shown in Fig 10.  

                                  

    

 

 

0 

 

0 

 

C1
0 
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Fig 10: Generating the pinwheel schema in Figure 9 with a repeated shape rule (applied 
alternately under reflection) 

  

 A label consisting of a small square indicates how the rule is applied among 

the symmetrical possibilities, although placement of the label and its symmetry 

mean that there remains a choice about applying the rule. However, it should 

be clear which choice is used.  The spatial relation is applied as a rule in a 

sequence of mirror reflections transformations. Symmetries of the shape 

include the rotations about the diagonal axes of the cube and a central 

inversion.  

The pinwheel schema in Fig 6, with six cuboids and eight ‘internal’ locked 

pinwheel joints is also generated by repeated application of a single rule (Fig 

11). The rule repetition leads to the identical H shaped internal maximal planes 

and the identical + shaped external planes.  The rule essentially constructs one 

3D pinwheel with three cuboids and then another which interlocks the first. 

 

 
 

 
 

Figure 11: Generating the pinwheel schema in Fig 6 with a repeated shape rule  

 

 The third example of a pinwheel schema from Fig 8 with seven cuboids and 

six internal 3D locked joints has three kinds of maximal plane which are ☐, H 

or + shaped.  Two rules generate this more complex schema (Fig 12).  As with 

the previous schema a locked joint is generated first around the central 

‘through’ cuboid and further locked joints then created by wrapping further 

cuboids around the central one. 
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Fig 12: Generating the pinwheel schema in Fig 8 using two rules to wrap six cuboids 

around the central ‘through’ cuboid. 

 

The three examples of pinwheel schema generated in this section form the 

basis of extended 3-D patterns analogous to the way that Serlio and Wallis 

constructed their extensions of the 2-D pinwheel.  The 3-D pinwheel schemas 

present motifs for spatially extended patterns where a small number of simple 

spatial relations are repeated across the pattern.  The next section analyses 

general classes of 3-rectangulation in terms of dependencies in the numbers 

and types of joints, demonstrating the critical role that the 3-D locked pinwheel 

joints play general 3-rectangulations.  These dependencies are expressed as 

counting formulae on spatial elements analogous to the Euler formula for 

counting the vertices edges, faces and holes in a polyhedron. 

Counting maximal planes, joints and cuboids in 3-rectangulations 

Compositions of face adjacent cuboids present diverse spatial arrangements. 

It is shown below how the numbers of joints of different types, maximal planes 

and cuboids, satisfy several formulae analogous to Euler’s formula for 

polyhedra and more generally for polytopes.  

Since each maximal plane has a boundary composed of lines along two 

orthogonal directions, the difference between the number of convex corners 

and concave corners on each maximal plane is 4(1-h) where h is the number of 

holes in the maximal plane. A concave corner corresponds to a joint of type C3, 

C0
3, C0

2, C0
0 or C0

1. A convex corner corresponds to a joint of type X0
3, X0

2, 

X0
1, X1 or C0

1. One joint type, namely C0
1, has one concave corner and two 

convex corners. The joints C0
0 have no incident corners of cuboids and neither 

do the subset of the locked joints C0
3(a)  C0

3  which are ‘external’ on both 

sides. Other C0
3 joints may have one incident cuboid corner or two if they are 
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completely internal joints. The numbers of each type of joint are denoted by 

their corresponding type symbols. 

If there are P maximal planes with a total of H holes then the total deficit 

between convex and concave corners on all maximal planes is 

4P - 4H ={X1 + 3X0
3 + 2X0

2 + X0
1 + C0

1} 

                       - {3C3 + 3C0
3 + 2C0

2 + C0
1 +C0

0}                                      (1) 

Counting the corners of 3-rectangles 

8R = 2{X1 + C3} + {C0
3 - C0

3(a) + C0
2 + C0

1} + {X0
3 + X0

2 + X0
1}       (2) 

For the polyhedron formed at the boundary with F0 faces in which there are a 

total of H0 holes the deficit between convex and concave corners on the faces 

is 

4F0 - 4H0 = {3X0
3 + 2X0

2 + 3X0
1 + 3C0

3 + 3C0
3(a) + 2C0

2 + 2C0
1 + 2 C0

0}  

                    - {X0
2 + C0

2 + C0
1} 

The boundary polyhedron with F0 faces, E0 edges and V0 vertices has three 

edges at each joint except for joints C0
0 with four incident edges and the joints 

C0
3(a)  C0

3 with six.  

2E0 = 3{C0
3 + C0

3(a) + C0
2 + C0

1} + 3{ X0
3 + X0

2 + X0
1} + 4C0

0 

  V0 = C0
3 + C0

2 + C0
1 + C0

0 + X0
3 + X0

2 + X0
1 

If the boundary polyhedron has c0 connected parts with g0 holes Euler’s 

formula (F0 - H0)  - E0  + V0 + C0
3(a) = 2 c0 - 2g0 gives 

X0
3 - X0

2 + X0
1 + C0

3 + C0
3(a) - C0

2 - C0
1 - 2 C0

0 = 8 c0 - 8g0                      (3) 

Equations (1),(2) and (3) yield 

C3 + C0
3 + ½{C0

2  X0
3  X0

2} = R  (P  H) + c0  g0                           (4) 

For a 3-rectangulation with a single rectangular boundary  

C3  = (R – 1) - (P - H) + 6                                                                        (5) 

For a 3-rectangulation with all maximal planes as rectangles 

X0
3 + X0

2 = 2(P  R) - 2 c0                                                                       (6) 

This counting assumes face adjacencies between 3-rectangles.  If line- and 

point-adjacencies are present then they can be derived by adjusting face-

adjacencies to create alignments.  Adding line-adjacency joints of type C0
3 and 

type C0
2 joint to the allowable joints maintains the validity of equation (4) since 

joints of types C0
1, C0

0 and X0
1 are not included in (4). A simple example would 

be a layered 'octahedron' where each layer is edge adjacent to its neighbours 

above and below, and with a void interior. There is a single cube at the top and 

bottom and three layers between. This configuration counts with  

C0
2  = 16, X0

3 = 24, R = 14, P = 22, H = 2, c0  g0 = 2. 

