
Open Research Online
The Open University’s repository of research publications
and other research outputs

An open framework for semantic code queries on
heterogeneous repositories
Conference or Workshop Item
How to cite:

Zhang, Tian; Pan, Minxue; Zhao, Jizhou; Yu, Yijun and Li, Xuandong (2015). An open framework for semantic code
queries on heterogeneous repositories. In: Proceedings of the 2015 International Symposium on Theoretical Aspects
of Software Engineering (Sun, Jun ed.), IEEE, pp. 39–46.

For guidance on citations see FAQs.

c© 2015 The Institute of Electrical and Electronics Engineers, Inc.

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1109/TASE.2015.27

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/82980706?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.1109/TASE.2015.27
http://oro.open.ac.uk/policies.html

An Open Framework for Semantic Code Queries on
Heterogeneous Repositories

Tian Zhang†‡, Minxue Pan†§∗, Jizhou Zhao†‡, Yijun Yu¶ and Xuandong Li†‡
†State Key Laboratory for Novel Software Technology, Nanjing University
‡Department of Computer Science and Technology, Nanjing University

§Software Institute, Nanjing University, P. R. China
¶Department of Computing & Communications Centre for Research in Computing, The Open University, UK

Email:{ztluck,mxp}@nju.edu.cn, zjz@seg.nju.edu.cn, y.yu@open.ac.uk, lxd@nju.edu.cn

Abstract—To help developers understand and reuse programs,
semantic queries on the source code itself is attractive. Although
programs in heterogeneous languages are being controlled for
collaborative software development, most queries supported by
various source code repositories are based either on the metadata
of the repositories, or on indexed identifiers and method signa-
tures. Few provide full support to search for structures that are
common across different programming languages and different
viewpoints (hence heterogeneous). To facilitate understanding and
reuses, in this paper, we propose a novel source code query
framework that (1) transforms source code to a unified abstract
syntax format, and handles heterogeneity (non-isomorphism) at
the abstract syntax level; (2) stores source code on a cloud-based
NoSQL storage in MongoDB; (3) rewrites semantic query pat-
terns into the NoSQL form. The efficiency of the framework has
been evaluated to support several open-source hosting platforms.

I. INTRODUCTION

In the past decade, code-hosting repositories are growing
prosperously, due to the explosively increasing number of
open-source projects. Representatives such as GitHub [1],
SourceForge [2], Google Code [3], Sourcerer [4] have be-
come quite a popularity among software developers for their
capability to supply various codes for references. Available
existing codes that one can acquire are more than ever before.
However, code reuse and analysis is still seldom seen in
practice. The main reason is code in need is difficult to find.
The state of the art code repositories like GitHub, SourceForge
and Krugle [5] provide only keyword search function which
limits the effectiveness of finding appropriate codes for a
specific application [6]. Often, keyword matching does not
mean any resemblance in the software functions. For example,
an “iterator” statement in Java can be used to do a element
search in one program, or a quick sort in another. Even if one
is lucky enough to find a piece of code by keyword matching
that meets the requirements, the code may be too complex
to be understood and therefore cannot be adapted to the new
program. It is widely acknowledged that semantic code query
is the solution, and many studies have been conducted on
the subject. In [7], relations between expressions, units and
modules can be specified with the specification language of
the CARE system. In [8], a contact based specification is used
to query the relations between methods and components. In
[9], a semantic indexing based specification is adopted in the
query for the component relations. Some code repositories

∗Corresponding author

also support simple semantic queries, such as Codifier [10].
Unfortunately, none of these work support the semantic query
of the relations of classes and objects in the object-oriented
(OO) programs. Nowadays, most modern languages have em-
braced the OO concepts, which results in that the program
designs are OO based. For example, many programs have
used design patterns which essentially are OO based to fulfill
the intended functions. As a consequence, some preliminary
work have been conducted to address the problem of querying
relations among OO constructs. In [11], a query language JTL
is proposed which is Datalog alike and can query element
relations in Java programs. In [12], a OO query language called
.QL which queries for program structure is introduced. .QL is
based on SemmleCode, which is within Eclipse to query Java
programs. To our best knowledge, all these pieces of work
focus on some specific programming languages. If one needs
to perform queries on more than one languages, it is required
that different querying language be learned, which is quite a
burden for developers, as source code query is meant to ease
the coding process by reusing similar code snippets. How to do
code query on various programming languages at a semantic
level becomes a problem badly in need of solution.

