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Abstract

When the difference between samples is measured using a Euclidean-embeddable
dissimilarity function, observations and the associated variables can be displayed
on a nonlinear biplot. Furthermore, a nonlinear biplot is predictive if informa-
tion on variables is added in such a way that it allows the values of the variables
to be estimated for points in the biplot. In this paper an r dimensional biplot
which maps the predicted value of a variable for every point in the plot, is intro-
duced. Using such maps it is shown that even with continuous data, predicted
values do not always vary continuously across the biplot plane. Prediction tra-
jectories that appropriate for summarising such non-continuous prediction maps
are also introduced. These prediction trajectories allow information about two
or more variables to be estimated even when the underlying predicted values do
not vary continuously.

Keywords: Euclidean-embeddable dissimilarity function, Nonlinear biplot, nor-
mal projection, prediction, prediction region, predictive trajectory

1 Introduction

A biplot is a plot in which information about samples and variables is simul-
taneously displayed. The term ‘biplot’ was first coined in Gabriel (1971), with
the prefix ‘bi-’ intended to reflect that two different modes are displayed rather
than the number of dimensions used for the display. Typically biplots are 2-
dimensional, making them easy to display on paper or on computer screens,
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although this does not have to be the case.

This paper will deal with biplots in which samples are represented by points
on the plot whose positions are determined using classical scaling. Thus this
method falls within the class of multidimensional techniques that produce low-
dimensional representations of points based on their dissimilarities.

Furthermore, it will be assumed that the functional form of the underlying
dissimilarity function is known, and is in the class of Euclidean-embeddable
functions. This class of dissimilarity functions includes the familiar Pythagorean
distance, along with other dissimilarity functions such as the square-root of the
City Block (Manhattan) distance and Clark’s distance (Gower and Legendre,
1986). This means that the low-dimensional representation of the points is
a projection of a high-dimensional configuration that exactly represents the
dissimilarities between points instead of rather an low-dimensional approximate
representation of dissimilarities obtained directly by, for example, minimising
Stress or S-Stress.

The aim will be to add information about variables to the plot in such a way that
values of the variables can be associated with the configuration of the points.
This will primarily be done by adding trajectories to the plot, one for each
variable. The trajectories will in general be nonlinear, and hence such biplots
are known as nonlinear biplots (Gower and Harding, 1988). These trajectories
will be calculated by adding points that correspond to positions along an axis.

In multidimensional scaling, different approaches are available to add points to
an existing configuration of points (see for example Borg and Groenen (2005)).
In this paper, an approach which matches the construction of the existing con-
figuration will be followed. That is, knowledge of the form of the dissimilarity
function will be used to calculate the exact position of the extra points in a suf-
ficiently high-dimensional space. Projection is then used to place these points
on the biplot.

In linear (PCA) biplots (biplots that are produced when Pythagorean distance
is chosen to be the dissimilarity function), the position of marker points on the
trajectories representing variables depends on whether trajectories are to be
used for interpolation or prediction (Gower and Hand, 1996, p.15). That is, on
whether the trajectory is going to be used to placing a new observation in the
most appropriate place on the biplot (interpolation) or to be used to determine
what values of the original variables are best associated with a point on the
biplot, usually one of those already plotted (prediction). In nonlinear biplots
the trajectories themselves also generally depend on whether they are going to
be used for interpolation or prediction (see for example Gower and Ngouenet
(2005)). Here the focus will be on prediction trajectories. That is, trajectories
complete with marker points, suitable for prediction purposes.

On nonlinear biplots, prediction trajectories also depend on the method by
which points in the biplot are to be projected on to the trajectory. Here the focus
will be on normal projection prediction trajectories. With normal projection
prediction trajectories, a projection P ∗ of any point P in the biplot on the
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trajectory is where the line PP ∗ intersects the trajectory orthogonally. The
position of P ∗ along the trajectory then indicates the predicted value to be
associated with P .

In the next section, existing methodology that has been used to calculate normal
projection prediction trajectories for nonlinear biplots will be described. This
existing methodology relies on the assumption that the dissimilarity function
is smooth. This assumption is not always appropriate as there are Euclidean-
embeddable dissimilarity functions that are not smooth everywhere. Hence the
existing methodology cannot be applied to all such dissimilarity functions. So in
Section 3 an alternative approach to prediction in nonlinear biplots is introduced
so that normal projection prediction trajectories can be calculated regardless of
whether the dissimilarity function is smooth.

As Section 3 will also show, the alternative approach to prediction introduced
in this paper will allow prediction maps for each variable to be created – that
is, plots where every point is coloured according to the value it predicts. Such
maps can be used to explore how predicted values vary across the biplot plane.
For example in Subsection 3.3 prediction maps will used to illustrate a new
observation about nonlinear biplots: the dimension of prediction regions (re-
gions on the biplot that all predict the same value of a variable) depends on
whether the dissimilarity function is smooth. A mathematical explanation for
this observation will be given in Subsection 3.4.

Prediction maps, by colouring every point in the biplot, effectively preclude the
depiction of more than one variable on the same biplot. So, in Section 4 for the
special case of 2-dimensional nonlinear biplots with 2-dimensional prediction
regions, a new method of calculating a prediction trajectory through the biplot
space to approximate the prediction regions is proposed. Then, by superimpos-
ing the prediction trajectories for the different variables on the same plot, the
ability to compare different variables on the same biplot is restored.

