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ABSTRACT:  
The Centre for Electronic Imaging (CEI) has an active programme of evaluating and designing 

Complementary Metal-Oxide Semiconductor (CMOS) image sensors with high quantum efficiency, for 

applications in near-infrared and X-ray photon detection.  

This paper describes the performance characterisation of CMOS devices made on a high 

resistivity 50 μm thick p-type substrate with a particular focus on determining the depletion depth and the 

quantum efficiency. The test devices contain 8x8 pixel arrays using CCD-style charge collection, which 

are manufactured in a low voltage CMOS process by ESPROS Photonics Corporation (EPC).  

Measurements include determining under which operating conditions the devices become fully 

depleted. By projecting a spot using a microscope optic and a LED and biasing the devices over a range 

of voltages, the depletion depth will change, causing the amount of charge collected in the projected spot 

to change. We determine if the device is fully depleted by measuring the signal collected from the 

projected spot. The analysis of spot size and shape is still under development.  
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1. Introduction 
The Centre for Electronic Imaging (CEI) is expanding its capabilities in 

Complementary Metal-Oxide Semiconductor (CMOS) image sensor design. Our first test chips 

have been submitted for manufacture to ESPROS Photonics Corporation (EPC), based in 

Switzerland. While our first devices are designed and fabricated it is necessary to test and 

evaluate EPC manufactured devices to determine the operational parameters of their standard 

processes and explore the technology limitations. 

The baseline device characterisation is achieved using the Photon Transfer Curve (PTC) 

which gives an idea of the overall quality of the device and readout electronics. The PTC is used 

to produce measurements of linearity, conversion gain, Full Well Capacity (FWC) and read 

noise [1]. Dark current generation is also analysed. 

Further work focusses on testing to ensure the device is fully depleted during operation. 

This is important in a back illuminated sensor to ensure all photo-electrons are captured in the 

pixel on which they are incident and are not allowed to diffuse laterally in a field free region. A 

fully depleted back illuminated detector should provide improved Quantum Efficiency (QE) 

over front illuminated devices. 
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2. Test Devices 
Figure 1 shows one of the test devices provided by EPC for evaluation. The device is an 

8x8 array of test pixels consisting of 8 different pixel designs. Referring to the pixel schematic 

in Figure 2, one half of the 8x8 array is made up of pixels with half-sized storage gates [2]. 

Unless otherwise stated in the text the measurements presented are taken as an average across 

the array. 

 

 
Figure 1: The 8x8 test array mounted on a PCB. 

 

The test pixels used in this study are a backside illuminated dual gate design with an 

integrated CMOS Active Pixel Sensor (APS) readout, a schematic can be seen in Figure 2. Dual 

gate refers to a pair of storage gates (SG) which are present in each pixel, however only one 

such gate is represented in Figure 2 for drawing simplicity. The device substrate is thinned to 

50 µm during manufacture, a well-established process for achieving high quantum efficiency in 

all CCD and CMOS image sensors. The pixel is fully depleted in normal operation due a 

combination of the use of a high resistivity substrate and the application of a backside bias.  

2.1 Pixel Operation 

The pixel operates using a series of drift gates (DG) with monotonically increasing bias 

voltage. When biased, an electro-static field forms along the drift gates and photo-generated 

charges are directed onto one of the two storage gates, with charge storage controlled by a pair 

of inversely coupled modulation gates. Each storage gate has a dedicated source follower circuit 

which buffers the signal to separate outputs (A or B) as shown in Figure 2. 
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Figure 2: Schematic of the pixel design found in the test devices. This schematic includes only 

one modulation gate (MG), one storage gate (SG), one transfer gate (TXG) and one output 

amplifier, in reality there are two of each. ΦR is the reset pulse, Vrd is the reset drain, Vod is 

the output drain and Vout is the output voltage. Black lines represent doping junctions, while 

the blue lines give an impression of the potential well profile. 