When semantic code query is supported, the choice of
the storage format for the programs becomes an interesting
problem. Most repositories use relational database, such as
MySQL [4], [5] or MSSQL [10]. For syntactic code queries
like keyword matching, relational database is acceptable for
its performance. However, when it comes to semantic code
queries concerning OO relations, relational database can be
inefficient. Usually, OO relations are about multiple classes
and objects. Therefore, to extract one snippet, multiple code
snippets need to be scanned, which can cause problems for
relational databases. The first problem is the high cost of
code flattening in the storing process. For storing in relational
databases, codes need be decomposed into different informa-
tion parts including structure information, index information,
text information, etc.. For example, for the code snippet in
Figure 1, information has to be scattered into five tables.
The second problem is that when the target source code is
found and to be presented, they need to be reconstructed from
flattened codes. For example, if one wants to find a print
statement used in the public class “HelloWorld”, all the five
tables will be joined to produce the result. The third problem
is that the performance of the relational databases could be
severely affected when there are massive codes to be stored.
These three problems restrict the performance of code query

in relational databases.

存储比较

SEG -­ Software Engineering Group 11

public Class HelloWorld{
public void HelloWorld(int car){
print(“HelloWorld!”);;

}
}

Table CLASS

Table METHOD

Table STATEMENT

Table RELATION

Table MODIFIER

Fig. 1. Code decomposition for storing in relational database

To address the aforementioned problems, in this paper we
propose an open framework which facilitates the semantic
code query on heterogeneous repositories. We propose to a
new query language JIns+ which is the the extension of a
declarative code instrument language JIns [13] to perform code
queries on heterogeneous OO programs. The JIns language is
designed for context- sensitive instrumentation tasks of Java
programs. We chose it as the basics of our query language
JIns+ based on the following observations:

• JIns supports the query of OO relations in Java pro-
grams;

• JIns’ quantified predicate logic expressions provides
expressive query rules;

• JIns’ SQL-like style is easy to learn and comprehend
by most programmers.

JIns+ adopts the JIns basic syntax, but is not restricted
to query Java programs. It has the ability to query on various
OO programs including C++, C#, Java, Scalar, etc., which is
achieved by not associating any specific languages with its
syntactic elements. Instead, a semantics based on the general
OO concepts is given. When querying on a particular language,
the general semantics is mapped to the language specific
syntax, which will be used for the code match that finds the
codes satisfying the queries. With this two- layered mapping,
JIns+ can query on heterogeneous OO programs. For example,
to find a class cname’s direct subclass in Java, one can write
in JIns+ as:
find all c:class satisfying exist c’:class
where c’.name=cname && c extend c’
The statement c extend c’ is not associated with the
Java code, but given a semantics adjusted from the UML
specification whose purpose is to provide a unified modeling
approach for software systems with OO concepts despite the
language differences. Informally, c extend c’ where c and
c’ are both classes means that c’ is a generalization of c.
This semantics is used to make mappings to each specific
programming language that the repository supports. For C++,
this generalization between c and c’ is mapped to the syntax of
c:c’. So when we want to search for a code snippet satisfying
the query statement in a C++ program, there is no need to
learn a new query language.

For storing codes, we propose to use NoSQL databases.
Compared with traditional relational databases which require
that schemata be defined as relational tables, NoSQL databases
are built to allow the insertion of data of flexible structures

[14], which is suitable for storing codes since their struc-
tures vary across different programs. Among miscellaneous
NoSQL databases, MongoDB [15] is an open-source docu-
ment database, and the leading NoSQL database. We chose
MangoDB as the our database, for it adopts a document-
oriented storage approach. Usually, OO source codes have
more complex structure and deeper hierarchies than procedural
codes. MangoDB’s nested document storage is able to reserve
most of the nested structure of OO codes, which makes it
suitable for the task. Another advantage of MongoDB is its
scalability that it can cope with big data very well. There
are vast open-source projects nowadays. As a matter of fact,
we have already collected more than ten thousand of projects
whose occupied storage has reached to the scale of terabyte,
so the choice of NoSQL database would be very reasonable.

MongoDB stores data in the format of JSON [16], which
is a lightweight data-interchange format. JSON is easy for
humans to read and write, and for machines to parse and
generate. It is based on a subset of the JavaScript Programming
Language, whose grammar is close to most OO languages.
Nevertheless, we still need to transform the source codes to the
JSON format. One way to do this is to write transforming rules
that directly transform the source codes to corresponding JSON
data. Since there is no standard transformation out there, this
method is ad-hoc, and have two major problems. One is that we
have to come up with a unified schema for the JSON data to be
stored in MangoDB. Otherwise it would be impossible for the
JIns+ queries to understand the data. Even though the schema
has been well defined, we still need to write a transformation
procedure for each OO language respectively according the
transformation rules, as each OO language has different syntax.
This can be extremely tedious and error-prone. Therefore, we
employ the other approach, which transforms the codes to an
standard intermediate format, and then to the JSON data. We
use FreeTXL, an implement of TXL [17], as the intermediate
format specifying language. TXL is a programming language
specifically designed to support computer software analysis
and source transformation tasks, and is the evolving result
of more than fifteen years of concentrated research on rule-
based structural transformation [18]. It specifies the program
structures to be transformed and the transforming rules, which
can be applied to all kinds of programming languages. Besides,
in FreeTXL, transformation rules for 18 mainstream program-
ming languages such as Java, c++, c# and Python have already
been predefined and implemented as runnable programs. The
results after the transformation are a set of XML files which
can be easily transformed to JSON data via JDOM [19].
With this two-step transforming, we have avoided the work
of writing transformation rules and the target code schemata,
while at the time gain the prize that the results of transforming
heterogeneous programming languages are in accordance with
a unified schema.