2 Displaying variables in nonlinear biplots

2.1 Preliminaries

Let X represent an n× p data matrix of n samples and p variables, with its ith
row vector x′

i = (xi1, . . . , xip) representing the ith sample. Further suppose that
the dissimilarity between two samples xi and xj is measured by the dissimilarity
function, d(xi,xj) which is Euclidean-embeddable. That is, it is possible to
find a configuration of n points in m-dimensional space such that the Euclidean
distance between the points representing samples i and j is d(xi,xj).

Let ∆ be the doubly-centered matrix of dissimilarities multiplied by − 1
2 ,

∆ = −1

2
(I − 1

n
11′)D(I − 1

n
11′)
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where the (i, j)th element of D is d2(xi,xj), I is the n × n identity matrix
and 1 is the n × 1 vector of ones. A consequence of Euclidean-embeddability
is that ∆ is a positive semi-definite matrix (Schoenberg, 1935). So, via the
spectral decomposition of ∆, it is possible to find a n×m real matrix Y such
that Y Y ′ = ∆ and that Y ′Y = Λ where Λ is a diagonal matrix with entries
λ1 ≥ λ2 ≥ · · · ≥ λm > 0 in the main diagonal. Let y′

i be the ith row of Y . Then
yi can be regarded as the location of the ith sample in m-dimensional space such
that for j = 1, . . . n, the distance between yi and yj matches d(xi,xj).

Usually m = (n − 1) meaning that the exact correspondence between inter-
point distances and dissimilarities cannot normally be directly plotted on a low
dimensional plot. However, as a result of least squares properties of spectral
decompositions, the best rank r approximation of ∆ is obtained by simply using
the first r columns of Y as the positions of the samples (see, for example, Gower
and Harding (1988)).

Suppose now that we are interested in a new point µ′ = (µ1, . . . , µp). Let
d(µ) be the n × 1 vector of squared dissimilarities between µ and the samples
x1, . . . ,xn. That is, d′(µ) = (d2(x1,µ), . . . , d

2(xn,µ)). Then, setting z′(µ) =
(z1(µ), . . . , zm(µ), zm+1(µ))

′ where

(z1(µ), . . . , zm(µ))′ =
1

2
Λ−1Y ′

(
1

n
D1− d(µ)

)
(1)

and, given the values of z1(µ), . . . , zm(µ), the value of zm+1(µ) is taken so that

z′(µ)z(µ) =
1

n
1′d(µ)− 1

2n2
1′D1 (2)

ensures that the (Euclidean) distance between the (m + 1) dimensional col-
umn vector (y′

i, 0)
′ and z(µ) matches d(xi,µ) (see, for example, Appendix A.7,

Gower and Hand (1996)). So it is possible to add an extra point to represent
µ to the plot whilst preserving the correspondence between dissimilarities and
distances on the plot, though in general doing so requires the dimensionality of
the plot to be increased from m to m+ 1.

2.2 Prediction trajectories via normal planes

In Section 2.1, no mention was made about the process by which information
about variables is added to the biplot. Gower and Harding (1988) show that
this can be done by considering particular sequences of new points added to the
plot.

For the kth variable, the sequence of new points is chosen to mimic the sequence
of points along the kth axis of a p-dimensional scatterplot. That is, for variable k
the particular sequence of points corresponds to µkek, where µk varies over the
range the kth variable and ek is the p× 1 vector with all elements zero except
for the kth element which has value 1.
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The locations of these new points map out a trajectory on a (m + 1) dimen-
sional plot, the kth “pseudoaxis”. Technically the space in which the trajectory
actually has a dimension that goes up with the number of points used to form
it, because a new point added to a biplot requires one more dimension in order
to represent all dissimilarities exactly. However, for practical purposes, it is
sufficient to assume that the extra dimension added is the same dimension for
all new points. See for example, Gower and Harding (1988).

Then, like axes on traditional scatterplots, the value of the kth variable that
is associated with any particular point P in the m + 1 dimensional space is
determined by where P projects on to the kth pseudoaxis. It turns out that
providing that the pseudoaxis is smooth, the plane N (µ∗

k), normal to the kth
pseudoaxis at the point P ∗

k corresponding to µk = µ∗
k, includes all the positions

in (m+ 1)-dimensional space which project back to P ∗
k on the kth pseudoaxis.

Thus, for any point in N (µ∗
k), it is reasonable to associate (‘predict’) the value

µ∗
k for the kth variable. Focusing on just the r dimensions of the plotted biplot

space, this means that there is a just an (r − 1)-dimension linear subspace
for which the value µ∗

k for the kth variable is predicted. Furthermore it can
be shown that for an r-dimensional biplot, this subspace corresponds to the
subspace α′ = (α1, . . . , αr) where(

α′Λ−1
r Y ′

r +
1

n
1′
)

∂d(µ∗
kek)

∂µk
= 0

(Gower and Ngouenet, 2005). In particular this means that for 2-dimensional
biplots, the points α associated with the value µk = µ∗

k — the ‘prediction region’
for µ∗

k — all lie on a straight line. However, normal planes for different values
of µk are in general not parallel so a point α in the r-dimensional biplot might
lie in more than one prediction region for variable k.