The counting of joint types, cuboids and holes developed above is now applied 

to the three examples of pinwheel schema in Figs 10, 11 and 12.  This shows 

how joints are counted in each case as well as checking the general result in 

equation (3). 

 For the schema in Figure 10: C3
0 = 2, C1

0 =6, X3
0 = 12, X1 = 12, X1

0 = 2, R 

= 6, P = 12, c0 = 2. Equation (4) counts these as RHS = -4 = LHS. 
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 For the schema in Figure 11: C3
0 = 8, C1

0 =24, X3
0 = 24, X1 = 12, R = 6, P 

= 12, c0 = 2. Equation (4) counts these as RHS = -4 = LHS. 

 For the schema in Figure 12: C3
0 = 8, C1

0 =24, X3
0 = 16, X1 = 8, R = 7, P = 

12, H = 4, c0 = 1. Equation (4) counts these as RHS = 0, LHS = 0. 

 Line and point adjacencies allow maximal planes to intersect along lines not 

on their boundaries.  However, joints are restricted in the above analysis so that 

no more than two cuboids are adjacent on a single line segment or at a point.  

 Conclusion 

Unlocked 3-rectangulations are essentially two-dimensional when described 

by their generative rules (Krishnamurti and Earl 1998).  These are subdivision 

rules applied to the 2-rectangulation cross sections and show how the unlocked 

3-rectangulations are local variants of layered 2-dimensional layouts.  

Locked 3-rectangulations have more complex generative rules.  The 

pinwheel schemas from the elemental locked joint, to its composite 

configurations described above, encapsulate this three-dimensional complexity. 

However, there are other ways to generate general 3-rectangulations that only 

rely on these schemas indirectly, and present less constrained possibilities. 

 One way of developing such rules depends on ‘puncturing’ planes with 

holes. As seen above it is these holes that create the concave corners in the 

maximal planes indicative of pinwheel patterns. Each maximal plane is 

effectively divided into rectangles by the incident orthogonal planes.  Internal 

maximal planes are divided in two ways, one on each side of the plane.  The 

plane segments in the boundary of the 3-rectangulation are divided only from 

the inside.  A rule aligns two equal configurations of rectangles, one on each 

side an internal plane and then the extra rule ‘knocks though’ the plane dividing 

them. The rule identifies the aligned rectangles, removing the corresponding 

parts of the dividing plane and merging planes and rectangles. As these 

additional rules are applied, maximal planes will take on more complex 

boundaries, possibly with holes. 

These kinds of rules construct the 3-rectangulation and maintain at each 

stage of generation the essential properties of joint type and rectangular 

boundary.  With more general configurations of 3-rectangles, other generative 

specifications are possible. Indeed there seems no barrier to straightforward 

composition by adding one rectangle at a time, face adjacent to one or more 

existing rectangles. Rule application is constrained so that no more than two 

rectangles are incident on a single line segment. Further constraints ensure all 

rectangles are disjoint.  A rule may create any number of face adjacencies.  For 

example, a vacant cuboid hole can be filled by a new 3-rectangulation.  

These kinds of rules for constructing general 3-rectangulations are trivial 

but their constraints complex, especially the requirement not to overlap 
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rectangles in the face adjacent 3-rectangulations.  However, as with many 

constraints and rules, compositions such as the Schroeder House, and perhaps 

more boldly in the intersecting volumes of constructivist artists such as 

Chernikov (Cooke 1989) these constraints and rules are broken especially in 

apparently intersecting rectangular slabs – whether architectural volumes or 

walls. This fluidity of the intersections of rectangular slabs as constructional 

elements and the flow of space through intersections of architectural volumes 

echo each other. 

 The wide range of spatial relations exploited in these works can be 

accommodated through extensions of the notations and counting patterns 

presented in this paper.  These will be developed in a subsequent paper where 

overlapping and intersections of cuboids and volumes give new types of joint 

on the maximal planes.  

One more degree of complementarity is perhaps worth a mention. The two 

regimes for generation; addition of face adjacent cuboids with constraints and 

the subdivision of rectangles are two complementary ways to ‘see’ 

configurations as well as to generate them.  The flows between composition 

and division, between planes (or structural building elements) and volumes (or 

architectural spaces) are exemplified in the face adjacent rectangular 

configurations considered here. 

The pinwheel schemas presented here demonstrate the essential three-

dimensional nature of spatial configurations on an orthogonal grid. Their 

analysis helps in understanding a long history of explorations in spatial 

composition in design and architecture.  Their generative specification offers a 

tool for further exploration, construction and explanation.   

Acknowledgement: All images are by the authors, unless otherwise stated 
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