
Open Research Online
The Open University’s repository of research publications
and other research outputs

From model-driven software development processes to
problem diagnoses at runtime
Conference or Workshop Item
How to cite:

Yu, Yijun; Tun, Thein Than; Bandara, Arosha K.; Zhang, Tian and Nuseibeh, Bashar (2014). From model-
driven software development processes to problem diagnoses at runtime. In: Models@run.time – Foundations,
Applications, and Roadmaps (Bencome, Nelly; France, Robert; Cheng, Betty H.C. and Aßmann, Uwe eds.), Lecture
Notes in Computer Science, Springer International Publishing, Cham, pp. 188–207.

For guidance on citations see FAQs.

c© 2014 Springer International Publishing Switzerland

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1007/978-3-319-08915-77

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/82980043?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.1007/978-3-319-08915-7_7
http://oro.open.ac.uk/policies.html

Towards Problem Analysis at Runtime
– A case of Model-Driven Software Development

Yijun Yu1, Thein Than Tun1, Arosha K. Bandara1, Tian Zhang3, and
Bashar Nuseibeh1,2

1Department of Computing, The Open University, Milton Keynes, UK
2Lero, University of Limerick, Ireland

3State Key Laboratory for Novel Software Technology, Nanjing University, China

Abstract. Following the “convention over configuration” paradigm, model-
driven software development (MDSD) generates code to implement the
“default” behaviour that has been specified by a template separate from
the input model, reducing the decision effort of developers. On the one
hand, developers can produce end-products without a full understanding
of the templates; on the other hand, the tacit knowledge in the templates
is subtle to diagnose when a runtime software failure occurs. Using a
concrete example, we discuss in this chapter the challenges of runtime
problem analysis for MDSD, highlighting a potentially valuable research
agenda for diagnosing the model-driven developed systems at runtime.

Keywords Model-Driven Software Development, Problem Frames

1 Introduction

Decades since Alan Turing introduced the computing machine that uses a tape
of infinitely long ‘0’ and ‘1’ binary numbers to store data and programs [14], ab-
straction levels of programs become closer to human understanding of the physi-
cal world [9]. High-level programming languages can be automatically translated
and optimised into Turing machines by compilers, freeing programmers from
thinking in terms of machine instructions [1]. Naturally, one would like to model
the physical world, from which code for implementing the machine can be gen-
erated, in the same automated way as what the compilers have achieved. This
vision motivates model-driven software development methods (MDSD) [6], using
an input model much more abstract than the binary code of Turing machines.
Figure 1 contrasts Turing machine to the MDSD approaches [5] which attempt to
bridge the abstraction gap between human understanding of the physical world
to the machine implementation.

For example, our graphical modeling tool to support Problem Frames (PF) [8]
was created using MDSD method, starting from a concise domain-specific lan-
guage for representing or modeling problem diagrams. Given that diagrammatic
notations of the PF have been unambiguously defined by researchers, and graph-
ical editing is one of the exemplars of mature MDSD tools, one would assume
that automating this creation a straightforward application of MDSD methods.

Fig. 1: A bridge between machine and world: (a) Turing machine marked for Alan’s
100th years birth; (b) Megamodels excerpt from the Tao of MDSD [5].

However, this assumption needs to be checked, both from a requirements
engineering (RE) perspective and from a pratical problem solving perspective.
From a RE perspective, we need to analyse the requirements of “developing a
graphical modeling tool support for Problem Frames approach”, as an exercise
of both MDSD and Problem Frames. This exercise serves two purposes. First, it
tells whether MDSD directly meets the requirement of “supporting a graphical
modeling language”; second, it tells how such MDSD requirements can be anal-
ysed by the PF approach. In doing so, we hope to discover a useful pattern in the
problem solving practice that relates the MDSD solutions to the requirements.
We also hope to improve our understanding in whether one needs to be aware
of any generic concern in the MDSD methodology. From a practical perspective,
we would like to explore problems that cannot be solved by the current practices
of MDSD. If such problems exist, a new methodology needs to be followed by
the practitioners to diagnose them.

To demonstrate, a chain of automated tool support from the Eclipse Modeling
project1 will be described as the background whilst discussing the terminology
used.

Background and terminology of MDSD

Many techniques have been proposed for MDSD. The general idea is to have one
metametamodel (e.g., OMG MOF) whose instance is a metamodel or a mod-
eling language. An instance of the metamodel is a program in a domain spe-
cific or generic language. For an Eclipse modeling project, the metametamodel
is called ecore, a sublanguage to define metamodels in the XML interchange
(XMI) format. Ecore itself is an instance of the ecore metamodel, which we call
self-defining. In general, an instance of ecore is called EMF model, named after
the de facto standard in the Eclipse modeling community. All these languages
are supported by a chain of EMF tools2.

Using an analogy to language engineering, EMF corresponds to the abstract
syntax of the language without specifying its concrete syntax. The XMI is only

1 www.eclipse.org/modeling
2 www.eclipse.org/emf

one concrete syntax to represent EMF, one may also choose another concrete
syntax such as a textual DSL language or a graphical language. Transformations
can be written to convert text to model (T2M), model to model (M2M), and
model to text (M2T), following a suite of OMG modeling standards. Because
the Ecore modeling language is a generic implementation of the OMG MOF,
diagrammatic languages such as UML can also be fully supported.