Note that when the dissimilarity function is additive, that is when it can be
written in the form

d2(xi,xj) =

p∑
k=1

d2k(xik, xjk),

further simplification is possible. Then the prediction region for µ∗
k corresponds

to all the points α such that(
α′Λ−1

r Y ′
r +

1

n
1′
)

∂dk(µ
∗
k)

∂µk
= 0

where d′
k(µk) = (d2k(x1k, µk), . . . , d

2
k(xnk, µk)). Thus when the dissimilarity

function is additive, the prediction region for a value µk of the kth variable does
not depend on what values are assumed for the other (p− 1) variables.

On the r-dimensional biplot, a prediction trajectory for the kth variable is then
formed by joining the prediction regions for the different values of µk in such a
way that all the points in the prediction region for µ∗

k project on to the same
position on the trajectory.

Three different strategies for projecting on the prediction trajectory have been
proposed: normal projection, circular projection and back projection (Gower
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and Ngouenet, 2005). Of these, normal projection is arguably the most natural.
With normal projection, the projection of a point P on the biplot, is a point
P ∗ on the trajectory where the line PP ∗ intersects the trajectory orthogonally.
In general normal projection prediction trajectories are not straightforward to
compute as the calculation involves integration. Nevertheless numerical inte-
gration routines allow general implementations to be written (for example the
R function Nonlinbipl described in Gower et al. (2011), which is included in
the R package UBbiplot).

As has already been noted, the above theory all relies on the pseudoaxis being
smooth. This in turn means requiring that the dissimilarity function is smooth
for all values of µk. Unfortunately not all Euclidean-embeddable dissimilarity
functions are smooth everywhere. For example, consider the square root of the
Manhattan distance function:

d2(x,µ) =

p∑
k=1

|xk − µk|.

This dissimilarity function is Euclidean-embeddable (Gower and Legendre, 1986)
and additive, but it is not smooth when µk = xik, i = 1, . . . , n. That is, this
Euclidean-embeddable dissimilarity function is not smooth for values of µk that
occur in the data. Therefore in the following section an alternative way of calcu-
lating prediction regions that does not depend on the smoothness of dissimilarity
functions is pursued.

3 Prediction regions via least squares

In the previous section, planes normal to pseudoaxes were used to determine
the prediction regions and hence normal projection prediction trajectories. How-
ever, as was pointed out in that section, the use of normal planes makes the
implicit assumption that the dissimilarity function is smooth everywhere. This
assumption does not cover all additive Euclidean-embeddable dissimilarity func-
tions, let alone some non-additive Euclidean-embeddable dissimilarity functions.
Thus an approach that does not depend on the smoothness of the dissimilarity
function is required.

3.1 Prediction at a point via least squares

Consider a point α in a biplot of dimension r (typically r = 2). A question of
interest is what values of the original p variables should be associated with α?

In the previous section, consideration of normal planes was used to try to an-
swer this question. An alternative approach is via least squares: finding the
value µ = (µ1, . . . , µp)

′ such that the (Euclidean) distance between α∗ =
(α1, . . . , αr, 0, . . . , 0)

′ and z(µ) is minimised. That is, for a given α finding
the value µ = µ̂ which minimises g(µ|α) = (α∗ − z(µ))′(α∗ − z(µ)).
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Denoting (z1(µ), . . . , zr(µ))
′ by z′

r(µ), the first r columns of Y by Yr and the
r × r submatrix formed from the first r columns and rows of Λ by Λr then
g(µ|α) = (α − zr(µ))

′(α − zr(µ)) + z′(µ)z(µ) − z′
r(µ)zr(µ). Thus using

equations (1) and (2),

g(µ|α) = α′α− 2α′zr(µ) + z′(µ)z(µ)

= α′α−α′Λ−1
r Y ′

r

(
1

n
D1− d(µ)

)
+

1

n
d′(µ)1− 1

2n2
1′D1

= α′α− 1

2n2
1′D1− 1

n
α′Λ−1

r Y ′
rD1+ (α′Λ−1

r Y ′
r +

1

n
1′)d(µ)

= constant + (αTΛ−1
r Y ′

r +
1

n
1′)d(µ)

where the constant is not dependent on µ. Thus, for fixed α, g(µ|α) is a
constant plus a weighted average of the squared dissimilarities between each of
the samples xi and µ.

Further simplification is possible for additive dissimilarity functions. In such
cases

g(µ|α) =

p∑
k=1

gk(µk|α)

where

gk(µk|α) = constant +

(
α′Λ−1

r Y ′
r +

1

n
1′
)
dk(µk). (3)

This means that for additive dissimilarity functions (smooth or not), predictions
for the kth variable are not conditional on the values assumed for any other
variable at any point in the biplot.

When the dissimilarity function is smooth, local minima of gk(µk|α) at any
given point α can be found by solving

∂gk(µk|α)

∂µk
=

(
α′Λ−1

r Y ′
r +

1

n
1′
)

∂dk(µk)

∂µk
= 0.

In other words local minima of gk(µk|α) correspond to values of µk for which
α lies in the prediction regions obtained in Section 2.2. However, explicit use of
the least squares principle clarifies what should be done when a point α lies in
more than one prediction region for a variable: the value of µk that corresponds
to the global minimum of g(µk|α) should be selected.

