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Abstract. Algebras of design have previously been investigated for shapes composed of 

rectilinear geometric elements, such as lines and planes, and the properties of these 

algebras have been found to be beneficial for formalising designs, as well as the visual 

processes used by designers as they manipulate shapes in their design explorations. In this 

paper, an overview is presented of the application of these algebras in formalising design 

processes, and this is followed by a discussion concerning issues that arise when the 

algebras are extended to accommodate non-rectilinear designs, represented by shapes 

composed of curves, surfaces and solids. Consideration of non-rectilinear shapes introduces 

new problems not previously identified in the established formalism, resulting from the 

geometries and topologies of the shapes. These give rise to significant questions about the 

relationships between shapes and the property of embedding, which is fundamental to the 

construction of algebras of design.  

 

1 – The Boolean Algebra of a Design 

Pictorial representations, such as sketches and digital models, play an important role in 

architectural design for supporting creative processes of ideation and form development, as 

well as analysis and communication of developing design concepts. As a result, aspects of 

architectural design can be modelled according to shape computations (Stiny 2006), where 

shapes are abstractions of the pictorial representations that architects use to support their 

design processes. Shapes are formally defined according to finite arrangements of the 

geometric elements used to construct representations, such as points, lines, planes and 

solids, and can include labels or weights to model non-spatial information attributed to a 

design. For example, (Koning and Eizenberg 1981) presents an analysis of Frank Lloyd 

Wright’s prairie style, in which designs are represented as shapes decomposed into 

Froebelean-type building blocks. The analysis resulted in a shape rule schemata that 

formalises the style according to spatial relations between volumes differentiated as 

functional zones, as illustrated in Fig. 1 for the design of the Robie house.  

 
Fig 1. The Robie house, decomposed into functional zones, represented as Froebelean-type 

blocks. Image: authors, after (Koning and Eizenberg 1981) 
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Identification of the parts of a design imposes a structure on the representative shape. This 

structure, defined according to the identified set of parts, corresponds to a Boolean algebra 

for a finite set and its subsets, and is partially ordered according to a part relation, closed 

over operations of sum and product, with the complete shape as unit, the empty shape as 

zero, and complements defined accordingly. The algebra enumerates potential 

decompositions of the shape according to the identified parts, and is equivalent to a 

complemented distributive lattice, as illustrated in Fig. 2. Here the main floor level of the 

design of the Robie house is decomposed according to functional zones, with the union of 

parts given by the supremum (join) and the intersection by the infimum (meet). This lattice 

illustrates a particular decomposition of the shape, and is indicative of a fixed symbolic 

representation according to the identified set of (subsets of) parts. But shapes are visual 

constructs, and the visual richness that is apparent in even the simplest shape cannot be 

reduced to a set of symbolic elements (Stiny 2006). Accordingly, the lattice illustrated in Fig. 

2 gives only an account of a specific decomposition of the main floor level of the design of 

the Robie house, one defined according to functional zones, and does not represent the 

complete Boolean algebra represented by the shape.  

 
Fig 2. A lattice of the main floor level of the design of the Robie house 

Shapes have no inherent parts and alternative analyses of the design of the Robie house 

would result in alternative decompositions. For example, consideration of room layout, 

instead of functional zones, would identify a different decomposition of the design with parts 

representing the rooms of the house. Similarly, analyses of the design according to 

performance factors such as ventilation or lighting, would suggest other decompositions of 

the shape, with parts identified according to corresponding metrics. Also, other 

decompositions can result from other processes that involve applying a description to the 

design, for example for the purposes of representation or communication (Krstic 2004). It is 

through these processes of enquiry and description that the structure of a shape is defined, 
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and as a result shapes can be continuously reinterpreted to enable the different modes of 

interrogation and enquiry necessary to support a design process (Jowers and Earl 2012). 

With respect to the algebraic structure of a shape, this plethora of decompositions gives rise 

to a Boolean algebra which is partially ordered by the subshape relation, is closed over 

operations of sum and product, with the complete shape as unit and the empty shape as 

zero, but is infinite in breadth (Stiny 1990). Consequently design representations can be 

interpreted and structured according to any subshapes that are recognised as embedded 

parts, and the visual richness that is inherent in shapes can be utilised in computations 

within formal algebras.  