By combining the query and storage techniques, we pro-
pose a framework for semantic code queries on heterogeneous
repositories. The framework is open, in the sense that programs
written in new languages can be easily added to the repository,
and can be searched without learning new query languages. To
summarize, we make two major contributions in this paper:

• We proposed a semantic code query language JIns+.
With a two-layered mapping, JIns+ hides the het-

erogeneity of different OO programming languages
and can query the OO relations across various OO
languages;

• We proposed a NoSQL-based source storage ap-
proach. With a two-step transforming, heterogeneous
OO source codes can be stored in the MangoDB
database and can reach a scale of practical use.

The rest of this paper is organized as follows. Section 2
briefs the framework. Section 3 presents the details of the
storage approach with MangoDB. Section 4 presents the query
language , with which we perform the semantic code queries
on the repositories. Section 5 shows two case studies. Section
6 discusses related work from recent years. Finally, Section 7
concludes this paper.

II. FRAMEWORK OVERVIEW

In this section, we will briefly introduce our proposed
framework, which is illustrated in Figure 2. The framework
consists two components: the code storage component and the
code query component.

Heterogeneous
Source Code

TXL
Programs

XML Files

JDOM

JSON Data

Language
Specific

Statement
Library of
Schemata

TXL
Grammars

MangoDB Query Commands

MangoDB Database

 Code Storage Semantic Code Query

JIns+
Query

Statement

Fig. 2. The overview of the framework

The code storage component transforms source codes of
heterogeneous languages to the data that can be stored in
the MangoDB database. As it is mentioned in introduction,
we adopt a two-step transformation strategy. First, the source
codes that acquired from online repositories are transformed
into a group of XML files by applying TXL programs. Then
the XML files are transformed with JDOM into JSON data,
which can be accepted by the MangoDB database.

The semantic code query component performs the JIns+
query commands on the code repositories. The query is not
directly executed on the MangoDB query engine, but through
a two-layered mapping. First the syntax of the JIns+ query
statements are mapped to the language specific syntax. At the
same time, a schema of the nested structure of the JSON data
is derived by analyzing the TXL grammar. Then by combining

the two, a MangoDB query command is generated and exe-
cuted on the database, which produces the query results. The
technical details of the two components are presented in the
next two sections.

III. CODE STORAGE WITH MANGODB

In this section, we will introduce how to store hetero-
geneous source codes in MangoDB. The source codes we
stored were acquired from the online code repositories such
as GitHub, Bitbucket, or Google Code, etc.. We used a
web crawler to automatic download open source codes from
different repositories. The codes are written in different pro-
gramming languages, however, with our two-step transforming,
the heterogeneity of different codes are well handled. First, we
use FreeTXL to transfer different kinds of source coded into
XML files. It helps a lot that transformation grammars of main
programming languages are offered officially. In the following,
we will show the transforming and storing process with a Java
code snippet example.

To make the illustration concise, we use the well-known
“HelloWorld” snippet as the example:

TWO JAVA CASES

A crawler is used to collect open source code from different repositories on the web. In the next
part, we will use two cases to show how we transfer source code into JSON.
In the first case, the original source code is the well-­‐known “HelloWorld” snippet:

public class HelloWorld{
 public static void main(String[]args){
 System.out.println("Hello, World!");
 }
}

We use FreeTXL to transfer source code into XML using the JAVA grammer offered by the TXL
group:

<Program >

<Class >
<classModifier > public </classModifie>
<className> HelloWorld </className>
<Method >

<methodModifier> public static </methodModifier >
<methodName> main </methodName>
<isConstructor> false </isConstructor>
<returnType> void </returnType>
<Statement>

