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Practitioner Papers

Predictability of Public Transport Usage: A Study
of Bus Rides in Lisbon, Portugal

Stefan Foell, Santi Phithakkitnukoon, Gerd Kortuem, Marco Veloso,
and Carlos Bento

Abstract—This paper presents a study of the predictability of bus usage
based on massive bus ride data collected from Lisbon, Portugal. An under-
standing of public bus usage behavior is important for future development
of personalized transport information systems that are equipped with
proactive capabilities such as predictive travel recommender systems. In
this study, we show that there exists a regularity in the bus usage and that
daily bus rides can be predicted with a high degree of accuracy. In addition,
we show that there are spatial and temporal factors that influence bus
usage predictability. These influential factors include bus usage frequency,
number of different bus lines and stops used, and time of rides.

Index Terms—Public transport, data mining, smart card data, urban
computing, transport usage patterns, travel prediction.

I. INTRODUCTION

P UBLIC transport plays an important role in sustainable develop-
ment of cities as it copes with the rising demand for mobility

and helps reduce carbon emissions [1]. However, from a passenger
point of view, public transport systems such as buses can be complex
and difficult to use, lacking in freedom and flexibility offered by
privately owned vehicles [2]. Due to recent advances in information
and communication technology, novel opportunities have emerged
for improving public transport systems to be more user friendly and
passenger centric [3]. In particular, the wide adoption of mobile
devices has provided public transport providers new channels for
information dissemination [4]. Being able to provide travelers instant
access to public transport data, e.g., real-time information of arrival
times, incidents, or delays [5], has shown to create a positive impact
on experience and satisfaction with public transport services [6].

While public transport information systems have the potential to
further encourage the use and adoption of public transport services,
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with current systems, the responsibility is on the side of the travelers
to actively inquire and filter information about their journeys [7]. As
transport systems are subject to frequent delays and failures (e.g.,
schedule changes, reroutings, station closures, and overfillings), there
is a high risk that relevant transport updates remain unnoticed. To
provide more direct support and guidance, there has been an emerging
idea of personalized transport information systems that proactively
provide useful personalized transport information updates with no
(or minimal) user interaction [8]. As these updates are automatically
prepared for upcoming journeys, personalized information systems
can significantly reduce the effort needed to make effective travel deci-
sions. To provide personalized information recommendations, conse-
quently, it requires an understanding and recognition of the individual
transport usage patterns such as a traveler’s preferred stops, routes, and
travel times, and an ability to predict future transport usage [9].

The premise that the users’ transport behavior can be sufficiently
understood to estimate future travel needs is therefore key to the
feasibility of personalized travel information systems. The extent to
which this premise is fulfilled and transport users exhibit predictable
behaviors currently remains unanswered. A number of studies have
previously demonstrated the utility of smart card data to study bus
passengers’ travel behavior [10], [11]. The use of smart card data
has been highlighted as an emergent and important component of
planning and management for public transport services, given that
it can offer finer grained spatial–temporal information on travel
behavior [12], [13]. However, existing work is predominantly focused
on performance metrics of the transport system itself (e.g., service
accessibility [14], travel times [15], travel demand [16], and network
planning [17]) and not on how individual users rely on public transport
systems as part of their daily routines.

To this end, this paper explores the predictability of using the
public bus system from the angle on individual riders. We exploit the
availability of massive trip records from electronic ticketing systems,
consisting of millions of rides by hundreds of thousands of bus users
in Lisbon, Portugal. In contrast to traditional paper tickets, electronic
ticketing systems are based on smart cards, which are carried by
passengers and swiped over on-board card readers installed on the
buses [13]. Analogous to bank cards, smart cards are owned by single
users, so that each time the traveler boards a bus, an entry is created in
an electronic trip history that is associated with the card holder. Mining
these data of bus transport usage allows us to analyze the extent to
which the transport behavior of individual bus riders is predictable.