This account of shapes is analogous to mereological sums, which are defined according to 

part-whole relations, and do not decompose uniquely into parts (Casati and Varzi 1999). 

Indeed, there is a close connection between Boolean algebras and mereology, as explored 

in (Hovda 2009), although a direct isomorphism is not possible because mereological 

structures do not contain a zero element (Eberle 1970).  In design, the zero is accounted for 

by the empty shape which is both philosophically and practically an essential element for 

realistically formalising design representations and the processes applied to them. 

Philosophically, the empty shape is the untouched medium: a blank sheet of paper, an 

empty CAD file, etc. Practically, it ensures closure of shape algebras under shape 

operations. As visual constructs, shapes also have other properties that differentiate them 

from mereological sums. In particular, the parts of a shape can be both timeless and 

temporary, and neither timeless nor temporary parts are adequately accounted for by 

standard mereological conceptions (Fine 1999). A shape’s parts are timeless, because they 

are persistent components of the shape. The empty shape is the only shape that does not 

have any proper parts and removal of a part from any non-empty shape will result in that 

particular shape ceasing to exist. The parts can also be temporary, because at any particular 

moment a given part may not be recognised within the structure of the shape. For example, 

individual rooms are always a part of the design of the Robie house, but may not be 

recognised as such when the design is decomposed according to functional zones. The 

temporality of the parts of a shape plays an important role in creative design. It introduces a 

visual ambiguity that allows shapes to be more than externalisations of ideas; they are an 

active part of the design process. This is most obviously exemplified in sketching processes, 

where the sketching activity is not only directed by the architect, and her internal thought 

processes, but also by shapes recognised in the sketches (Schön and Wiggins 1992). 

There is a reciprocal interaction between the architect and the representation, which results 

from seeing shapes in new ways and reinterpreting their structure according to alternative 

parts. This process involves not only decomposition of shapes, but also transformation via 

manipulation of recognised parts including components and shape elements, which are 

moved, added, deleted, stretched, reflected, etc., (Prats et al. 2008; Paterson and Earl 

2010). These manipulations are formalised according to shape rules, which recognise parts 

of shapes under Euclidean transformations, and replace them under Boolean operations. 

Such rules implement computations in algebras which extend beyond those defined by 

particular shapes and their parts.  

 

2 – The Algebras of Design 

In the previous section, a design representation was presented as a Boolean algebra 

defined over the representative shape and its embedded parts. This is a particular (static) 
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view of design representation, which supports reinterpretation according to decompositions 

identified via enquiry and description. But, consideration of manipulations of representations 

in a design process forces this view to be expanded to include variations of the shape 

according to added and transformed parts. For example, representing the design of the 

Robie house according to Froebelean-type blocks gives rise to a Boolean algebra, which 

includes all possible decompositions of the shape into blocks, partially ordered by the 

subshape relation, with the complete design as unit and the empty shape as zero. 

Manipulation of the design of the Robie house by adding more blocks or by transforming 

recognised parts of the design results in shapes which are not included in this algebra. 

Therefore, to ensure closure under such manipulations it is necessary to consider not only 

the shapes that are parts of the Robie house, but all shapes that are of potential interest 

even shapes of which the Robie house is a proper part. This gives rise to an algebra of 

design, which includes all possible design representations composed of Froebelean-type 

blocks, partially ordered by the subshape relation (Stiny 2006). Other algebras of design can 

similarly be defined, and the simplest examples of these contain shapes composed of a 

single type of geometric element, (either points, lines, planes or solids) and are denoted by 

Uij (i ≤ j), where i indicates the dimension of the geometric element and j represents the 

dimension of the Euclidean embedding space. For example, the Froebelean-type block 

representation of the design of the Robie house is in the algebra U33, where volumes are 

arranged in 3D space. Also contained in this algebra are Froebelean-type block 

representations of all of Wright’s Prairie house designs, as well as all other shapes defined 

by arrangements of volumes in 3D space. Similarly, designs represented in 2D sketches are 

in the algebra U12, and 3D wire frame models are in U13. More interesting design 

representations, composed of combinations of different types of shapes as well as other 

non-spatial information, are formalised in algebras which are defined by the Cartesian 

products of these simple algebras, in combination with algebras of labels, Vij, and weights, 

Wij (Stiny 1991). For example, the representations of the design of the Robie house in Fig. 1 

combine lines, planes, and weighted volumes in the algebra U13 × U23 × W33.  