<statementType> normal </statementType >
<Expression> …. </Expression>

</Statement>
</Method >

</Class >
</Program >

To clarify, XML tree showed in this article has been cut to make it easier to describe the main
structure. The original XML file generated by FreeTXL is more detailed and complicated. In this
XML tree, the root node is “Program”. The node “Class” is the only child of “Program”, which
means this program file only has one class. “classModifer”, “className”, “Method” is the three
children of “Class”. The first two nodes contain the configuration information of the class while
the last node leads to the method inside of the class. “Method” has five children.
“methodModifier”, “methodName”, “isConstructor” and “returnType” show the configuration
information of the method, “Statement” includes the information of statements inside the
method. The “statementType” node is one of the children of “Statement”. There are sixteen
different types of statement like “for_statement” or “if_statement”, but in this method, the

Fig. 3. The “HelloWorld” Java code snippet

We use FreeTXL to transfer source code into XML using
the JAVA grammar offered by the TXL group, the resulting
XML file is shown in Figure 4.

TWO JAVA CASES

A crawler is used to collect open source code from different repositories on the web. In the next
part, we will use two cases to show how we transfer source code into JSON.
In the first case, the original source code is the well-­‐known “HelloWorld” snippet:

public class HelloWorld{
 public static void main(String[]args){
 System.out.println("Hello, World!");
 }
}

We use FreeTXL to transfer source code into XML using the JAVA grammer offered by the TXL
group:

<Program >

<Class >
<classModifier > public </classModifie>
<className> HelloWorld </className>
<Method >

<methodModifier> public static </methodModifier >
<methodName> main </methodName>
<isConstructor> false </isConstructor>
<returnType> void </returnType>
<Statement>

<statementType> normal </statementType >
<Expression> …. </Expression>

</Statement>
</Method >

</Class >
</Program >

To clarify, XML tree showed in this article has been cut to make it easier to describe the main
structure. The original XML file generated by FreeTXL is more detailed and complicated. In this
XML tree, the root node is “Program”. The node “Class” is the only child of “Program”, which
means this program file only has one class. “classModifer”, “className”, “Method” is the three
children of “Class”. The first two nodes contain the configuration information of the class while
the last node leads to the method inside of the class. “Method” has five children.
“methodModifier”, “methodName”, “isConstructor” and “returnType” show the configuration
information of the method, “Statement” includes the information of statements inside the
method. The “statementType” node is one of the children of “Statement”. There are sixteen
different types of statement like “for_statement” or “if_statement”, but in this method, the

Fig. 4. The XML file of the “HelloWorld” code snippet

To clarify, the XML tree shown in Figure 4 has been
trimmed to make it easier to describe its main structure. The
original XML file generated by FreeTXL has more details. In
this XML tree, the root node is “Program”. The node “Class”
is the only child of “Program”, which means this program

file only has one class. “classModifer”, “className” and
“Method” are the three children of “Class”. The first two nodes
contain the configuration information of the class while the last
node leads to the method inside of the class. “Method” has five
children. “methodModifier”, “methodName”, “isConstructor”
and “returnType” show the configuration information of the
method. “Statement” includes the information of statements
inside the method. The “statementType” node is one of the
children of “Statement”. There are sixteen different types of
statement like “for statement” or “if statement”, but in this
method, the statement “System.out.println(“Hello, World!”);”
is just a ordinary expression. The “expression” node describes
the detailed information of the expression statement which is
omitted here. Then we use JDOM to transfer XML into JSON,
and the result is shown in Figure 5. Compared with the XML
file in Figure 4, we can tell that XML nodes are corresponding
to JSONs structural layers, which guarantees that the two-step
transformation can be done straightforward and seamlessly.

statement “System.out.println("Hello, World!");” is just a normal expression. The “expression”
node describes the detailed information of the expression statement which is omitted here.
Then we use JDOM to transfer XML into JSON:

{

Program :
{

Class :
{

classModifier : “public”,
className : “HelloWorld”,
Method :
{

methodModifier : “public static”,
methodName : “main”,
isConstructor : “false”,
returnType : “void”,
Statement :
{

statementType : “normal”,
Expression : { }

}
…
Compared with the XML file above, we could tell that XML nodes are corresponding to JSON’s
structural layers.

The second case is a code snippet of the singleton design pattern, which is a little more complex
than the first one:

public class Singleton {
 private static Singleton uniqueInstance = null;

 private Singleton() {
 }

 public static Singleton getInstance() {
 if (uniqueInstance == null) {
 uniqueInstance = new Singleton();
 }
 return uniqueInstance;
 }
}

We use the same way to parse code into XML:

Fig. 5. The JSON data of the “HelloWorld” XML file

JSON is the storage format of MongoDB, so we can
use MongoDB storing driver to add the JSON data into the
database. Each Java source file corresponds one JSON data,
and in this way we can store a Java project. For projects written
in other programing languages, we can employ the two-step
transformation in a similar way and store heterogeneous codes
in the same MangoDB repository.