To assess the feasibility of personalized transport information sys-
tems, we specifically present algorithms to predict bus usage of
individual riders with respect to the bus lines and bus stops used
in the next days. The results of our predictability analysis suggest
that proactive personalized transport information systems are indeed
feasible for a large population of bus riders, and thus, information
needs can be predicted with decent accuracy. Finally, we discover
characteristic features that describe predictable riders. In particular, we
show that if riders travel close to peak times and travel scope is limited
in relation to travel demand, high predictability is better guaranteed.
Based on the insights into factors that determine predictable bus ride
patterns, we seek to provide transport authorities useful information for
increasing the travelers’ information awareness and further improve
their satisfaction with public transport systems.
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II. RELATED WORK

With the integration of pervasive sensors into public transport
systems, an unprecedented amount of digital data has become avail-
able to analyze public transport systems as they are operated in
the real world. In particular, smart card data, which provide direct
access to histories of public transport journeys, have proven to be
an invaluable source of information for optimizing public transport
services [13]. For instance, Ceapa et al. [18] exploited smart card data
to predict spatiotemporal events of overcrowding at London under-
ground stations. Based on travel flows encoded in smart card records,
Smith et al. [16] built a gravity model that explains the variance in
travel demands between two underground stations in London. To study
the accessibility of the London underground system for people with
disabilities, Ferrari et al. [14] mined journey planning information and
transport usage data.

Historically, data mining in the area of public transport systems
has primarily focused on analyzing the travel demand of an aggregate
mass of travelers. Recently, the focus of data-mining-based studies
has expanded to improve the understanding of transport usage pat-
terns associated with individual users. For instance, Lathia et al. [9]
demonstrated that information from travel histories can be used to
derive travel time estimates for individual riders that are more accurate
than those provided by official schedules. Moreover, Lathia et al. [19]
proposed a ticket recommendation system that helps travelers in
choosing among various tickets, e.g., weekly or monthly travel cards,
those that match best their travel needs. Foell et al. [20] developed
a machine learning approach to predict travel intentions of riders.
Based on features that characterize temporal usage patterns, prediction
is made on whether or not the user will be an active rider on a
future day.

As bus systems create vast route networks in cities and are among
the public transport systems that are most difficult to maintain and
use, the development of public transport information systems for bus
riders has gained much attention over the recent years. For instance,
Bejan et al. [15] developed an approach to exploit bus probe data
for accurately analayzing journey times experienced by road users.
Ma et al. proposed a trip chain model to identify and combine a
series of bus rides into an end-to-end journey [21]. Mobile transport
applications such as OneBusWay [6], Tiramisu [4], or PATH2GO [22]
give smartphone users access to bus travel information from virtually
anywhere. However, novel personalization concepts that are based on
an understanding of transport usage patterns are not incorporated into
state-of-the-art bus transport applications.

In this paper, we extend the previous studies of transport usage by
analyzing specific aspects of individual bus rides. In particular, we
investigate the predictability of daily bus usage of individual riders,
considering both bus stop and bus line access patterns, and discuss the
variation in riders’ predictability governed by different characteristic
features.

III. DATA SETS

In this study, we used data that contain bus usage information from
one of the largest bus operators in Lisbon, Portugal. The data span a
period from April 1 to May 31, 2010, consisting of nearly nine weeks
of bus usage traces (61 days). There are two sets of data; the first data
set (A) is the Automated Fare Collection (AFC) data, and the second
data set (B) is the Automated Vehicle Location (AVL) data. Data set A
provides the bus boarding history of passengers, which are identified
by anonymous IDs of their smart cards. Data set B is a bus probe
data that contain entries of bus arrival times at each bus stop along the
bus routes, where a unique ID is assigned to each bus, bus stop, and

Fig. 1. Temporal distribution of average ridership demand (Mon–Sun) with
significant spikes of high volume ride activity on weekdays as well as lower
and more uniformly dsitributed ridership on weekends.

bus line. To safeguard personal privacy, individual information was
anonymized by the bus operator before leaving their storage facilities
and was identified with an anonymous ID (hash code). Therefore, no
personal information is exposed in this study.