 

Figure 2 shows that the storage and readout of signal charge is isolated within a p-well 

which prevents optically generated charges from directly accumulating on the storage gate 

during integration. Charge is generated in the fully-depleted substrate, and the p-well deflects 

charge towards the drift gates, so that charge can be stored on the correct storage gate at the 

correct time – as controlled by the relevant modulation gate. 

Test pixels are manufactured on a pitch of 40 µm x 40 µm, this area includes all the gates 

and the transistors making up the readout buffer, shown in Figure 2. 
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2.2 Test System 

The test devices are driven and read out using the Universal Evaluation System, UES, 

shown in Figure 3. The universal evaluation system is also produced by EPC and designed so 

that it is compatible with any EPC manufactured devices, giving the advantage of using the 

same drive electronics for all devices. The UES is an FPGA based test station which allows 

automated testing and characterisation of imaging devices manufactured with a standardised pin 

layout used by EPC [3]. 

 

 
Figure 3: The UES main board with FPGA and interface mounted. 

 

 
 

3. Characterisation 
The aim of this work is to determine the electrical properties of EPC manufactured 

devices and test systems. The initial testing incorporates standard characterisation, such as 

conversion gain, read noise and full well capacity using a PTC.  Dark current measurements 

were made at room temperature, without optical stimulus (i.e. the device is optically dark). The 

test procedures and results are summarised below.  
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3.1 Photon Transfer 

The PTC was produced by uniformly illuminating the test device using a LED to 

approximate a flat field [1]. As the pixel array is small (8x8) a large number of images were 

captured at each integration time and averaged together to produce a single average frame.  

These measurements allow a PTC, and hence a calibration value (conversion gain) to be 

produced for each individual pixel and eliminates the effects of an imperfect flat field (a result 

of using a LED) on fixed pattern noise. The conversion gain was calculated for each individual 

pixel and varies across the array between 24.7 µV/e
-
 and 28.8 µV/e

-
, with an average conversion 

gain of ~27 µV/e
-
. 

The separate outputs present in each pixel of the test array result in different read noise 

and gain values for the same pixels, as shown in the un-calibrated PTC in Figure 4 where red 

and blue curves diverge. 

 

Figure 4: PTC produced as an average across the 8x8 test array. The different colours represent 

the two readout paths within each pixel, showing different values depending on readout A or B. 

Mean refers to the mean value of the flat field signal across the array, and Variance is the 

variance of the flat field signal across the array. 

The pair of PTCs in Figure 4 was produced using a region of interest (ROI) within the 

8x8 array. The ROI includes the core 7x7 pixels of the test array, the border pixels are excluded 

because they show significant fixed pattern noise during initial testing. Figure 4 shows the 

difference in gain characteristics caused by the separate outputs and also gives read noise of the 

sensor and UES mainboard where the gradient tends to zero at small signal.  
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3.2 Read Noise 

The PTC shown in Figure 4 is produced by averaging across the test array within a ROI 

therefore the data includes fixed pattern and read noise components. Read noise is determined 

by the part of the curve which tends to a gradient of zero. The read noise value extracted from 

Figure 4 is 3.2mV RMS or ~117 e
-
 ENC. However this value is measured in the presence of a 

light source. 

Further investigations have shown that the rms noise produced in the electronics alone 

(when no device is present), is between ~1.5 – 2 e
-
 ENC depending on the channel tested. Read 

noise measured again with the devices, and with no light source active inside the dark box can 

be measured as low as ~12 e
-
 ENC, this is significantly higher than the noise floor of the 

electronics alone. Figure 4 gives higher values for read noise because it was not possible to 

achieve a sufficiently small signal level with a LED illuminating the sensor, even with an 

integration time set to zero. 

3.3 Full Well Capacity 

The FWC was extracted from the photon transfer curve in Figure 4 where there was a 

drop in variance at ~4.5 V giving a value of ~200 ke
-
. This presents an average value across the 

ROI. The FWC can also be determined for individual pixels and actually ranges from ~180 ke
-
 

to ~220 ke
-
 due to the differing pixel designs within the test array.  