Equation (3) leads to simple way of finding the predicted value of µk at α which
does not depend on the smoothness of the dissimilarity function. The function
gk(µk|α) can evaluated over a range of values of µk. Then it is just a question
of identifying the value of µk that produces the smallest value of gk(µk|α).
Provided that that the global minimum lies within the range evaluated, this
approach also reduces the risk of the local minimum that happens to be the
global minimum is missed. For this reason, the range of values of µk for which
gk(µk|α) is evaluated should always include the values observed in the data.
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3.2 Producing prediction maps

Subsection 3.1 describes a straightforward way to obtain the predicted value of
µk for any value of α, regardless of whether the dissimilarity function is smooth
or not.

Repeating this process for a grid of points across the biplot plane leads naturally
to a pixel-colouring algorithm for mapping predictions. Covering the biplot
plane with pixels and colouring each according to its predicted value leads to a
prediction map for variable k.

Although this simple pixel-colouring approach is computationally intensive,
there is a short cut. The form of (3) means that the values of dk(µk) for a
range of µk only have to be evaluated once regardless of the number of positions
in the r dimensional plane for which predictions are required. So the form of
the pixel-colouring algorithm for a prediction map of µk is as follows.

Step 1 For a range of values of µk, evaluate dk(µk).

Step 2 For each grid point α in the biplot plane, minimise (3), making use of the
values calculated in Step 1.

For biplots of dimension r = 2, the pixel-colouring algorithm has been imple-
mented in an R package by the author.

3.3 Example: Fighter aircraft

Table 2.3.1 in Cook and Weisberg (1982) contains data on fighter aircraft ab-
stracted from Stanley and Miller (1979). For each of 21 fighter aircraft, four
variables were retained: SPR, the specific power, proportional to the power per
unit weight; RGF, the flight range factor; PLF, payload as a fraction of gross
weight of aircaft; and SLF, sustained load factor.

Various biplots of these data have been published by Gower and Hand (1996),
Gower and Ngouenet (2005) and Gower et al. (2011). Following Gower and
Ngouenet (2005), suppose initially that the appropriate dissimilarity function
to use with these data is Clark’s distance:

d2(xi,xj) =

p∑
k=1

(
xik − xjk

xik + xjk

)2

.

When xik = xjk = 0 the contribution to the dissimilarity function is defined
to be 0. This dissimilarity function is additive and downweights discrepancies
between high valued observations relative to low valued ones. Furthermore, this
is a scale-free dissimilarity function because the dissimilarities are invariant to
multiplication of any variable by a positive constant, but it is not invariant to
translation of the data points.
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Prediction maps for all four variables are given in Figure 1. In these maps the
variation of predicted values over the biplot becomes clear. There is a strong
correlation between predicted values for RGF and SLF as the colour pattern is
very similar. The value of SPR increases steadily from top left to bottom right
of the plot whereas there is a sharp change in predicted PLF with aircraft ‘r’ and
‘g’ being in the region with much lower predicted values. On the maps individual
prediction regions correspond to straight lines as expected. Furthermore in the
maps for SPR and SLF, prediction regions for different values of µk are clearly
not parallel

In the prediction map for PLF some of the prediction regions are curtailed. For
example, the prediction region for µ3 = 0.02 is curtailed: it is not present on
the left hand side of the map. This curtailment means that for points along the
line corresponding to µ3 = 0.02 on the left hand side of the plot, µ3 = 0.02 is a
local minimum of g3(µ3|α) but it is not the global minimum of g3(µ3|α2).

The form of (3) makes it easy to investigate the effect of changing the dis-
similarity function. Most of the code can be written in terms of a generic d,
only the functional form of d needs to be specifically tailored. For example, an
alternative dissimilarity function is the square-root of the Canberra distance:

d2(xi,xj) =

p∑
k=1

|xik − xjk|
xik + xjk

(see, for example, Cox and Cox (2001)) and when xik = xjk = 0 the contri-
bution to the dissimilarity function is defined to be 0. Like Clark’s distance,
this dissimilarity function is additive, scale-free and down-weights discrepancies
between high-valued observations. However, this dissimilarity measure is based
on the L1 norm. So although d(xi,µ) is a continuous function, it is not smooth
everywhere. Instead each function dk(xik, µk), k = 1, . . . , p has a corner at each
µk = xik, i = 1, . . . , n. Although the Euclidean-embeddability of this dissimi-
larity function has not been proven for all data sets, for these data ∆ is positive
semi-definite. Hence square-root of the Canberra distance is, at the very least,
Euclidean-embeddable for these data.

The resultant prediction maps are shown in Figure 2. Overall these plots reflect
the similar functional forms of Clark’s distance and square-root of the Canberra
distance. For each variable, the patterns of colours are similar in Figures 1
and 2, indicating similarity in the variation of predicted values across the maps.
However, there is one noticeable difference between the prediction maps in Fig-
ure 1 and Figure 2. The predicted values do not vary smoothly over the biplot
maps in Figure 2. Instead all the biplot maps appear to be split into a series of
2-dimensional prediction regions according to the value predicted. The values
associated with the 2-dimensional prediction regions turn out to correspond to
values observed in the data. It is as though when the square root of the Can-
berra distance is used as the dissimilarity function the data are being treated
as categorical for the purposes of prediction.
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Figure 1: Prediction maps for the aircraft data using Clark’s distance as the
dissimilarity function. On each plot a normal projection prediction trajectory
(solid line) is shown, along with selected prediction regions (dotted lines). The
colour of each pixel indicates the predicted value, with green pixels correspond-
ing to low values and yellow pixels corresponding to high values.
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Figure 2: Prediction maps for the aircraft data using square-root of the Canberra
distance as the dissimilarity function.
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3.4 Dimension of prediction regions

Section 3.3 suggested that the dimension of prediction regions depends on the
dissimilarity function. In this section it will be shown that the dimensionality
can be attributed to the smoothnesss of the dissimilarity function. For simplicity
of exposition, the focus will be on additive dissimilarity functions. However,
similar arguments will apply to non-additive dissimilarity functions.