For the purpose of our study, we combined both data sets into bus
usage histories that compose spatiotemporal information about a user’s
bus rides. Due to some inconsistency in timestamp recorded between
the two data sets (as they were separately collected using different
machines), we needed to clean the data by aligning the boarding times
to the respective users and bus stops.

As a result, we obtained a cleaned data set of complete individual
bus ride information. Formally, the data set consists of bus rides
〈u, t, s, l〉 ∈ H , where H represents the entire ride history, u ∈ U is
the individual rider, t ∈ T denotes the bus boarding time, s ∈ S is the
boarding bus stop, and l ∈ L is the bus line taken by the user. In total,
we obtained |H| = 24,257,353 bus rides taken by |U | = 809,758 users
over the observation period. A total of |S| = 2110 distinct bus stops
and |L| = 93 distinct lines were recorded. For each individual bus user
u,Hu denotes the user’s bus ride history, Su is the set of visited bus
stops, and Lu is the set of bus lines used by u. Fig. 1 shows a weekly
distribution of the total average number of bus rides per hour. It is ob-
served that buses are used mostly on weekdays. On weekdays, 21% of
the usage are in the morning, between 7:30 A.M. and 10 A.M., whereas
the other usage peak (also around 21%) is in the evening, between 4:30
P.M. and 7 P.M. Bus usage generally does not fluctuate on weekends.

In terms of bus travel demand, Fig. 2 shows the probabil-
ity distribution of the number of rides per day. On average,
0.61 rides per day are taken by the users, which corresponds to 4.4
bus rides per week. It is notable that the majority of users (78%) rides
a bus less than once per day on average. In addition, Fig. 2 features the
distribution of the number of bus rides on active travel days (when bus
usage is observed). We can see that, often, more than one bus trip is
involved over the course of a travel day.

Similarly, Fig. 3 shows the probability distribution of the bus line
and bus stop usage. As expected, bus journeys involve a higher number
of distinct stops than lines. We observe that, on average, bus riders
leave from 1.93 distinct stops per travel day, whereas they use 1.55
distinct lines. Intuitively, the same departure stop is rarely used twice
in the same day, whereas trips with the same bus line are common,
e.g., for commuting. On most days (52%), the bus riders take only one
bus line, whereas, predominantly, two distinct stops (35%) are used to
access a bus service followed by one stop (33%).
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Fig. 2. Probability distribution of individual ridership demand. Two measures
of ridership are shown: average number of rides per day (all days) and average
number of rides per day when buses are actually used (travel days).

IV. PREDICTABILITY OF BUS RIDERS

To facilitate the design of future personalized transport information
systems with predictive capabilities, we are interested in 1) the extent
to which the user riders are predictable and 2) the classification of
bus riders according to their predictability. In the following, we first
present different prediction algorithms for next-day bus usage and
measure corresponding prediction accuracy and then identify char-
acteristic features in bus usage behavior, which are indicative of the
rider’s predictability.

A. Prediction Problem

In this work, we set out to predict bus ride behavior over the entire
day of a week. Knowledge of riding patterns associated with single
days gives transport information systems a useful horizon for planning,
as potential interchanges or return trips by riders can be realized and
recommended.

We formulate the prediction problem as follows: Given a particular
user u and his/her bus ride history Hu on the day dt ∈ D, the goal is
to predict all bus lines Lu(dt+1) and stops Su(dt+1) used in the next
day dt+1 ∈ D. In the following, we present four different predictors
that are designed to incorporate temporal features of travel decisions.
The features exploited in our prediction are motivated by our previous
work in characterizing bus usage patterns [20].