Unlike the algebra of a particular design representation, these more general algebras of 

design do not include a unit. The only exception is the algebra U00 which contains a shape 

composed of a single point, and is isomorphic to the algebra of Boolean logic, with the point 

acting as unit, and the empty shape as zero. In other algebras Uij (i, j ≠ 0), the empty shape 

is zero, but the unit would be a universal shape, which would include all other shapes as 

parts, and would by definition violate the condition that shapes are of finite extent. Instead, 

the algebras of design Uij (i, j ≠ 0) form generalised Boolean algebras (Stiny 2006). These 

simple algebras, Uij, have the property that all shapes within the algebras can be defined 

from a set of shapes, and the sum operation applied under transformation (Stiny 2006). For 

U0j, all shapes can be defined from a point, repeated under transformed sums; for U1j, all 

shapes can be defined from a line, repeated under transformed sums; for U2j, all shapes can 

be defined from a set of triangles, repeated under transformed sums; for U3j, all shapes can 

be defined from a set of tetrahedra, repeated under transformed sums. 

As lattices the algebras are closed under union and intersection, but these are not complete 

because although every intersection is defined, infinite unions are not. Consequently they 

are relatively complemented distributive lattices, which are equivalent to Boolean rings, 

closed under sum and product (Birkhoff 1940). They are also closed under continuous 

spatial transformations, including solid-body and Euclidean transformations. As such the 

algebras formalise the shapes, shape operations and spatial transformations that architects 
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utilise in manipulations of design representations. Aspects of design processes concerned 

with pictorial representations can therefore be formally defined as shape computations within 

these algebras (Prats et al. 2008; Paterson and Earl 2010).  

In practice, a design process is unlikely to be formalised according to any single simple 

algebra, Uij. It would, instead be formalised by a complicated Cartesian product incorporating 

many of the types of shape and non-spatial information that are used to inform and support 

the development of a design. Consideration of the representational enquiries and 

manipulations that take place throughout such a process gives rise to a subalgebra of the 

algebras of design. The extent of such a subalgebra cannot be defined prior to completion of 

a design process, without compromising the outcome. In some instances such a 

compromise is required, for example, as explored in (Dounas 2008) with respect to algebraic 

formalisations of building codes. However, in general, the constructivist nature of design 

processes mean that the subalgebra which formalises a particular process cannot be 

determined until after that process is complete (Stiny 1991). Rudi Stouffs and Ramesh 

Krishnamurti (2007) illustrate the potential for this algebraic representation, when applied to 

data intended to support a design process and all the various actors and agents involved. 

The examples reported illustrate the advantages of algebras of design over the point-set 

formalisations of design representations which underlie computer-aided design (CAD). The 

most prominent of these is that the algebras support both a reductionist and a constructivist 

approach to design development. The reductionist approach is commonly seen in CAD and 

fixes the structure of a design representation. This is beneficial for later stages of a design 

process when decisions have been made and certain aspects of the design have been fixed 

(Stacey and Eckert 2003). However, it can be detrimental for creative design since it 

necessitates that architects anticipate all future ways in which the parts of a design 

representation will be viewed and manipulated as development continues. Conversely, a 

constructivist approach does not fix the structure, and instead the parts of a design can be 

freely interpreted throughout the design process (Jowers and Earl 2012). Under a 

constructivist approach a design representation can accommodate the needs of all actors 

and agents in a design process, with its structure continuously changing in accordance with 

processes of enquiry and description. Such reinterpretation is a vital element in the 

exploration of a design problem, and the development of a design solution, and is believed 

to be a decisive component of innovative design (Suwa 2003). 