For variable k, let Lk(µ0) denote the region of the biplot for which µk = µ0 is a

local minimum of gk(µk|α), let ∂−f(x)
∂x denote the partial derivative of f(x) with

respect to x when approaching from the left-hand side of the function and let
∂+f(x)

∂x denote the partial derivative of f(x) with respect to x when approaching
from the right-hand side of x. Assuming that gk(µk|α) is continuous and suf-
ficiently well-behaved, at any local minimum with respect to µk, we must then

have ∂−gk(µk|α)
∂µk

∣∣∣
µk=µ̂k

≤ 0 and ∂+gk(µk|α)
∂µk

∣∣∣
µk=µ̂k

≥ 0. Thus we must have the

following:(
αΛ−1

r Y ′
r +

1

n
1′
)

∂−d
′
k(µk)

∂µk

∣∣∣∣
µk=µ̂k

≤ 0 and

(
αΛ−1

r Y ′
r +

1

n
1′
)

∂+d
′
k(µk)

∂µk

∣∣∣∣
µk=µ̂k

≥ 0.

Setting

s− =
(
Λ−1

r Y ′
r

) ∂−d
′
k(µk)

∂µk

∣∣∣∣
µk=µ̂k

, s+ =
(
Λ−1

r Y ′
r

) ∂+d
′
k(µk)

∂µk

∣∣∣∣
µk=µ̂k

c− =
1

n
1′ ∂−d

′
k(µk)

∂µk

∣∣∣∣
µk=µ̂k

c+ =
1

n
1′ ∂+d

′
k(µk)

∂µk

∣∣∣∣
µk=µ̂k

this means that at a local minimum we require that

αs− ≤ −c− and αs+ ≤ −c+.

This means that half the biplot plane meets the necessary condition of the
minimum based on the left derivative. Similarly half the biplot plane meets the
necessary condition for a minimum based on the right derivative. In general the
two half planes will intersect. Thus, Lk(µ0) will in general to correspond to an
unbounded region in Rr.

However, when the underlying dissimilarity function is smooth at µk,

∂−d
′
k(µk)

∂µk
=

∂+d
′
k(µk)

∂µk
=

∂d′
k(µk)

∂µk
.

This means that s− = s+ = s and c− = c+ = c. Thus, at α, µk is a local
minimum of gk(µk|α) when αs ≤ −c and αs ≥ −c. This is only possible if in
fact α lies in the plane defined by αs = −c. So, when the dissimilarity function
is smooth with respect to µk, L(µk) can at most be a subspace in Rr−1.

On prediction maps, such as those shown in Figures 1 and 2, each pixel displays
the value of µk that corresponds to the global minimum of gk(µk|α). When the
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dissimilarity function is smooth, the global minimum for a particular pixel must
also be a local minimum. So the visible prediction regions on the prediction
map are also (r − 1)-dimensional.

For dissimilarity functions such as the square root of the Canberra distance, the
dissimilarity function is smooth for most values of µk, and hence the prediction
regions for these values of µk are (r − 1)-dimensional. However, at the points
µk = x1k, . . . , xnk the dissimilarity function is continuous but not smooth. Thus
for these values of µk, the corresponding prediction regions are r-dimensional.
Furthermore, in the case of the aircraft data, it is the prediction regions for µk =
x1k, . . . , xnk that dominate. This implies that only the values µk = x1k, . . . , xnk

tend to minimise gk(µk|α) globally.

4 Prediction trajectories to represent 2-dimensional
prediction regions in a 2-dimensional biplot

In Section 3.4 it was shown that for values of µk where the dissimilarity function
is continuous but not smooth, the dimension of the prediction region is r. In such
situations it is not possible to cross the prediction region for µk orthogonally
whilst remaining in the biplot. Hence the process described in Section 2.2 for
generating normal prediction trajectories needs modification for such values of
µk.

As noted in the previous section, in theory over the plotted region, a mixture
of r-dimensional and (r − 1)-dimensional predictions regions might appear on
the prediction map. In the case of a 2-dimensional biplot this means that the
prediction regions are a mixture of 2-dimensional and 1-dimensional prediction
regions. However initial experience so far suggests that the 2-dimensional pre-
diction regions tend to dominate. On prediction maps, the proportion of the
area of the plot in which non-data values appear as predicted values has so
far been negligibly small. Indeed, when the dissimilarity function is chosen to
be the square root of the City Block distance the predicted value at a point
will always correspond to a data value (see Appendix). Thus the focus will be
only on values of µk that correspond to data values, the so-called ‘basic points’
(Gower and Hand, 1996). Furthermore, the dissimilarity function is assumed
to be additive, though the same principles are likely to apply to non-additive
dissimilarity functions.