B. Prediction Algorithms

The following are prediction algorithms that take the rider’s bus ride
history Hu as input and make a prediction of bus lines Lu(dt+1) and
bus stops Su(dt+1). Subsequently, we give a description of bus line
usage prediction of each algorithm. The described algorithms can be
applied for bus stop usage prediction exactly the same way.

1) Continuation Predictor (CP): This predictor is based on the idea
that travel behavior is characterized by a high degree of stationarity.
Therefore, the assumption is that the user tends to behave similarly
in the following day as before. Therefore, the predictor considers bus
lines taken most recently. The degree of recency is determined by
the parameter r > 0, which defines a sliding window centered on the
current day dt ∈ D. The prediction is thus defined as

CPr(dt+1,Hu) = {li ∈ L| < ti, si, li >∈ Hu∧

∧ti ∈ [dt−r−1, dt]} (1)

Fig. 3. Probability distribution of a rider’s average daily usage, differentiating
between stops and lines used. The distribution of bus stop usage is more skewed
than bus line usage.

where [dt−r−1, dt] denotes the interval spanning the previous r days
prior to the current day dt. By means of the recency parameter, the
predictor can be configured with different time windows to incorporate
different levels of recency of the past behavioral information.

2) Weekday/Weekend Predictor (WP): An alternative approach
is to construct a predictor that is able to deal with discontinuity in
travel. Motivated by our previous work [20] that identifies differences
in the weekday/weekend travel behaviors, the WP only considers
either weekday or weekend histories for a prediction for a weekday
and weekend, respectively. For instance, if a prediction is made
for a Saturday, only the weekend travel history is considered. The
prediction is defined as

WPr(dt+1,Hu)=
{
li∈L| < ti, si, li >∈ Hu ∧ wend(ti)

=wend(dt+1) ∧ ti ∈ [dt−7∗r, dt]
}

(2)

where wend(t) is a determiner if a given date t is a weekend. The
degree of recency of history data is determined by the variable r. For
example, WP1 makes a prediction based on the bus rides from the
last weekday/weekend, whereas WP∞ considers the entire history.

3) Same-Day Predictor (SP): We have previously shown that not
only between weekdays and weekends but also among different days
of a week travel habits tend to differ [20]. Therefore, the SP makes
a prediction based on a travel history of a specific day of the week
according to the predicting day. The SP is defined as

SPr(dt+1,Hu) =
{
li ∈ L| < ti, si, li >∈ Hu ∧ day(ti)

= dt+1 ∧ ti ∈ [dt−7∗r, dt]
}

(3)

where day(t) is history data of a day of the week. In comparison with
the WP , the SP is more selective in terms of the considered bus ride
information.

4) Periodicity Predictor (PP): This predictor introduces the ability
to learn and adapt to different periodicities of travel behavior. The
CP assumes a constant daily periodicity, whereas both the WP
and SP predictors base their predictions on fixed weekly periods.
On an individual basis, the range of underlying periodicity varies
considerably.

The PP is designed to incorporate the time period in which a specific
bus line is taken. The rider’s usage period of the bus line l ∈ L on day
dt+1 ∈ D is defined as

pu,dt+1
(l) = median

(
{Δintu,l

}
)

(4)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

where {Δintu,l,l} denotes the set of intertrip times from all past rides
with l. To ensure that the selected median is not biased by repeated
daily rides on the same bus line (e.g., for return trips), only intertrip
times greater than one day are included in this set. Based on these
periods, we determine those lines that may reoccur on the predict-
ing day dt+1 ∈ D. Therefore, let lr(l) = max{ti ∈ T | < ti, si, l >∈
Hu} be the time of the user’s u last ride with the bus line l∈L.
Then, the prediction can be defined as

PP (dt+1,Hu) = {li ∈ L| < ti, si, li >∈ Hu ∧ ∃k ∈ N :
(
lr(li) + k · pu,dt+1

(li)
)
∈ dt+1

}
(5)

where lr(li) denotes the time of the last ride with bus line li ∈ L and
the associated usage period pu,r(li) to anticipate if the next ride is
about to take place on dt+1 ∈ D. If the projected periodic occurrence
of the next boarding falls within the predicting day, then the bus line
is added to PP (dt+1). Consequently, instead of predicting the same
bus lines with a fixed period (i.e., from the last week), the prediction
is based on learned trip periodicities. Please note that for determining
the usage period, a sliding window (r) could also be applied, and we
leave this for future investigation.

