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Abstract  
The mechanical testing of thin layers of soft materials is an important but difficult task. Spherical indentation provides a 

convenient method to ascertain material properties whilst minimising damage to the material by allowing testing to take 

place in situ. However, measurement of the viscoelastic properties of these soft materials is hindered by the absence of a 

convenient yet accurate model which takes into account the thickness of the material and the effects of the underlying 

substrate. To this end, the spherical indentation of a thin layer of viscoelastic solid material is analysed. It is assumed that 

the transient mechanical properties of the material can be described by the generalised standard linear solid model. This 

model is incorporated into the theory and then solved for the special case of a stress relaxation experiment taking into 

account the finite ramp time experienced in real experiments. An expression for the force as a function of the viscoelastic 

properties, layer thickness and indentation depth is given. The theory is then fitted to experimental data for the spherical 

indentation of poly(dimethyl)siloxane mixed with its curing agent to the ratios of 5:1, 10:1 and 20:1 in order to ascertain its 

transient shear moduli and relaxation time constants. It is shown that the theory correctly accounts for the effect of the 

underlying substrate and allows for the accurate measurement of the viscoelastic properties of thin layers of soft materials.  
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Introduction 

The determination of material properties of thin layers of soft solids is an important process in a number of areas 

such as polymer and biomaterials engineering where the surface orientation, strength and structure of scaffolds 

in tissue engineering determine good/bad cellular attachment (Levental et al. 2010). Typical materials that need 

to be tested include polymeric tribological coatings (Jardet and Morel 2003) and even living cells (Wakatsuki 

2001).  

Viscoelastic properties can be obtained for bulk materials by performing conventional creep or relaxation tests in 

standardised experiments, such as the uniaxial tension test. However, it is impossible to conduct these tests 

when the sample size is small like in the case of thin films. Also, soft solids can be inherently difficult to handle. 

Fortunately, indentation provides a reliable technique for ascertaining the properties of these materials without 

damaging them. Hence, indentation is increasingly being used for determining the viscoelastic properties of 

materials (Darling et al. 2006; Moreno-Flores et al. 2010) and has been extensively used to measure properties 

such as Young’s modulus and hardness of materials that show time independent behaviour (Zhang et al. 2004). 

However, the disadvantage to this method is that during experimentation, only the displacement of the indenter 

and the force acting upon it are known. In order to ascertain material properties, it is necessary to have deduced 

the stress field within the material.  

Typically, the Hertzian model of a sphere indenting an elastic half space has been assumed (Hertz 1882). This 

model has been subsequently developed to include viscoelasticity of the material using the superposition 

principle (Ting 1966; Greenwood 2010; Lee and Radok 1960) and has been successfully employed in the analysis 

of biological materials (Darling et al. 2006; Moreno-Flores et al. 2010). The Hertz model is only applicable within 

certain limits. Hertzian theory assumes that the bodies in contact are smooth, isotropic, homogenous and linearly 

elastic (Dintwa et al. 2008).  For spherical indentation into a flat surface, as is of interest here, the indentation 

depth,  has to be kept sufficiently small so that the radius of the contact area, a , given by 2a R  is less than 

10% of the sphere radius, R , so that the quadratic approximation for the shape of the sphere is accurate (Landau 

and Lifshitz 1986). 
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Complications arise with this particular model when the material is sufficiently thin so that the indention is 

affected by the underlying substrate, which is generally assumed to be of a much higher modulus than the 

material. In these cases the calculated moduli are too high, sometimes by orders of magnitude, and the material 

appears to be stiffer than expected (Domke and Radmacher 1998). Historically, analytical expressions using 

integral transforms were derived to find the stress and displacement fields (Bufler 1971; Fretigny and 

Chateauminois 2000; Chen 1971). However, these methods still generally require sophisticated mathematical 

manipulations or extensive numerical computations (Tu and Gazis 1964; Dhaliwal and Rau 1970; Chen and Engel 

1972). The inconvenience of using these solutions has largely precluded their use by experimentalists who need a 

simple solution to compare experiments to. Dimitriadis et al. (Dimitraidais et al. 2002), following on from 

Chadwick’s earlier work (Chadwick 2002), derived simpler analytical corrections to the Hertzian model. 