 

3 – Non-rectilinear Embedding 

Despite the promise of algebras of design for supporting reinterpretation of design 

representations, there remain important technical issues which have not, to date, been 

investigated in sufficient detail. In particular, the (Stiny 2006) formulation of the algebras 

focuses on rectilinear shapes and takes advantages of the peculiarities of rectilinearity, with 

little consideration of general application to non-rectilinear geometric elements, such as the 

curves and surfaces used in the representation of the design of the David and Gladys Wright 

house in Fig. 3.  
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Fig. 3. The David & Gladys Wright house, decomposed into functional zones 

As discussed in (Jowers and Earl 2011), the most prominent of these peculiarities are 

concerned with the concept of embedding, which is the fundamental principle from which 

algebras of designs and shape computations are derived. The subshape relation, which 

applies a partial order over shape decompositions, is defined according to embedding:  

a shape A is defined to be a subshape of a second shape B, denoted A ≤ B, if all the 

geometric elements of A can be embedded in all the geometric elements of B.  

Other shape operations build on this definition of subshape, including shape identity:  

a shape A is defined to be identical to shape to a shape B, denoted A = B, if both A ≤ 

B and B ≤ A;  

shape union:  

a shape C is defined to be the union of two shapes A and B, denoted C = A + B, if it 

is the least shape for which A ≤ C and B ≤ C;  

shape intersection:  

a shape C is defined to be the intersection of two shapes A and B, denoted C = A ∙ B, 

if it is the greatest shape for which C ≤ A and C ≤ B;  

and shape difference:  

a shape C is defined to be the difference of two shapes A and B, denoted C = A – B, 

if it is the least shape for which A = C + A ∙ B.   

The embedding properties of rectilinear shapes are peculiar because lines, planes, and 

rectilinear solids are self-similar to an infinite order. In contrast to this, the embedding 

properties of non-rectilinear spatial elements are more limited. For comparison, refer to Fig. 

4, where the dominant design element of the David and Gladys Wright house, the circular 

arc, is compared to the straight line and the parabolic arc. A line can be embedded in any 

other line in an uncountable number of ways, so line A is part of line B under an infinite 

number of Euclidean transformations, and similarly line B is part of line A under an infinite 

number of transformations. In contrast, a circular arc can be embedded in a second arc in an 

uncountable numbers of ways, but only if the arc length of the second is greater than the arc 

length of the first. So, circular arc A is part of circular arc B under an infinite number of 

Euclidean transformations, but circular arc B is not part of circular arc A.  
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Fig. 4. Comparing embedding properties of lines, circular arcs and parabolic arcs 

The embedding properties of parabolas are restricted further, and a parabolic arc can be 

embedded in a second arc in at most two ways (Jowers and Earl 2011). So, parabolic arc A 

is part of parabolic arc B, under two Euclidean transformations, while parabolic arc B is not 

part of parabolic arc A. With respect to embedding, all lines are equal, but some curves are 

more equal than others. 

Another peculiarity that arises when considering only rectilinear shapes is that there is little 

distinction between analytical and visual embedding. The properties of rectilinear geometric 

element ensure that there is always a subshape relation between two elements of the same 

type, and that this relation is both visually and analytically correct. For non-rectilinear 

geometric elements, this is not always the case. For example, Fig. 5 illustrates how a curve 

segment can be visually embedded in many different curves. Analytically, this is not 

possible, since if two distinct curves are analytically described, (defined according to 

equations), then they can never have more than a finite number of intersection points. An 

analytical embedding will only map a curve segment onto other curve segments that have a 

common mathematical description, and under analytical embedding, the visually similar 

curve segments in Fig 5 would all be distinct and could not be mapped on to each other 

despite their visual similarity. Ramesh Krishnamurti and Rudi Stouffs (2004) advocate 

analytical embedding over visual embedding, because it results in unique shape descriptors 

which simplify computer implementation of shape computation. But, this is potentially at the 

expense of visual intuition, and may not accurately reflect the visual interaction between 

architects and pictorial representations of their designs. With respect to implementation, it is 

possible to utilise either analytical or visual embedding. For example, in (Jowers and Earl 

2010), a method of implementing analytical embedding is presented, which builds on the 

intrinsic properties of parametric curves. Conversely, in (Jowers et al. 2010), a method of 

implementing visual embedding is presented, which builds on techniques of computer vision 

for object recognition in bitmap images. Both of these methods enable computation with non-

rectilinear shapes, but the structures of the resulting algebras of design have not, to date, 

been investigated. 