IV. SEMANTIC CODE QUERY

A. Query Rules

JIns+ defines its query rules in a declarative approach.
During the query, the user needs to specify the type of the
query target and the conditions that need to be satisfied by
the target and other elements related to the target. Currently,
our work intends to construct a source query platform only
for code written in OO programming languages such as Java,

C #, Smalltalk, which have three features: encapsulation,
inheritance and polymorphism.

Based on the query rules of JIns, we custom a set of query
rules for JIns+:

S ⇒ find {all}{exist} Id : T satisfying CS

T ⇒ variable

| statement

| method

| class
| interface

CS ⇒ {exist Id : T}{all Id : T} where CE

CE ⇒ CE && CE

| CE || CE

| ! CE

| (CE)

| Id.ATT = ′value′

| Id REL Id

ATT ⇒ name

| dataType
| specialType
| returnType
| paramsType

REL⇒ extend

| use
| change
| isIn
| call

In the above rules, the term Id is the symbolic name rep-
resents the target that one wants to query about. The target can
be associated with quantifiers including all and existing. Types
of the targets available now are Class, Interface,
Method, Statement and Variable. There are two kinds
of query conditions that JIns+ supports: the attribute query
(ATT) and the relation query (REL). Multiple query condi-
tions can be combined with conjunctions and disjunctions.

For each target (class, method, etc.), we define its prop-
erties with attribute values, which is in accordance with JIns
[13]. Here we just give an example of the target variable. For
more information, the reader can refer to [13]. Target variable
has three properties: name, dataType and specificType The
name represents the identifier of a variable in a program. The
dataType represents the type of a variable, for example, if a
variable is declared as a stack. The specificType represents the
scope of a variable. The value “field” of specificType means
that the variable is a field of a class, the value “local” means
that the variable is a local variable of the program, and the
value “parameter” means that the variable is a parameter of a
method. Note that most of these attributes exist in almost all
the programming languages, and therefore can be mapped to
each language without much effort.

However, OO relations in different languages can vary
enormously. For example, the generalization relation in C++
can be written roughly as subclass : superclass, while in

Java it is subclass extends superclass. We have surveyed
multiple OO languages and summarized five relations. The
relations are not associated with any specific language syntax.
Instead, they are given a semantics independent of programing
languages, which later can be mapped to language specific
elements. The relation REL in the term Id1 REL Id2, can
be one of the followings:

• extend stands for the generalization relation, which
means Id2 is the generalization of Id1.

• use reflects the relationship that if Id1 uses Id2 to
fulfill its function. There are three use relations: (1)
statement element use variable element; (2) method
element use variable element; and (3) class element
use variable element.

• isIn relation specifies that Id1 is declared in Id2. It
has some similarity to use, while use does not require
one element is declared in the other. There are four
isIn relations: (1) statement element isIn statement
element; (2) statement element isIn method element;
(3) method element, statement element or variable
element isIn class element; and (4) method element
isIn interface element.

• change relation represents that Id1 changes the value
of Id2, where Id2 must be a variable and Id1 can be
statement, method or class.

• call means a method Id2 is called by a statement or
another method Id1.

Now we can write code query commands following the
rules of JIns+. For example, if we want to query a class named
‘HelloWorld’, the query statement should be like:

find c:class satisfying where c.name ==
‘‘HelloWorld’’

The attributes and relations in the query statement is
mapped to the language specific syntax in the two-layered
mapping style, and parsed to commands that MangoDB un-
derstands, which is explained in the following section.

B. Parse of Query Statements

In our work, source code in MongoDB is stored in a
nested structure. We can see from Figure 4 that Program
has Class nested, Class has Function nested, Function has
Statement nested and so on. If we want to search for a
statement with a property of ‘Normal’, we can write a query
statement like:
find s:statement satisfying
s.statementType=‘Normal’

After parsed to MongoDB query, it should be like:
Find(‘program.class.function.statements.
statementType’: ‘Normal’);

Apparently this MongoDB query can be split into three
parts:

• The query target, which is ‘statementType’.

• The nested structure of the query target, which is:
‘program.class.function.statements.’.

• The matching condition of the query, which is ‘Nor-
mal’.

Back to our work, to search in MongoDB, first the query
target and the matching condition have to be extracted from
the query statement. Second, we need to reach out for the
nested structure of the query target. Third, we compose the
query target, the matching condition and the nested structure
together to get the valid MongoDB Find query. Among the
three parts, the query target and the matching condition can
be easily extracted, which we will not discuss further.

In order to obtain the nested structure of the query target,
we need to acquire the original place that defines its nested
structure. As the keys in JSON corresponds to the labels in
XML, the two formats are highly similar to each other, which
means the nested structure of JSON data can be extracted from
XML schema. The nested structure of XML files is generated
by FreeTXL according to the TXL transformation grammars.
Therefore, the TXL grammars are the origin.