Experiments analysed using the correction by Dimitriadis et al. (Dimitraidais et al. 2002) showed that the elastic 

modulus remained consistent with the macroscopic experiments regardless of film thickness and indentation 

depth 

This paper concentrates on the extension of the work of Dimitriadis et al. (2002) to viscoelastic materials. 

Previous researchers have attempted this by appending the correction terms afore mentioned onto the 

viscoelastic version of the Hertzian model (Darling et al. 2007). However, the correction given by Dimitriadis et al. 

(2002) is due to a superposition of stress states, each of which have a transient response due to the change in the 

contact radius in time (Greenwood 2010).  The change in each stress state needs to be taken into account, as 

does the loading time of the indenter in order to correctly describe the mechanics of the indentation experiment. 

To this end, a general equation describing the indentation of a viscoelastic thin solid film is derived. So that the 

theory can be used to describe as many soft solids as possible, it is assumed that the viscoelastic response of the 

material can be described by the generalised standard linear model (Ferry 1980). This model is used in the theory 

and then solved for the specific case of a stress relaxation experiment by employing the correspondence 

principle, the validity of which is discussed. It is shown that by using this theory, the viscoelastic moduli, 

specifically the relaxation moduli, can be found directly. Furthermore it is shown that these moduli, as calculated 

from experimental data, are not a function of the film thickness or penetration depth, as they would be if 

calculated using Hertzian models without the thin film correction. The theory therefore constitutes a good 

foundation for the determination of viscoelastic properties of soft solids using indentation. 

Theory 

Transient Indentation of a Viscoelastic Half-Space 

The indentation of a viscoelastic half-space by a sphere can be modelled by assuming Hertzian contact. This is 

achieved by first considering the material to be elastic in order to ascertain the pressure distribution in the 

material due to the indentation of the sphere, then by employing the correspondence principle to incorporate 

the viscoelasticity of the material. If the modulus of the material is much smaller than the moduli of the sphere, 

which is usually the case with polymer and biological material, the sphere is then considered to be a rigid body. 

The contact between the sphere and material surface is assumed to be frictionless. In this case, with contact 

occurring between a rigid sphere and a soft flat material, the effective reduced elastic modulus is defined as 

(Johnson 1985): 
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  (1) 

where E  and   is the materials Young’s modulus and Poisson’s ratio respectively. For contact of this nature, 

Hertz proved the pressure distribution is of the form (Johnson 1985): 
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where r is the radial distance from the centre of the sphere (see Fig. 1). The force exerted by the sphere onto the 

material can therefore be given as: 
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Fig. 1: The geometry used in Hertzian contact analysis.  

 

As the sphere is assumed to be rigid and the material can be described as incompressible with a shear modulus 

G , the expression for the indentation force for an incompressible elastic half-space can be written as (Lee and 

Radok 1960): 

   3

0

8
2

3
F G a

R
  (4) 

When the material is viscoelastic and   and 0F  vary with time, the 2G  in eq. 4 becomes transient and is 

therefore replaced by the relaxation operator for the material, ( )t . This is known as the correspondence 

principle. Not all problems can be solved using the correspondence principle. Such problems include those 

whereby the type of boundary condition on a surface changes with time. For instance if the boundary condition 

changes from traction to displacement controlled, the problem cannot be solved using the correspondence 

principle. However, the conditions themselves can be time dependent (Rizzo and Shippy 1971; Findlay et al. 

1976).  The readers are encouraged to read more thorough explanations of the correspondence principle by 

Johnson and by Lee and Radok (Johnson 1985; Lee and Radok 1960). As spherical indentation results in a change 

in the contact radius, in general the correspondence principle is invalid. However there is a variation of the 

principle that remains valid for bodies occupying fixed regions in space, even if the type of boundary condition 

changes with time (Graham and Sabin 1973). This variation is valid only in the cases where the contact area is 

monotonically increasing with time (Cao et al. 2009). It is for this reason why the experiment to be described is a 

stress relaxation experiment. In this case the position of the sphere, and in turn the contact radius, is controlled 

and it is ensured that the contact radius is either monotonically increased or kept constant. Thus the contact 

force is given by: 
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The relaxation operator depends on the model chosen to best describe the viscoelastic behaviour of the material. 