3.4 Dark Current 

Dark current is produced by interface states at the substrate-oxide boundary and 

impurities in the silicon substrate which reduce the energy required by electrons to cross the 

silicon band gap. The electrons produced as dark current are indistinguishable from signal 

electrons and therefore contribute to the noise characteristics of the sensor [1]. 

Dark current generation is measured when the device is optically dark (i.e. in a dark box 

and not exposed to any light source). The ambient temperature within the dark box is 40 °C 

measured using a digital mutli-meter, this is the temperature at which dark current 

measurements are made.  

By capturing image frames over a range of integration times and calculating the mean 

signal across the array the signal per pixel was calculated. A plot of this value against the 

relevant integration time is presented in Figure 5. The gradient of the dark current trend line in 

Figure 5 gives a rate value of dark current generation of 3.6x10
6
 e

-
.pix

-1
.s

-1 
at 40 °C. This can be 

extrapolated to ~80 nA/cm² at 20 °C as there is an exponential relationship between temperature 

and dark current. 
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Figure 5: The dark current generation per pixel as an average across the array, where Integration 

Time is the total time which the modulation gate is actively transferring charge to the storage 

gate. The dark current generation rate is calculated from the gradient of this data (given by the 

linear fit represented by the red line), giving 3.6x10
6
 e

-
.pix

-1
.s

-1 
at 40 °C. The linear fit also 

demonstrates that the dark current distribution varies around the expected linear trend, which 

can be attributed to a variation in temperature during measurement. 

 

 

The dark current generation rate, calculated from Figure 5, is an average across the 

entire 8x8 array, however differences in dark current are expected due to the changes in pixel 

design across the array. Dark current is also calculated on a pixel by pixel basis and plotted as a 

heat map in Figure 6 to represent the dark current generation rate in each individual pixel. 

Figure 6 uses the linear fit method introduced in Figure 5, and also uses each pixels individual 

conversion gain value. Figure 6 shows that the dark current varies across the array, and is 

significantly larger in one half of the array than in the other. The changes in dark current 

generation can be attributed to the difference in the size of the storage gates in the different 

pixel designs. 

 Figure 6 is an 8x16 array (rather than 8x8) because an image is produced from both 

storage/ readout paths present in each pixel. The data produced from storage gate A is the left 

8x8 section and the data from storage gate B is the right 8x8 section. 
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Figure 6: Heat map of the dark current calculated for each pixel, in units of e
-
.pix

-1
.µs

-1
, showing 

the change between the two halves of the array which feature different pixels. The left 8x8 

section represents signal from readout path A, while the right 8x8 section represents signal from 

readout path B. 

 

 

Dark current generation in the first section of the array (pixels 0 – 3 on the x-axis) gives 

an average value of 3x10
6
 e

-
.pix

-1
.s

-1 
at 40 °C, while dark current generation in the second half 

of the array (pixels 4 – 7 on the x-axis) gives an average value of 4.5 x10
6
 e

-
.pix

-1
.s

-1 
at 40 °C. 

The difference in dark current generation rate can be associated with the change in storage gate 

sizes, with higher dark current in those pixels with larger storage gates. Work is ongoing to 

produce test equipment to enable cooling which should suppress dark current.  

4. Depletion Depth 
The devices tested for this study are back illuminated, and as such it is important to check 

that they are fully depleted under normal operating conditions. It is possible to determine the 

depletion depth by projecting a spot onto the test device [4] [5]. By changing bias voltages 

which control  thedepletion depth, such as the backside bias voltage, it should be possible to 

detect changes to the peak value of the spot due to charge diffusion. Both the backside bias 

voltage (Vbs) and the drift gate voltage (Vdg) are expected to impact significantly on depletion 

depth, so both were tested.  
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Figure 7 shows the spot projected onto the test device. A plot of the peak spot signal 

versus integration time, also in Figure 7, demonstrates the linearity and repeatability of the spot 

characteristics. The peak amplitude of the spot signal in Figure 7 is in pixels (4, 1) and (12, 1) 

corresponding to readout paths A and B. 