C. Analysis of the Predictors

To evaluate the performance of each predictor, we separate our data
into training and test sets. The test set contains the last two weeks of
the bus usage, whereas the training set includes the rest. Predictions
are made for each user u ∈ U for bus lines Lu(dt+1) and bus stops
Su(dt+1) potentially taken in the next day dt+1 ∈ D. A prediction is
made every day in the test set period, and the training set (Hu) con-
sequently grows as a new prediction is continuously being made. Note
that only bus riders with at least one ride in both training and test sets
are considered in our analysis. As a result, we are left with a total of
380 197 riders for the predictability analysis.

The F-score is an effective metric for set-based prediction problems
[23], and it is used to measure the prediction accuracy here. For each
rider, we compute the average F-score achieved over all days where
bus rides have been observed. Formally, the F-score is defined as

F -score = 2 · precision · recall
precision + recall

. (6)

It denotes the harmonic mean of precision and recall. Hence, the F-
score reflects the tradeoff between false positives and false negatives
incurred by a prediction. A higher F-score implies better prediction. In
a case where both precision and recall are zero, the F-score is assigned
to be zero here to alleviate the division-by-zero problem.

Fig. 4 shows the prediction accuracies achieved by the predictors.
In our evaluation, we have included a baseline approach (ALL),
which basically bases its prediction on all history data. Hence, the
ALL predictor is essentially CP∞. For both prediction scenarios (i.e.,
bus line and bus stop), we can observe similarity across the different
predictors. The SP∞ predictor achieves highest prediction accuracy
among other approaches. This suggests that day of the week is a
relevant discriminator for predicting bus usage. As the PP does not
perform well, we can say that knowledge of bus usage periodicities
may not be relevant. We speculate that at least two rides need to
be observed to build up a usage periodicity that could reduce fault
learning. Other predictors that work better than the baseline approach
are CP7,WP1, and WP∞. However, there is a notable gap in the
prediction accuracy compared with the best predictor SP∞.

Fig. 4. Bar plot of the F-score achieved by all predictors. The left bars show
the average F-scores obtained for bus line usage forecasts, whereas the right
bars feature the average F-scores for bus stop usage prediction.

Compared with bus line prediction, bus stop prediction appears to be
less accurate. This is in line with our previous study [20] that revealed
a higher degree of variability in bus stop usage.

Although the ALL predictor uses the entire ride history for pre-
diction, the recall (84% for bus line usage and 72% for stop usage)
demonstrates that not all relevant transport decisions are captured in
the user’s ride history, and occasionally, new bus lines/stops (never
observed before) are used. To forecast rides of new bus routes, different
approaches in prediction need to be explored, which is part of our
future work.

D. Predictability of Bus Users

Predictability of the bus users is important as it provides a prelim-
inary indication for potential deployment of predictive capabilities for
the next generation of intelligent public transport systems. The overall
cumulative distribution function (cdf) of the bus users’ F-scores is
shown in Fig. 5. It reflects on the potential impact of predictive capa-
bilities, e.g., proactive transport notifications and recommendations,
both in terms of precision and recall. We first examine the top 33%
users according to the F-score, which constitute a targeted rider group
that may benefit from future predictive travel information systems. We
find that based on these riders, daily bus stop usage can be accurately
predicted with 68% precision and 81% recall. This means that two out
of three predictions are correct, on average, whereas the predictions
cover a large fraction of all stops visited. Even better predictable is the
bus line usage with the precision of 84% and the recall of 91%. When
all riders are considered, the predictability drops expectedly with the
precision of 52% and the recall of 72% for the bus line usage and the
precision of 39% and the recall of 56% for the bus stop prediction.