In this paper a generalised standard linear model has been chosen as the basis for the relaxation operator which 

has been derived in the appendix to give: 
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For stress relaxation, the experiment is displacement controlled therefore the penetration depth can be defined 

as: 

 
       d d dr drt v t v t t H t t    

 (7) 

where dv  is the velocity of the sphere downwards, t  is the time, drt is the time of the downwards ramp, H is the 

Heaviside function. This function describes the motion of the sphere which is moved downwards at a constant 

velocity to a specific depth defined by 0 d drv t  and held for a period of time as shown in Fig. 2. This in turn 
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defines the contact radius. As the contact radius is monotonically increasing, there is no need to consider 

unloading effects (Ting 1966; Greenwood 2010). The form of eq. 7 is in contrast to the majority of indentation 

studies where step-loading conditions have been assumed which is analytically convenient but experimentally 

impossible to implement (Zhang et al. 2004). 

 
Fig. 2: Schematic of the displacement of the sphere during a stress relaxation experiment as described by eq. 7. 

Given eq. 7, when drt t  3 3 2 3 2 3 2

da R V t  therefore  3 3 2 3 2 1 2' 3 2 'dda dt R V t else 3 ' 0da dt  . Upon 

substituting these terms and eq. 6 into eq. 5, the viscoelastic solid equivalent to eq. 4 for the stress relaxation 

experiment can be seen to be: 
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And upon solving: 
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where ( )D x is the Dawson’s integral defined as: 
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Thin Film Correction 

Dimitradis et al. (2002) derived a correction to eq. 3 to take into account the effects of the material having a 

finite thickness. The expression was given to fourth order as: 
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where /R h  , h being the film thickness (see Fig. 3) and the constants 0 and 0 are functions of the 

Poisson’s ratio of the film.  
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Fig. 3: The geometry used in thin film contact analysis. Note the deformation of the film surface when r > a is dependent on 

the Poisson’s ratio of the material and the shape shown here is purely representative.  

 

For the case where the film is bonded to the underlying substrate they are given by (Dimitraidais et al. 2002): 
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When it is not bonded to the underlying substrate, the constants are given by (Dimitraidais et al. 2002): 
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In order to make the thin film correction, eq. 11, viscoelastic, the same procedure needs to be followed. To do 

this it needs to be recognised that eq. 11 can be presented in the form: 
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where the constants 1 4...C C can be found by comparing eq. 14 to eq. 11. In terms of the contact radius eq. 14 can 

be presented as: 
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Using the correspondence principle as before it can be seen that the higher order corrections in the viscoelastic 

case can be given as: 
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Where the total force is given as: 
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 (20) 

 

The first term is given by eq. 9 while the other terms are corrections. Eq. 22 could in principle be solved 

numerically. However, if the properties of the material were desired and the numerical solution would need to 

be incorporated into a curve fitting algorithm, this method would be very computationally expensive. Fortunately 

for the case of the stress relaxation experiment described above, there is an analytical solution, which can be 

shown to be: 
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These expressions provide the complete description of the stress relaxation during the indentation of a thin soft 

film.  

In Fig. 4, the effect of adding higher order terms on to the Hertzian model is shown. It can be seen that adding 

higher order terms increases the predicted force for given material properties if the film is thin. The effect 

decreases as the order is increased, suggesting that even higher order terms become negligible, however, it 

appears that those terms up to and including the second order are significant.  

0 5 10 15 20
0.5

1

1.5

Time (s)

N
o

rm
a

lis
e

d
 F

o
rc

e
 (

N
)

 

 

Zero Order

First Order

Second Order

Third Order

Fourth Order

 
Fig. 4: Effect of adding higher order corrections to account for thin film effects. Note the uncorrected, or zero order theory, 

can significantly underestimate the force required to indent a thin film to a specific depth. 