The projected spot should ideally be smaller than one pixel. The spot in Figure 7 is 

limited to approximately four pixels, however the repeatability of the spot characteristics is 

good and the signal in the peak pixel is reasonably linear as integration time increases. This 

enables the analysis of the peak spot signal as bias levels are adjusted. 

 
Figure 7: Spot projection, left, showing the spot produced for each readout path (A and B). The 

peak spot location is (4, 1) and (12, 1). The graph on the right shows the peak amplitude of the 

spot averaged over ~100 frames (hence spot mean signal), plotted against integration time to 

demonstrate the spot linearity over the full integration range and its repeatability. 

 

Figure 8 shows the how the peak value of the spot signal changes while adjusting the 

backside bias voltage (Vbs) and keeping the integration time constant. An increase in peak 

value is observed as Vdg increases, plateauing around the recommended Vbs level of -3V. The 

peak signal value remains constant when the device is operated beyond the recommended Vbs 

value, implying that the depletion depth has extended to its maximum and the device is fully 

depleted. As the voltage becomes less negative the depletion depth will reduce, causing the peak 

signal value to drop. 

Readout A Readout B 
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Figure 8: Change in spot peak signal caused by altering the backside bias voltage in the test 

devices, while keeping the integration time constant. Red and blue colours represent the values 

measured through each of the readout paths (A and B). The dotted line indicates the 

manufacturers recommended voltage setting.  

 

Figure 9 shows how the peak value of the spot signal changes as the voltages applied to 

the drift gates change, while keeping all other parameters, including integration time, at a 

constant value. The drift gate voltage settings are monotonically increasing from Vdg3 (lowest 

voltage), to Vdg1 (maximum voltage), as described in Section 2. Figure 9 scans a value of 

Vdg_max on the x-axis, which refers to the voltage applied to Vdg1, with the other drift gates 

monotonically decreasing in voltage value from this maximum. The peak spot signal amplitude 

increases as the Vdg bias increases, until it plateaus around the recommended bias value of 4V. 

The amplitude of the signal through readout path A increases at 5V, this is not thought to be 

related to a change in the depletion region as this is isolated only to one readout path. The trends 

of readout paths A and B were expected to closely match, as in Figure 8.  

 

Device appears to be 

fully depleted 

Recommended Vbs 

value 



 

 
– 11 – 

 
Figure 9: Change in spot peak signal amplitude caused by altering the drift gate bias voltages in 

the test devices, while holding all other parameters at constant values. Red and blue curves 

represent each of the available readout paths (A and B) 
 

The backside bias has a much smaller influence over the peak spot amplitude than is 

observed in the Vdg tests. The plateaus observed in both the backside bias and drift gate 

measurements indicate that the device has become fully depleted at the recommended bias 

levels. 

5. Conclusions and Outlook 
The aims of this work were to characterise the electrical properties of the EPC devices 

and camera electronics. The work involved characterising the conversion gain, FWC, read noise 

and dark current generation rate. The test device worked well; even though the array size is 

relatively small, a reliable PTC can be produced both as an array average and on a pixel- by- 

pixel basis. The device shows some variation in FWC and dark current generation across the 

array, presumably caused by the differing pixel designs present in the array. 

Further work involved determining if the device was fully depleted during normal 

operation. This was achieved using a spot projection and adjusting the bias levels which control 

the depletion region, while keeping other operating parameters constant. As the depletion depth 

changes with the applied bias, the amplitude of the signal level of the projected spot changes. 

This experiment indicated that the device is fully depleted  (to 50 µm) during normal operation. 

A fully depleted structure is important for good quantum efficiency of back illuminated devices. 

These initial measurements help to improve our knowledge of the EPC manufacturing 

process and test equipment which will be used to further evaluate these and future devices.  

Characterisation using a x-ray source is planned once a test bench has been commissioned for 

cooling the device to suppress dark current.   

Recommended 

Vdg1 value 

Device appears to be 

fully depleted 
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