 

Fig. 5. Visual extensions of a curve segment 

Given a specific design representation, for example the David and Gladys Wright house 

illustrated in Fig. 3, the algebra defined by decomposing the resulting shape into parts is the 

same as for rectilinear designs, as illustrated by the lattice in Fig. 6. The representative 

shape and its parts form a Boolean algebra, partially ordered by the subshape relation, and 
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closed over operations of sum and product. The unit is defined by the complete shape, the 

zero by the empty shape, and the range of possible decompositions that arise in response to 

enquiry and/or description of the design representation gives rise to an algebra of infinite 

breadth. The fact that the parts include non-rectilinear geometric elements is of no 

consequence; regardless of whether embedding is analytical or visual, the parts are 

specified in relation to the unit shape, and all joins and meets of the resulting complemented 

distributive lattice are uniquely defined. However, when considering the more general 

algebras of design, the fact that a shape includes non-rectilinear geometric elements is of 

significant consequence.  

 
Fig. 6. A lattice of the main floor level of the design of the Robie house 

Consideration of non-rectilinear geometric elements introduces properties of shapes that 

need not be considered when geometric elements are rectilinear. For example, non-

rectilinear geometric elements can exist without a boundary. For one-dimensional elements 

these include circles, ellipses, and other closed curves, and analogous closed shapes exist 

for higher-dimensional non-rectilinear geometric elements, such as spheres. Other 

topologies also come into play, allowing holes in torii and other geometrical elements, 

according to their genus (Kelley 1991). As a result, the boundary of a shape can be the 

empty shape, a possibility not accounted for in formal treatments of shape boundaries, such 

as (Earl 1997), where it is argued that the only element with an empty boundary is the empty 

shape. 

These different topologies have consequences beyond the geometric elements used to 

construct shapes; they can also apply to the embedding spaces in which shapes are 

arranged. For example, consider a shape composed of circular arcs arranged in one-

dimensional space. The embedding properties of circular arcs mean that this shape cannot 

be embedded in a Euclidean one-dimensional space, such as a linear space; instead, the 
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embedding space must be of the same type as the geometric elements; it must be a circle, 

as illustrated in Fig. 7. Because of the topology of this space, the properties of the resulting 

algebra of design are not the same as for shapes arranged in a Euclidean space. 

Specifically, the space is closed, which means the algebra is similar to the algebra of a 

specific design representation: it corresponds to a Boolean algebra, partially ordered 

according by the subshape relation, closed over operations of sum and product, with the 

space (which is finite in extent) as unit, the empty shape as zero, and complements defined 

accordingly.  A one-dimensional circular design might seem superficial in nature, but is 

indicative of the issues that arise when architects explore designs in different embedding 

spaces, for example when applying ornamental patterns to curved surfaces rather than flat 

surfaces.  

 

Fig. 7. A one-dimensional design composed of circular arcs 

 

4 – Surveying the Algebras of Curved Shapes 

The differences in embedding properties, between rectilinear and non-rectilinear geometric 

elements, mean that the properties of the resulting algebras of design are not well 

understood. If embedding is defined visually, then it is not clear what the resulting 

mathematical structures are. The concept of visual embedding is currently ill-defined, but is 

likely to involve some degree of approximation and visual tolerance, as explored in (Jowers 

et al. 2010) and (Keles et al. 2012). Consequently, the mathematical precision that underlies 

the treatment of shapes outlined in (Stiny 2006), will be lost, but with the benefit of algebras 

of design that better reflect architects’ visual interactions with pictorial representations. One 

consequence of this visual ‘fuzziness’ is that under visual embedding non-rectilinear 

geometric elements cannot be uniquely identified, and a given curve can be embedded in 

many different types of curve, as illustrated in Fig. 5. Consequently, parts cannot be uniquely 

identified, and the subshape relation does not give rise to a relatively complemented 

distributive lattice. The structure that does arise from considering visual embedding warrants 

further research, but the remainder of this discussion will focus on issues that arise as a 

result of analytical embedding.  