 

Experimentation 

Silicone elastomer moulds were cast in 35 mm diameter poly(styrene) Petri dishes (Fisher Scientific, UK) using 

Sylgard mix (Type 184 Silicone Elastomer, Dow Corning, USA). The Sylgard mix consisted of the uncured 

elastomer and the curing agent at relative ratios of 5:1, 10:1 and 20:1 according to volume. The moulds were left 

to polymerise at 20 oC for a minimum of 7 days prior to use. Petri dishes were subsequently broken and removed 

from around the cured elastomer disk prior to performing stress relaxation measurements. 

Stress relaxation measurements were performed at 18 oC and 40 % relative humidity using a Z030 mechanical 

tester (Zwick/Roell, UK) with a 28.5 mm diameter stainless steel sphere (Dejay Distribution, UK) attached to a 100 

N load cell. The procedure for the stress relaxation measurement involved indenting the sphere a specific 

distance into the sample, at a velocity of 1 mm/s. This was followed by a 120 s hold period during which the 

indentation depth was held constant whilst the force measured by the load cell decayed. Finally, a retraction 

sufficiently large such that the sphere was no longer in contact with the surface was performed, also at a velocity 

of 1 mm/s. The surface topography of the stainless steel sphere was measured using a MicroXAM2 

Interferometer (Omniscan, UK) and was found to have an average surface roughness (Sa) on the order of 25-30 

nm, and therefore the sphere was considered to be continuously smooth in comparison to the indentation depth 

employed. The surface topography of the elastomer was measured using a NanoWizard II atomic force 

microscope (JPK Instruments, UK) operating in contact mode using a pyramidal-tipped Si3N4 cantilever (DNP-S, 

Veeco, UK), and was found to have an average surface roughness on the order of 2 nm. 

Results and Discussion 

Examples of the results of the indentation experiments can be seen in Figs. 5 and 6. By comparing Figs. 5(A) and 

5(B) it is shown that the thinner samples are stiffer. This is caused by the geometric effect due to the proximity of 

the rigid base as discussed above.  
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Fig. 5: Experimental stress relaxation results for the indentation of 10:1 mix PDMS for varying indentation depths. In (A) the 

layer thickness is 17.8 mm and in (B) 1.7 mm. 

This effect is even more apparent in Fig. 6 where the same indentation experiment has been performed on the 

same material but with different layer thicknesses. It can be seen that the magnitude of the force is dependent 

on the layer thickness.  In this case this is a simple geometric effect, however, in biological materials it could well 

be due to varying material properties. Attempting to interpret the observed behaviour using simple Hertzian 

theory implies that the material properties vary with depth; but when the full theory including the thickness 

corrections is used, the material properties are found to be constant as will be seen in Figs, 8-10. 

 
Fig. 6: Effect of layer thickness on experimental stress relaxation results for 10:1 mix PDMS at an indentation depth of (A) 

200 µm and (B) 1000 µm. 
The theory described above was fitted to the experimental data exemplified by Figs. 5 and 6 using a multivariate 

curve fitting algorithm. The algorithm was based on MatLab’s (MatLab V.7.0, Mathworks, US) built-in nonlinear 

least-squares data-fitting function. The function which was fitted to the experimental data was formed from eqs. 

9 and 23 to 26. Variables such as loading time, dwell time and maximum indentation depth were defined from 

the experimental set-up prior to fitting. An example of the quality of the curve fitting method is shown in Fig. 7. 