Consider two distinct values µAk and µBk. In terms of prediction there will be
nothing to choose between two values when gk(µAk|α) = gk(µBk|α). That is
when

α
(
Λ−1

r Y ′
r (dk(µAk)− dk(µBk))

)
=

1

n
1′(dk(µAk)− dk(µBk)).

This means that, on the biplot, the region of points for which µAk and µBk are
equivalent predictively is an 1-dimensional line {lA,B(α) : c1α1 + c2α2 = c0}
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Prediction region 2

Prediction region 1

Prediction region 3

l1,2

l2,3

α0

Figure 3: Illustration of the calculation of a trajectory segment when the predic-
tion region is 2-dimensional. The solid black line is arc a2. The three prediction
regions are for µ1, µ2 and µ3 respectively.

where the coefficients c0, c1, c2 are easily calculated using the dissimilarity
function.

4.1 Obtaining prediction trajectories for a simple predic-
tion map

Suppose first that there are just three unique values, µ1k, µ2k and µ3k for the kth
variable in X. Further suppose that the prediction region for µ2k lies between
those for µ1k and µ3k. Then for any point α0 in the prediction region for µ2k,
it is possible to define the arc a2(α) as the part of the circle bounded by the
lines l2,1 and l2,3, which goes through α0 and whose centre is the intersection
of the lines l2,1 and l2,3 (Figure 3). Thus, by construction, arc a2 meets both
lines l2,1 and l2,3 perpendicularly. The line segment, a1, can also be defined as
the line in the prediction region for µ1k that meets the line l2,1 perpendicularly
at the intersection of a2(α) with l2,1. Similarly the line segment, a3, can also
be defined as the line in the prediction region for µ3k that meets the line l2,3
perpendicularly at the intersection of a2(α) with l2,3.

Then any point in the prediction region for µ2k will project orthogonally on
to a2. Equally points in the prediction region for µ1k will usually orthogonally
project on to a1 and points in the prediction region for µ3k will usually orthog-
onally project on to a3. Thus the smooth trajectory formed by joining a1, a2
and a3 acts as a type of normal projection prediction trajectory. Predictive val-
ues are found by projecting orthogonally on to the trajectory. However, along
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the prediction trajectory, the predicted values are ascribed to entire segments
instead of varying smoothly within a segment.

4.2 Obtaining prediction trajectories when there are more
than three prediction regions

In Subsection 4.1 it was assumed that there were only three unique values
for µk. Now assume that there are nk unique values for the kth variable:
µk(1), . . . , µk(nk) ordered so that µk(i + 1) > µk(i) for i = 1, . . . , (nk − 1).
The principle of stitching together arcs to form a prediction trajectory with
similar properties to a normal projection prediction axis can be applied when
nk > 3, starting from a point α0 whose predicted value is known to be µk(i).

However, extra care needs to be taken because not all points along the arc
between li−1,i and li,i+1 will necessarily predict µk(i); it is just that they will
predict µk(i) ahead of µk(i− 1) and µk(i+1). So at the point at which the arc
crosses li,i+1 the predicted value µk(j) is calculated. If j = i+1, no adjustment
is needed. However, if j ̸= i + 1 this indicates that on the prediction map it is
the prediction region for µk(j) that borders µk(i), not µk(i+1). In this case the
arc for µk(i) is recalculated to go between lk(i− 1, i) and lk(i, j). Furthermore,
if j > i + 1, the next arc calculated is taken to be for µk(j), running initially
between li,j and lj,j+1. The arcs for µk(i+ 1), . . . , µk(j − 1) are missed out. If
j < i − 1, the trajectory is ended and no further arcs calculated. This leads
to the following algorithm for determining the arcs that correspond to µk(j),
j ≥ i.

Step 1: Set αf = α0, r = i− 1, s = i, t = i+ 1.

Step 2: Calculate the arc a∗ that goes through the fixed point αf and that crosses
the lines lr,s and ls,t perpendicularly. (In the special case that t = nk +1,
just calculate the line segment that goes through fixed point αf and that
crosses the lines lr,s.)

Step 3: Calculate the predicted value(s) for µk at the intersection between a∗ and
ls,t.

Step 4: If the predicted value(s) in Step 3 do not include µs, set t to be such that
µt is one of the predicted values in Step 3. (In practice it is assumed
that in this situation there will be only one predicted value identified in
Step 3.) Return to Step 2.

Step 5: Take the arc a∗ to the next segment of the trajectory.

Step 6: If t > s and s < nk, set αf to be the intersection between a∗ and ls,t,
s = t and t = s+ 1. Return to Step 2.

Else if t < s or s = nk, stop.

Thus the prediction trajectory is defined by a sequence of arcs, such that the
corresponding value of µk monotonically increases. The sequence ends when
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Figure 4: A predictive biplot, using normal axes, of the aircraft data using
square-root of the Canberra distance dissimilarity function.

either the arc for µk(nk) is added or that the prediction trajectory reaches the
boundary of a prediction region µk(t) where µk(t) is lower than µk(s), the value
of µk corresponding to the arc last added.

A similar procedure can then be used to determining the arcs that correspond
to µk(j), j ≤ i. The steps only have to be altered so that arcs corresponding to
monotonically decreasing values of µk are considered.