If embedding is defined analytically, then non-rectilinear geometric elements can be uniquely 

identified according to mathematical descriptions; for example, a line can be uniquely 

identified according to a linear equation, a circular arc according to the equation of a circle, 

and a parabolic curve according to a parabolic equation. Parts can be uniquely specified, 

and the subshape relation establishes a relatively complemented distributive lattice with all 

finite joins and meets uniquely defined. The resulting algebras of design are therefore 

relatively complemented distributive lattices, which are equivalent to Boolean rings, closed 

under sum and product. However, unlike algebras with shapes composed of rectilinear 

geometric elements, the resulting structure does not correspond with visual intuition; for 

example the visually identical curve segments illustrated in Fig. 5 are distinct, and each is 

included in a different simple algebra.  
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The algebraic framework proposed in (Stiny 2006) is summarised in Fig. 7, where the simple 

algebras Uij are enumerated for 0 ≤ i ≤ 3 and i ≤ j. It is typically assumed, for example in 

(Stiny 2006) and in (Krishnamurti and Stouffs 2004), that shapes composed of non-

rectilinear geometric elements, such as the curves and surfaces used in the representation 

of the design of the David and Gladys Wright house in Fig. 3, are included within this 

framework. But consideration of the embedding properties of non-rectilinear geometric 

elements suggests that this cannot be so. For example, an algebra of design that includes 

shapes composed of both rectilinear and non-rectilinear geometric elements cannot be one 

of the simple algebras included in Fig. 8. This is because, under analytical embedding, 

rectilinear and non-rectilinear geometric elements are always distinct, under Euclidean 

transformations. For example, a straight line cannot be embedded in a circular arc, nor can a 

circular arc be embedded in a straight line. Algebras that include shapes composed of both 

rectilinear and non-rectilinear geometric elements must instead be composite algebras, with 

different types of geometric element combined under Cartesian products. For example, an 

algebra of design that includes shapes composed of lines and arcs is a Cartesian product of 

an algebra of design in which shapes are composed of lines, and of an algebra of design in 

which shapes are composed of circular arcs.  

 

Fig. 8. Algebras of design, from (Stiny 2006) 

Similarly, an algebra of design that includes shapes composed of different types of non-

rectilinear geometric elements cannot be a simple algebra. This is because, under analytical 

embedding, different types of non-rectilinear geometric elements are distinct. For example, a 

circular arc cannot be embedded in a parabolic curve, nor can a parabolic curve be 

embedded in a circular arc. Algebras that include shapes composed of different types of 

non-rectilinear geometric elements must also be composite algebras, with different types of 

geometric element combined under Cartesian products. For example, an algebra of design 

that includes shapes composed of parabolic curves and circular arcs is a Cartesian product 

of an algebra of design in which shapes are composed of parabolic curves, and of an 

algebra of design in which shapes are composed of circular arcs.  

These examples indicate that the framework summarised in Fig. 8 is incomplete. Non-

rectilinear geometric elements are not included in the algebras Uij (i ≤ j), and neither are they 

included in some, as yet undefined simple algebra of non-rectilinear shapes. Instead, when 

embedding is defined analytically, there must be an infinite number of algebras. The simple 

algebras enumerated in Fig. 8 include rectilinear shapes embedded in Euclidean spaces of 

different dimensions, but in addition to these a complete framework should also include 

simple algebras for each different type of non-rectilinear geometric element. To achieve this, 

it is necessary to clarify formally what the type of a geometric element is. In (Krishnamurti 

and Stouffs 2004), type acts as a filter for distinguishing categories of shapes, for example 

lines from curves, planes from surfaces, etc., and it is suggested that the equations of a 

geometric element can serve this purpose. With respect to algebras of design, type should 

reflect the embedding properties of geometric elements, so that geometric elements are 
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distinguished according to embedding. This would ensure that elements with distinct 

embedding properties compose shapes defined within distinct algebras. Under this criterion, 

the equation of a geometric element is insufficient a definition of type. For example, although 

circular arcs and parabolic curves are distinct in terms of embedding, they can both be 

described according to quadratic equations. Instead, other descriptors are necessary for 

distinguishing between types of geometric elements according to embedding properties. For 

example, in (Jowers and Earl 2010) intrinsic properties are used to distinguish between 

geometric elements of different types.  

Type is a difficult concept to define because it depends not only on shape, but also on 

embedding space and the set of transformations used. Shape computations are typically 

defined so that shapes are embedded in an Euclidean space and manipulated and 

compared according to Euclidean transformations. But, designers often have to work in a 

range of embedding spaces, for example the curved walls of the David and Gladys Wright 

house give rise to a curved embedding space in which various architectural elements need 

to be arranged. Similarly, designers use a range of transformations; for example, affine 

transformations are often used to visually replicate the effects of perspective.  