TXL grammar is a set of rules to parse source code into
XML. Elements of source code are mapped into nodes of a
XML tree. In other words, TXL grammar contains the informa-
tion of all possible nested structure of source code. Analyze
TXL grammars offered officially, we can build a library of
schemata which includes all possible nested structure of every
semantic element. Because the query target must be a code
element in our work, we can always get its nested structure
from the library. Basically, every programming language we
support has a corresponding schema in the library of nested
structure. For illustration, here we only take the Java language
as an example.

Figure 6 shows the structure of the Java TXL grammar.
Here, we will focus more on the organization of the grammar
rather than how the grammar works in the transformation.

define package_declaration
 [opt package_header]
 [repeat import_declaration]
 [repeat type_declaration]
end define

define package_header
 [repeat annotation]
 'package [package_name] ';
end define

define package_name
 [qualified_name]
end define

Fig. 6. Structure of Java TXL grammar

We can see in Figure 6 that the grammar itself is nested.
The first layer is ‘package declaration’, which means the
declaration of packages of Java code. The second layer named
‘package name’ is contained by the first layer. Likewise, the
third layer named ‘qualified name’ is contained by the second
layer. The grammar is organized in this way and the last

layer does not contain anything. The nested structure of the
grammar is corresponding to the nested structure of the XML
file transformed, which is exactly the nested structure of the
corresponding JSON file.

To generate the nested structure more conveniently, we can
abstract the grammar into a digraph. Every ‘define’ part of the
grammar can be extracted as a node of code element. Edges
between nodes mean the include-relationship of them. In this
way, the attempt of nested structure of a code element becomes
the attempt of the path from the root node of the digraph to
the relative node of code element.

For a single target node, basically all its paths started from
the root node have to be generated to ensure the completeness
of the query. However, the digraph we constructed contains
lots of rings, which makes it impossible to achieve all full
paths. Therefore, we adopt a compromising strategy to collect
only the paths appearing more frequently as follows:

• Step 1, pick up a node as the target and traverse
through the digraph in a depth-first way to get all the
simple paths from the root node to the target node,
as well as the rings along the simple paths. If all the
nodes have been handled, exit.

• Step 2, pick out a simple path and combine it with the
possible rings. The max repeat times of a ring can be
assigned by the user. Multiple paths may be generated
from a simple path. Step 3, repeat Step 2 until there
is no simple path left. Go back to Step 1.

All paths generated by the strategy constitute the library of
possible nested structure.

Now we can put the query target, one of the possible nested
structure and the matching condition together, and get one
valid MongoDB query. This query is called valid, only means
that it can be directly run on MongoDB. It is not guaranteed
that this single query can always return the result. In order
to ensure the return of result, we may have to construct one
query for every possible nested structure and run every query
on MongoDB.

C. Return Results

MongoDB presents results in JSON, ideally we can do
transformation to get the original source codes. However, this
is neither possible, nor efficient. So in this article, we store a
copy of source code in the form of strings instead. We get the
lines of source code according to the result from MongoDB,
and extract the corresponding source code in the form of
strings to return.

V. CASE STUDY

In this part of the article, we will use a simple case to show
the feasibility of our approach. We obtain the source code
of an open source software named IText from SourceForge.
24 classes of IText are picked out randomly for experiments.
Using FreeTXL, we transfer them into XML files, and JDOM
to JSON data. Then we use the JAVA driver of MongoDB to
store them into a collection named ‘IText’.

If we want to understand the exception mechanism of IText,
the first idea may be to find all the classes which have a

name containing the key word ‘Exception’. We write the query
statement and parse the query statement to MongoDB queries.
The query statement and one of the possible MongoDB queries
are showed in Figure 7.

Fig. 7. Class Name Query

Fig. 8. Partial Results of Class Name Query

By executing the MongoDB query, we can get the result,
which is shown in Figure 8. We didn’t include the actual source
codes corresponding to the query results here, since they have
the same meaning as the query results and are only different
in the presentation forms.

Then we conducted another query experiment. We know
that classes dealing with exception are usually extended from
Java Exception classes. If we want to find classes which
extend the IOException class, we can write a query statement,
as shown in Figure 9, along with one of the corresponding
MongoDB queries.

Fig. 9. Class Extend Query

We run it in MongoDB and get the output shown in Figure
10. We only return the name of classes because the return code
will take too much space.