The calculation of such prediction trajectories is included in the R package
produced by the author. The resulting prediction trajectories for the fighter
aircraft data calculated using this package for the biplot based on the square
root of the Canberra dissimilarity function are given in Figure 4. Notice that
although each prediction trajectory is made up of a series of arcs, a general
pattern of variation over the biplot is depicted. For example, the predicted
values of SPR increase from left to right.
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Prediction region 2

Prediction region 1

Prediction region 3

l1,2

l2,3

α0 α0
*

α0
**

Figure 5: Illustration of trajectories obtained when different origins are selected

Comparison of predicted values obtained directly from the minimisation of (3)
and via the trajectories also suggest that the trajectories provide a good sum-
mary of the information in the prediction map. For the 21 points representing
the fighter aircraft, the prediction trajectories indicates a different value from
that which would be obtained from the prediction map for only one fighter air-
craft, aircraft ‘r’, for the variable SPR. Furthermore even for this aircraft, an
orthogonal projection of the point representing aircraft ‘r’ does occur in the cor-
rect arc. The incorrect prediction is a result of there being a shorter orthogonal
projection on to a different arc.

4.3 Influence of the origin

In Subsections 4.1 and 4.2, the trajectories were calculated to go through the
point α0. This initial point represents the origin of the trajectory, and as such is
essentially arbitrary. Any point in the biplot plane could in theory be selected.

As Figure 5 shows, selection of a different position for α0 can effect the resultant
trajectory. On this figure, the prediction trajectories obtained based on three
different origins α0, α

∗
0 and α∗∗

0 are depicted in a situation where there are just
three prediction regions.

Points α0 are α∗
0 both located in Prediction region 2. In this simple case this

leads to the resultant trajectories being parallel. Thus both trajectories will
lead to the same predictions being obtained.
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Point α∗∗
0 does not lie in Prediction region 2. Furthermore its position is such

that in order to meet the line l1,2 perpendicularly the resulting prediction trajec-
tory does not go through Prediction region 2. So using this prediction trajectory
points in Prediction region 2 will be given the same prediction are that in Pre-
diction region 3.

Generally when the prediction map is more complex the shape of the trajectory
depends on which prediction regions it happens to cross. However it is expected
that the main impact on predictions obtained by changing the origin is whether
or not a particular value is represented on the resulting trajectory at all. Other-
wise it is to be expected that the values predicted for points in the biplot plane
will not generally change.

However in all cases, points that lie exactly on a prediction trajectory are cor-
rectly predicted. For example, in Figure 5, the points on the prediction trajec-
tory going through α∗∗

0 that lie above l1,2 would be correctly judged to corre-
spond to a value of µ1k and values below would correctly judged to correspond
to a value of µ2k. This property of prediction trajectories is different to predic-
tion trajectories constructed using normal planes. The use of normal planes just
means that for a particular value of µk, the prediction trajectory orthogonally
intersects the corresponding prediction region. The same point might also lie
on another prediction region, and one that is preferred according to the least
squared criterion introduced in Section 3.1. So in this case, reading a value off
for a point that lies exactly on the trajectory does not guarantee that it is the
best predicted value for that point.

5 Discussion

Nonlinear biplots occur when Euclidean-embeddable, but not Pythagorean, dis-
similarity functions are used to measure the difference between observations.
This paper has shown how prediction maps can be used to display the varia-
tion in the predicted values of a variable over a low-dimensional biplot space.
These prediction maps offer a visual way to assess the impact of the dissimilarity
function on the biplot low-dimensional space.

Although novel for nonlinear biplots, the use of prediction maps is not new for
another type of biplot: the generalized biplot. In generalized biplots, the data
contains at least one variable that is categorical. Prediction maps then arise as
a natural way to display the predictive regions for the levels of the categorical
variables.

The properties of predictive regions for categories have been previously explored
and an efficient algorithm for calculating them proposed (Gower, 1993). This
algorithm is based on computing the boundaries between pairs and triples of
predicted values, boundaries that are easy to calculate in the nonlinear biplot
setting. Thus, potentially such an algorithm can also be used to compute pre-
diction regions for nonlinear biplots.
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The prediction trajectories proposed for 2-dimensional biplots constructed with
non smooth dissimilarity functions provide a mechanism for displaying informa-
tion for predicting the values of several variables on the same plot. The principle
of stitching together a series of simple curves to form the trajectory is similar
to that followed in Groenen et al. (2014).

In that paper, the authors stitch together a series of splines to form prediction
trajectories. These spline-based prediction trajectories are calculated so that
the predicted value for a point in the biplot is the value corresponding to the
closest position on the trajectory to that point. Thus like normal projection
prediction trajectories, the mechanism by which predicted values are read off is
a natural one.

The calculation of the spline-based trajectories requires knowledge of what the
predicted values should be at selected points. In Groenen et al. (2014), this is
achieved by assuming that the predicted values at data points are simply the
same as the observed values, an assumption that is also used when regression
biplot axes are calculated. This has the advantage of avoiding the need to have
a mathematical description of the dissimilarity function, greatly widening the
class of multidimensional scaling plots to which the trajectories can be added.
However for the nonlinear biplots described in this paper, it means that the
spline-based trajectories are not coherent. That is, the method used to estimate
the trajectories does not match the method by which the configuration of points
was obtained. In particular it means that the spline-based trajectories may not
accurately reflect the structure of the underlying prediction maps.