E. Influential Factors on Predictability

The last section explores the predictability of the bus riders, i.e., how
predictable bus usage is. Here, we extend our analysis to the factors
that tend to influence the predictability of the bus riders. Fig. 6 shows
the variation in predictability captured by the F-score with respect to
the user’s ridership demand fu (defined as the average number of rides
taken per day). The predictability rises and peaks at 1.35 rides per
day, representing the maximum predictability across different demand
levels. In other words, users who ride a bus 1.35 times a day, on
average, are the most predictable. This seems to suggest that people
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Fig. 5. CDF of the F-score values among all riders for bus line and bus stop
usage predictability. Each rider is associated with the highest F-score that has
been achieved among all predictors.

Fig. 6. Predictability of riders’ daily bus usage as a function of ridership
demand.

who ride buses to commute to work on weekdays (twice a day, one
for each direction, i.e., home–workplace and workplace–home) are the
majority of these predictable users. Moreover, it can also be observed
that the predictability is more or less constant for those with at least one
ride a day, on average. Furthermore, the bus line is more predictable
than bus stop.

In addition to bus ride demand, we introduce the notion of bus usage
concentration in our analysis. For bus line usage, usage concentration
is defined as the ratio of the number of distinct lines used and the ride
demand (|Lu|/fu). Similarly for bus stop usage, it is defined as the
ratio of the number of distinct stops used and the user’s ride demand
(|Su|/fu). Fig. 7 shows the predictability that varies with usage
concentration, which tends to follow the power law with exponential
cutoff. This result intuitively suggests that frequent riders with smaller
numbers of used bus lines and stops are much more predictable.

Finally, we examine the temporal bus usage patterns. Previously,
it has been shown that bus usage has two peak times: one is in the
morning centered around tm = 8 : 45 am, and the other is in the
evening centered around te = 5 : 15 pm. These usage peaks suggest
that there is a salient rhythm or pattern in travel behavior (e.g.,
home–work commuting). A question arises from this context—if
riders who consistently adhere to peak times are more predictable.
Hence, for any ride taken at time tr , we compute Δt = min(|tr −
tm|, |tr − te|) to determine the time difference between the boarding
time of the ride and the closest peak time. Fig. 8 shows the pre-
dictability with respect to the users’ average peak time difference. It
can be observed that riders who travel closer to the peak times are

Fig. 7. Predictability of riders’ daily bus usage as a function of usage concen-
tration, i.e., the ratio of distinct stops/lines used and average number of rides
per day.

Fig. 8. Predictability of riders’ daily bus usage as a function of the average
minimum time difference from the morning and evening travel peaks.

more predictable. The predictability drops as the travel time becomes
more distant from the peak time but starts to rise again toward the
peak time difference of about 250 min, which is approximately near
lunch time.

These results suggest that there are spatial and temporal patterns in
bus usage behavior that play an important role as influential factors on
predictability of bus usage.

V. CONCLUSION

In this paper, we have mined large-scale data collected by the AFC
and AVL systems in Lisbon, Portugal to study the predictability of bus
usage. In contrast to existing transport usage studies that are mostly
concerned with aggregate travel characteristics, e.g., travel demand
estimation, we have examined travel behavior patterns of individual
bus riders. Understanding of bus user behavior is important for future
development of the personalized transport information systems that
can provide proactive assistance to the users. In this study, we have
shown that daily bus usage can be predicted with a high degree of
accuracy for a large proportion of the riders. In addition, we have
uncovered that there are spatial and temporal factors that influence the
predictability.

This work leverages on the availability of bus ride histories for
predicting travelers’ transport decisions. As part of our future work,
we will continue to investigate on the predictability of bus usage as
well as other public transport modes, e.g., train, taxi, and bike. In
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particular, we will explore approaches to consider riders with limited
travel histories such as tourists.
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