VI. RELATED WORK

Code query plays an important role in software analysis
and reuse. Applications can be found in reverse engineering,
software comprehension, coding conventions checking, and so
on. Besides the work mentioned in the introduction, there are
many other studies concerning the problem of code query lan-
guage design. One of the most expressive code query language
is Prolog [20], which is logic based and Turing complete.
JTransformer [21] is also logic based but less expressive. Other
languages such as Grok [22], JRelCal [23] and Rscript [24]
are based on relational calculus, while .QL [12], SemmleCode
[25] and JGraLab [26] are relational algebra based. Among
them, .QL and SemmleCode are the only two languages that
explicitly support the notion of object-oriented programming.
However, like many other languages such as .QL and JGraLab,
they are designed only for a specific language which is Java
in this case.

Code storage in database is the most efficient way to handle
large quantity of available source codes. Although the NoSQL
databases are gaining more attention, besides some exception
such as BARISTA [27] which is an Eclipse plugin that can
only query code inside Eclipse project, most existing reposi-
tories still use relational databases to store code information.
Sourcerer uses three models to extract information from source
code and MySQL to store the information. CodeQuest [28]
uses MS SQL server or DB2 to store its code information.
SemmleCode is based on H2 or MS SQL server. Recently,
there are a few work turning to NoSQL databases to store
codes. Work [29] stores codes in the graph form to the database

Fig. 10. Partial Result of Class Inheritance Query

Neo4J [30]. The goal of the work is not to query codes but
model and discover vulnerability code patterns, so the codes
were transformed into abstract syntax tree (AST) and stored.
Work [31] also uses Neo4J, and tries to store the AST data
together overlaid with other graph such as control flow graph.
This work is still in process, so the storing paradigm is ad-hoc.
Even though the paradigm was made mature like work [29],
since there are very few routines for languages that already
exist to transform codes to AST, most of the transforming
routines would have to be developed to handle various hetero-
geneous programming languages. Compared with these pieces
of work, our approach adopts the document based database
MangoDB which can utilize abundant XML transformation
techniques.

VII. CONCLUSION

In this article, we propose a framework to help open
source users better query and reuse source code in different

heterogeneous repositories. We propose the idea to built a
query platform, transform source in heterogeneous repositories
to JSON data and use MongoDB to store them. We propose
a set of query rules based on JIns query rules and provide
the method to parse query statements to MongoDB query
commands.

The contribution of our work is that it bridges heteroge-
neous repositories together, makes up for the lack of semantic
query of open source hosting platforms, which results in
making it easier for users to query and reuse open source
code. Based on the NoSQL database MongoDB, our platform
performs well when the scale of source code grows to the big
data level.

REFERENCES

[1] GitHub, https://github.com/, 2015, [Online; accessed 20-March-2015].
[2] SourceForge, http://sourceforge.net/, 2015, [Online; accessed 20-March-

2015].
[3] Google Code, https://code.google.com/, 2015, [Online; accessed 20-

March-2015].
[4] S. Bajracharya, T. Ngo, E. Linstead, Y. Dou, P. Rigor, P. Baldi, and

C. Lopes, “Sourcerer: A search engine for open source code supporting
structure-based search,” in Companion to the 21st ACM SIGPLAN
Symposium on Object-oriented Programming Systems, Languages, and
Applications, ser. OOPSLA ’06. New York, NY, USA: ACM, 2006,
pp. 681–682.

[5] K. Krugler, “Krugle code search architecture,” in Finding Source Code
on the Web for Remix and Reuse, 2013, pp. 103–120.

[6] S. P. Reiss, “Semantics-based code search,” in Proceedings of the
31st International Conference on Software Engineering, ser. ICSE ’09.
Washington, DC, USA: IEEE Computer Society, 2009, pp. 243–253.

[7] D. Hemer and P. Lindsay, “Supporting component-based reuse in care,”
Aust. Comput. Sci. Commun., vol. 24, no. 1, pp. 95–104, Jan. 2002.

[8] J.-J. Jeng and B. H. C. Cheng, “Specification matching for software
reuse: A foundation,” SIGSOFT Softw. Eng. Notes, vol. 20, no. SI, pp.
97–105, Aug. 1995.

[9] A. Mili, R. Mili, and R. Mittermeir, “Storing and retrieving software
components: A refinement based system,” in Proceedings of the 16th
International Conference on Software Engineering, ser. ICSE ’94. Los
Alamitos, CA, USA: IEEE Computer Society Press, 1994, pp. 91–100.

[10] A. Begel, “Codifier: a programmer-centric search user interface,” in
Workshop on Human-Coputer Interaction and Information Retrieval,
October 2007.

[11] T. Cohen, J. Y. Gil, and I. Maman, “Jtl: The java tools language,”
SIGPLAN Not., vol. 41, no. 10, pp. 89–108, Oct. 2006.