Two theoretical models were fitted to the experimental data, one assuming the material could be described by a 

single element, the other by three elements (see Appendix for details). It was assumed the material was bonded 

to the substrate and all corrections given by eqs. 23 to 26 were used in the fit. In the case of the single element 

model, it can be seen that the fit was reasonable with an R2 value of 0.89. However, in the case of three elements 

being used, it can be seen that the fit exhibits greater agreement and the theory and fitted coefficients well 

describes the behaviour of the material. Here the fit gave a R2 value of 0.96. 
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Fig. 7: Comparison between theoretical and experimental stress relaxation results for 10:1 mix PDMS with a 14.1 mm layer 

thickness and an indentation depth of 200 µm. All higher corrections given by eqs. 23 to 26 were used in the fitting. Two 

theoretical models were fitted to the data. The first assumed the material is bonded to the substrate and can be described 

by a single element model. The R2 value was 0.89. The second theory assumed the material is bonded to the substrate and 

can be described by a three element model. The R
2
 value is 0.96. In (A) the full data range is plotted and in (B) a close-up of 

the data in (A) is shown. 

One of the most important viscoelastic properties and one of the simplest to use for comparisons of materials is 

the instantaneous shear modulus, 0G  as given in eq. A6. In Figs. 8 to 10, the instantaneous shear modulus has 

been plotted as a function of layer thickness for all penetration depths and for the three afore-mentioned 

theories – uncorrected (eq. 9), unbonded thin film and bonded thin film.  Fig. 8 shows the calculated modulus for 

PDMS mixed with its curing agent at a ratio of 5:1, in Fig. 9 the ratio is 10:1 and in Fig. 10 this ratio is 20:1. It has 

been assumed that three elements of the standard linear model are needed to describe the material. In all three 

figures it can be seen that the uncorrected model predicts that the modulus increases as the layer thickness 

decreases. However, the corrected theories predict a more consistent value, as expected. In this instance, the 

theory which assumes the layer to be bonded to the substrate gives the most consistent value suggesting that 

the PDMS does not slip relative to the substrate surface.  It is interesting to note that regardless of the 

indentation depth, all three theories tend to converge when the layer thickness is c.a. 10 to 12 mm suggesting 

that the additional stress due to the underlying substrate is negligible compared to the stress due to Hertzian 

contact at thicknesses greater than this.     

 
Fig. 8: Calculated instantaneous relaxation shear moduli for all penetration depths. PDMS mix ratio of 5:1. Fitted using the 

standard linear model with three elements. 
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Fig. 9: Calculated instantaneous relaxation shear moduli for all penetration depths. PDMS mix ratio of 10:1. Fitted using the 

standard linear model with three elements. 

 
Fig. 10: Calculated instantaneous relaxation shear moduli for all penetration depths. PDMS mix ratio of 20:1. Fitted using the 

standard linear model with three elements. 

 

The layer thickness also has an effect on the calculated time constants. For the case where it is assumed that a 

single element of the standard linear model describes the material, there is only one time constant. The time 

constant has been calculated from the coefficients found by fitting the three theories to the experimental data 

for the case where the PDMS mix ratio was 10:1 and indentation depth was 400 µm (see Fig. 14). It can be seen 

that the uncorrected theory predicts that the time constant is roughly the same for all layer thicknesses whereas 

the corrected theories predict the relaxation time should decrease as the layer thickness decreases. This 

prediction is consistent with the data shown in Fig. 5 and 6. In Fig. 5(A) where the layer thickness is kept constant, 

the relaxation time appears to be approximately equal for each run; however, in Fig. 6 the peak tends to be 

sharper as the layer thickness decreases, suggesting shorter relaxation times for thinner layers. Similar to the 
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convergence between the predicted values for the instantaneous shear modulus for the three theories, the time 

constants predicted by the three theories become equal to each other when the layer thicknesses is between 7 

to 9 mm.   

This convergence is independent of the indentation depth. In Fig. 11 the relaxation time for the same material at 

different indentation depths has been plotted as a function of layer thickness. The calculated time constant is 

consistent for each penetration depth, but again decreases as the layer thickness decreases at approximately 10 

to 12 mm.   

 
Fig. 11: Calculation of the time constants by the three theories. In all cases a single element model was assumed.  Note 

greater correlation with increasing film thickness.  
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Fig. 12: Time constants as calculated using the bonded thin film theory for different penetration depths and film thicknesses. 