An example of a non-rectilinear embedding space is illustrated in Figure 7, where circular 

arcs are embedded in a circular space. This example is analogous to the algebra U11 where 

line segments are embedded in a one-dimensional Euclidean space; a linear space. The 

geometric elements are of the same dimension as the embedding space and consequently 

the geometric elements are the same type as the embedding space and no other type is 

permissible. In both examples, the set of transformations that can be used to transform and 

manipulate geometric elements are constrained to translations within the space. In U11 these 

are linear translations along the line, in the embedding space illustrated in Figure 7 these are 

circular translations along the circle. The type of the embedding space influences the type of 

geometric elements and the set of transformations.  

Fig. 9 illustrates an example where the dimension of the embedding space is greater than 

the dimension of the geometric elements. Here, one-dimensional geometric elements, 

including a line, a parabolic arc, an elliptic arc and a circular arc, are embedded in a two-

dimensional conic space. In a Euclidean embedding space, such as a plane, these 

geometric elements may be considered to be of different types, but in this conic embedding 

space applying a rotation allows them to transform into each other. In the conic embedding 

space, under a rotational transformation, the line, the parabolic arc, the elliptic arc and the 

circular arc are all the same type. 

 

Fig. 9. Rotation of a line in a conic embedding space 
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This example is indicative of the importance of transformation in identifying the type of 

geometric elements. The set of transformations allowed in a computation specifies the 

spatial relationships that are included within the definition of embedding. For example, for 

computations in a conic embedding space rotations must be allowed in order for the line, the 

parabolic arc, the elliptic arc and the circular arc to be considered the same type. Similarly,  

in Euclidean two-dimensional space, if the set of transformations allowed in a computation 

includes the affine transformations then the line, the parabolic arc, the elliptic arc and the 

circular arc are all the same type, because they can all be mapped onto each other. 

This brief discussion has highlighted some of the interesting properties that result when 

considering how the embedding relation applies to non rectilinear shapes, and the algebras 

of design that result from this. The examples explored suggest that the framework illustrated 

in Fig. 8 needs to be extended further to include different types of geometric elements as 

well as different types of embedding spaces. A complete framework would include all simple 

algebras differentiated according to the embedding properties of shapes and the spaces that 

they are arranged in. Computations within these new algebras aren’t well understood, and 

further research is needed to explore the resulting structures. 

 

5 – Concluding Remarks 

Modern CAD builds on a point-set representation of shapes which has proven effective for 

building design models of ever greater complexity, but has been found to be inadequate for 

supporting the visual shape manipulations that typify creative design (Stones and Cassidy 

2010). One reason for this is because point-set representations are, by definition, 

represented symbolically in algebras U0j, and the visual properties of shapes in other 

algebras, Uij, (i ≠ 0), cannot be accommodated. The discussion presented in this paper has 

explored design representations which give rise to algebras of design, which are an elegant 

alternative to the point-set formalisations of design representations. These algebras build on 

a concept of embedding, which structures shapes according to identified parts that are 

appropriate for the task at hand, but do not fix this structure against future reinterpretation. 

Accordingly, they present a credible computational model for visual shape manipulations, 

and can be applied to formalise the shapes, shape operations and spatial transformations 

that architects utilise in manipulations of design representations. Theoretical development of 

the algebras of design have, to date, focused on points, lines, planes and solids, arranged in 

Euclidean space, and have paid little attention to the non-rectilinear forms and spaces that 

typify modern architecture. This discussion has explored how the current framework is 

insufficient to formalise these forms and spaces, and identified key areas for further 

investigation. Central to extending the algebras of design to accommodate non-rectilinear 

shape is formalising the concept of embedding. In the current framework it is unclear if 

embedding is an analytical relation or a visual relation, since for rectilinear shapes there is 

little difference between these. The discussion has highlighted that either choice results in 

complications which need to be resolved, either with the topological properties of geometric 

elements and the spaces in which they are embedded, or with more fundamental concepts 

of visual similarity, and how this is used by architects as they read, create, manipulate and 

describe shapes in their design processes.  
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