[12] O. Moor, D. Sereni, M. Verbaere, E. Hajiyev, P. Avgustinov, T. Ek-
man, N. Ongkingco, and J. Tibble, “Generative and transformational
techniques in software engineering ii,” R. Lämmel, J. Visser, and J. a.
Saraiva, Eds. Berlin, Heidelberg: Springer-Verlag, 2008, ch. .QL:
Object-Oriented Queries Made Easy, pp. 78–133.

[13] T. Zhang, X. Zheng, Y. Zhang, J. Zhao, and X. Li, “A declarative
approach for java code instrumentation,” Software Quality Control,
vol. 23, no. 1, pp. 143–170, Mar. 2015.

[14] R. Cattell, “Scalable sql and nosql data stores,” ACM SIGMOD Record,
vol. 39, no. 4, pp. 12–27, December 2010.

[15] H. T. Plugge Eelco, Membrey Peter, The definitive guide to MongoDB :
the noSQL database for cloud and desktop computing. Apress Berkely,
CA, USA, 2010.

[16] D. Crockford, “Json: The fat-free alternative to xml,” in Proc. of XML,
Boston, USA, December 2006.

[17] C. D. H.-H. James R. Cordy and E. Promislow, “Txl: A rapid prototyp-
ing system for programming language dialects,” Computer Languages,
vol. 16, no. 1, pp. 97–101, 1991.

[18] TXL, http://www.txl.ca/index.html, 2015, [Online; accessed 20-March-
2015].

[19] J. Hunter, “Jdom makes xml easy,” in Sun’s 2002 Worldwide Java
Developer Conference, 2002.

[20] A. Colmerauer and P. Roussel, “History of programming languages—
ii,” T. J. Bergin, Jr. and R. G. Gibson, Jr., Eds. New York, NY, USA:
ACM, 1996, ch. The Birth of Prolog, pp. 331–367.

[21] G. Kniesel and U. Bardey, “An analysis of the correctness and complete-
ness of aspect weaving,” in Proceedings of the 13th Working Conference
on Reverse Engineering, ser. WCRE ’06. Washington, DC, USA: IEEE
Computer Society, 2006, pp. 324–333.

[22] R. C. Holt, “Structural manipulations of software architecture using
tarski relational algebra,” in Proceedings of the Working Conference on
Reverse Engineering (WCRE’98), ser. WCRE ’98. Washington, DC,
USA: IEEE Computer Society, 1998, pp. 210–.

[23] P. Rademaker, “Binary relational querying for structural source code
analysis,” the Netherlands, 2008.

[24] P. Klint, “How understanding and restructuring differ from compiling ”
a rewriting perspective,” in Proceedings of the 11th IEEE International
Workshop on Program Comprehension, ser. IWPC ’03. Washington,
DC, USA: IEEE Computer Society, 2003, pp. 2–.

[25] M. Verbaere, E. Hajiyev, and O. De Moor, “Improve software quality
with semmlecode: An eclipse plugin for semantic code search,” in
Companion to the 22Nd ACM SIGPLAN Conference on Object-oriented
Programming Systems and Applications Companion, ser. OOPSLA ’07.
New York, NY, USA: ACM, 2007, pp. 880–881.

[26] D. Beyer, A. Noack, and C. Lewerentz, “Efficient relational calculation
for software analysis,” IEEE Trans. Softw. Eng., vol. 31, no. 2, pp.
137–149, Feb. 2005.

[27] C. Noguera, C. D. Roover, A. Kellens, and V. Jonckers, “Program
querying with a soul: The barista tool suite,” in Proceedings of the
2011 27th IEEE International Conference on Software Maintenance,
ser. ICSM ’11. Washington, DC, USA: IEEE Computer Society, 2011,
pp. 582–585.

[28] E. Hajiyev, M. Verbaere, and O. de Moor, “Codequest: Scalable source
code queries with datalog,” in Proceedings of the 20th European
Conference on Object-Oriented Programming, ser. ECOOP’06. Berlin,
Heidelberg: Springer-Verlag, 2006, pp. 2–27.

[29] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, “Modeling and
discovering vulnerabilities with code property graphs,” in Proceedings
of the 2014 IEEE Symposium on Security and Privacy, ser. SP ’14.
Washington, DC, USA: IEEE Computer Society, 2014, pp. 590–604.

[30] J. Webber, “A programmatic introduction to neo4j,” in Proceedings of
the 3rd Annual Conference on Systems, Programming, and Applications:
Software for Humanity, ser. SPLASH ’12. New York, NY, USA: ACM,
2012, pp. 217–218.

[31] R.-G. Urma and A. Mycroft, “Source-code queries with graph databas-
eswith application to programming language usage and evolution,”
Science of Computer Programming, vol. 97, pp. 127–134, 2015.