Note that the material appears to relax slower as the film gets thicker until a critical thickness when the relaxation time 

becomes approximately constant. 

The materials tested in this work were different mixes of PDMS, a relatively tough elastomer. It was also tested 

using a mechanical tester and a probe 28.5 mm in diameter. This was done so that the assumptions such as the 

stress relaxation condition, the material being homogeneous and isotropic were all clearly met and that the 

theory was well suited. However, this theory is also applicable for samples which would require smaller forces 

and smaller displacements than required here. Hence it is possible to use this theory for analysing soft biological 

tissues using equipment with greater force sensitivity, such as an atomic force microscope, in a manner 

comparable to Darling et al. (Darling et al, 2006). Some care needs to be taken if measuring materials with 

multiple soft layers, as whilst effective moduli can be measured, determining the correct modulus of each layer is 

a non-trivial task (Cox, 2008, Pailler-Mattei et al. 2008). Similarly, if the material was nonhomogeneous, fibrous 

for instance, and the probe was sufficiently small as to be able to interact with the internal components of the 

material than it would not constitute a thin film on a rigid substrate and the higher order corrections in the 

theory would not be appropriate. That said if the probe used was sufficiently small compared to the fibre for 

instance in question then the uncorrected theory may be used.      

Conclusion 

The spherical indentation for a thin layer of viscoelastic material has been analysed. A model based on the work 

of Dimitriadis et al. (2002), which corrected the Hertzian model to take into account the effect of a rigid 

underlying substrate, has been derived which incorporates the transient nature of a stress relaxation experiment. 

The model assumes that the material can be described by the generalised standard linear model. The theory has 

been fitted to experimental data and it has been shown that the effects of the thickness of the material have 

been correctly taken into account. This theory can therefore be used to accurately calculate the viscoelastic 

properties of thin layers of soft solids.  
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Appendix 

The relaxation operator has to encompass all the linear viscoelastic behaviour of the material. A classical 

approach to the modelling of the linear viscoelastic behaviour of real materials is based on the mechanical 

analogy with the response of combinations of springs and dashpots. These models are useful for representing 

materials whose relaxation does not occur at a single time but in a set of times, perhaps due to being made of 

molecular segments of different lengths or affected by different relaxation processes. A constitutive model that 

can predict a distribution of both creep and stress relaxation phenomena and so give a realistic representation of 

viscoelastic solid materials is the generalised standard linear solid model (Ferry 1980). This model consists of 

N single elements in parallel whereby each element is comprised of a spring in series with a Kelvin-Voigt 

element as shown in Fig. A1: 

 
Fig. A1: A schematic of the generalised standard linear solid model comprised of N single elements connected in parallel. 

The stress-strain relationship for each element is given by: 

 
 1 1 2 1 2         1n n n n n n nk k k k k n N          

 (A1) 

The strain is the same for each element, therefore the total stress acting on the system is: 

 1

N

n

n

 



 (A2) 

The stress can therefore be solved for the case of a step change in strain, 0 , to give: 
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where 1 2  / ( )n n n nT k k   are the relaxation time constants. Therefore, the relaxation operator for the material 

can be written as a Prony series: 
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 (A4) 

The shear relaxation modulus defined as  0( ) ( ) 2G t t   (Oyen, 2006) for a material described by eq. A4 is: 
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There are two important limits to eq. A5. Namely when 0t  ,  0G describes the instantaneous shear modulus 

of the material, i.e. the shear modulus experienced during an impulsively applied strain, and is given by: 
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The other limit is when t  . In this case  G  gives the relaxed shear modulus i.e. the steady state modulus 

experienced when a strain has been held constant for sufficient time that the stress is also constant.  G  is 

given by: 
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Using this nomenclature and using nG to indicate the coefficients to the exponential functions in eq. A5, eq. A4 is 

simplified to: 
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In the text when a three element model is being used to fit to the data it is being assumed that a shear modulus 

given by eq. A5 when 3N  , as given in full in eq. A9, describes the mechanical behaviour of the material.  
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