As yet few implementations of nonlinear predictive biplots are available. Two
notable implementations are the R packages BiplotGUI (available from the
Comprehensive R Archive Network) and UBbiplot (available as part of Gower
et al. (2011)). However neither of these packages currently produce prediction
maps, nor do they provide any mechanism for the production of normal projec-
tion predictive trajectories when the dissimilarity function is not smooth. The
best that can be managed using these packages for such dissimilarity functions
is circular projection predictive trajectories. Furthermore, the visual impression
created by such circular predictive trajectories can be misleading. For example,
Figure 6 is a nonlinear biplot with circular predictive trajectories for the air-
craft data when the dissimilarity function is the square root of the City Block
distance measure produced using UBbiplot.

The impression given is that predicted values vary smoothly along the trajectory.
However this impression is incorrect. Inspection of the plotting positions of the
trajectories reveals that for each of the variables, most of the plotting points
along the trajectory coincide. Thus there is no movement along the trajectory
for most of the values. This also explains the angular nature of the trajectories.
A prediction map would quickly reveal the discrete range of predicted values
possible for each variable. However neither package currently provided a facility
for producing such maps.

In Subsection 4.3 it was noted that the origin for normal projection prediction
trajectories constructed for biplots based on non-smooth dissimilarity functions
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Figure 6: A predictive biplot, using circular projection axes, of the aircraft data
using square-root of the City Block distance dissimilarity function produced
using the R package UBbiplot.
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of these prediction trajectories can be altered. Thus the origin can be placed
away from the centre of the data points as suggested in Blasius et al. (2009).
However given that points lying on such a trajectory are, by construction, guar-
anteed to have correct predictions given by the trajectory there is an argument
for keeping trajectories as close as possible to data points.

When the dissimilarity function is smooth, the procedure described in Section 4
can still be used to generate prediction trajectories. In this case, the trajectories
will only be approximate as predicted values that correspond to data values, and
not any intermediate values, would be indicated by the trajectories. Further, the
calculation of the prediction trajectories proposed in Section 4 merely require
an ordering to be placed on the values of each variable. Thus there appears to
be no reason why such prediction trajectories cannot be placed on generalized
biplots to represent the prediction maps for ordinal variables.
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Appendix

In Section 3.1 it was shown that when the dissimilarity function is additive for
any α in a biplot of dimension r, the predicted value µk for the kth variable is
chosen so that

gk(µk|α) = constant +

(
α′Λ−1

r Y ′
r +

1

n
1′
)
dk(µk)

is minimised. This means that

gk(µk|α) =
n∑

i=1

wid
2
k(xik, µk)

where wi is the ith element of (α′Λ−1
r Y ′

r + 1
n1). Note that

∑n
i=1 wi = 1.

When the dissimilarity function is chosen to be the square root of the City Block
distance

d2(xi,xj) =

p∑
k=1

|xik − xjk|.

So for the kth variable, the predicted value is the value of µk that minimises

gk(µk|α) = constant +

n∑
i=1

wi|xik, µk|.

To make notation easier, assume without loss of generality that for the kth
variable the observations are ordered such that x1k ≤ x2k ≤ . . . ≤ xnk.

For µk to be a global minimum, it must be a minimum in one of the following
(n+ 1) ranges.
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• µk ≤ x1k

• xsk ≤ µk ≤ x(s+1)k for s = 1, . . . , (n− 1)

• µk ≥ xnk.

For values of µk such that µk ≤ x1k. Then

gk(µk|α) = constant +
n∑

i=1

wi(xik − µk)

= constant−
n∑

i=1

wiµk = constant− µk.

This is minimised by taking µk as large as possible. That is, by setting µk = x1k.

For values of µk such that xsk ≤ µk ≤ x(s+1)k for a value of s in the range
1, 2, . . . , (n− 1). Then

gk(µk|α) = constant +
s∑

i=1

wi(µk − xik) +
n∑

i=s+1

wi(xik − µk)

= constant +

(
s∑

i=1

wi −
n∑

i=s+1

wi

)
µk.

Now if
(∑s

i=1 wi −
∑n

i=s+1 wi

)
> 0, this means that gk(µk|α) is miminised in

this range by setting µk as small as possible. That is by setting µk = xsk.

Similarly if
(∑s

i=1 wi −
∑n

i=s+1 wi

)
< 0, this means that gk(µk|α) is miminised

in this range by setting µk as large as possible. That is by setting µk = x(s+1)k.

And if
(∑s

i=1 wi −
∑n

i=s+1 wi

)
= 0, this means that gk(µk|α) is constant through-

out the range xsk ≤ µk ≤ x(s+1)k.

Finally for values of µk such that µk ≥ xnk. Then

= constant +
n∑

i=1

wi(µk − xik)

= constant + µk.

This is minimised by taking µk as small as possible. That is, by setting µk = xnk.

So the global minimum of gk(µk|α) is either µk = xik, or µk = xik, and µk =
x(i+1)k and all the values inbetween for some value i in the range i = 1, 2, . . . , n.
Thus the predicted value of the kth variable for a point α in the biplot always
includes one of the observed data values for that variable.
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