As an example, the xtext framework3 is provided to perform the T2M pars-
ing, converting the abstract syntax of a DSL program into its corresponding
EMF model. As the by-product of such a transformation, a syntax-highlighting
text editor can be generated for editing the DSL program instances. Similarly,
GMF editors can also be generated for editing the EMF models graphically4. These
feature-rich graphical editors can be generated from the EMF metamodel, the
graph definition models that define the graphical notations, and the mappings
between the elements on the Ecore to the presentations.

In a nutshell, generating a graphical editor in MDSD is now feasible by pro-
viding the language design in an abstract way using the extended BNF rules, plus
the mapping decisions to show the modeling elements in appropriate graphical
notations.

2 Describing PF modeling as a PF model

Before analysing the general problem, we first describe the requirements and
the stakeholders involved in a specific example. In this example, our primary
requirement is “a PF graphical modeling tool must allow users to create and
edit problem diagrams as defined by the PF researchers”. For the PF modeling
tool to be developed, this requirement also involves stakeholders such as users
who use the PF modeling tool and researchers who define the PF language.

To solve this problem without using the MDSD approach, a Model-View-
Controller (MVC) design pattern or a Workpiece frame [8] can be used.

A Workpiece frame is a general class of problems identified by a requirement
of users to edit a piece of work through a tool. Any editing problem fits this
frame, with no exception to the PF Graphical Modeling Tool (see Figure 2).

Fig. 2: A Work Piece frame and its instantiation for the PF editing problem

3 http://xtext.itemis.com
4 www.eclipse.org/gmf

Basic PF notations A requirement is represented by a dashed ellipse shape, la-
belled by the name of the requirement and its abbreviation; and a solution to
the problem is represented by a rectangle, marked with double strips on the left.
When marked with a single strip on the left, the domain is “designed” by other
problem solving steps. A physical domain can also be represented by a rectangle
with names and abbreviation labels without the strips. The behaviour type of a
domain node can be classified by a letter mark at the lower-right corner of the
rectangle. For example, a lexical domain marked with “X” indicates a passive
behaviour that does not cause change itself, a biddable domain marked with “B”
indicates an active behaviour that can change by itself non-deterministically, a
causal domain marked with “C” indicates an active behaviour that is determin-
stic. Domains can share an interface between each other. The shared interface is
represented by an undirected solid link, marked with a letter abbreviating a set
of shared phenomena such as events and states. A requirement can constrain a
domain’s behaviour, indicated by a dashed arrow to the constrained domains; a
requirement can also refer to a domain, shown as a dashed link between them.

In fact, a textual or graphical editing tool may already meet this requirement.
Most PF diagrams documented so far were specified using either a text editing
tool such as LaTeX, or a diagramming tool such as Dia5. This fact generates an
interesting question: “what can MDSD add to the available solutions for the PF
modeling tool requirement” and “who can benefit from MDSD”?

Naturally such an investigation brings us to a new type of stakeholders –
“Developer”. In fact, a developer opts for the MDSD method mainly because it
promises two more quality requirements: “productivity” and “maintainability”:
it must take little effort for a developer to create a PF modeling tool from
scratch; and it must take little effort for a developer to adjust the tool when the
researcher makes some refinement to the PF language.

Even with the productivity and maintainability requirements in mind, there
is still one alternative meeting these requirements without resorting to the MDSD
technology: to customise existing functionalities in graphical editing tool such
as Visio, e.g., by creating a new stencil or template for PF notations. In fact,
this is what the graphical drawing tool Dia already offered. So, why do we still
bother with MDSD?

Let us revisit the initial requirement of the “Users” and the “Researchers”.
There is one additional requirement “modeling conformance” that a customised
general diagramming tool cannot easily meet. “How can one be sure that the
modeling elements are uniquely named? How can one check whether there is
a single machine node and a single requirement node for the problem frame?”
Questions could not stop here. “How can one make sure all the nodes are linked
and all the links are connected to certain nodes? How can one make sure the
dashed arrows are always from requirement nodes to the domain nodes?” In
short, the key advantage of providing PF Modeling Tool through MDSD is the
additional capability to satisfy these “domain-specific” modeling requirements.
Syntax check aside, syntax highlighting, syntax-driven editing, auto completion,

5 http://projects.gnome.org/dia/

pattern matching, transformations, and various form of inconsistency checks
such as type checks and uniqueness checks, are amongst the various benefits a
MDSD derived PF Modeling tool brings about, on top of the graphical editing
features such as drag-and-dropping, zooming, panning, layouting, printing, etc.
Instead of asking “why bother with MDSD”, one would ask “why bother with
implementing all these nice features yourself” instead.

In rather abstract terms, such an analysis is summarised by a PF diagram
(see Figure 4).

Note that we had quite similar experience in creating other requirements
modeling tool using the MDSD approach (e.g., OpenOME for i*). In the follow-
ing, we discuss several example problems found in practice, during the develop-
ment time of our research prototype.

3 Problems and concerns in MDSD

Given the analysis so far, we established how MDSD benefits the developers in
creating and maintaining a PF modeling tool for the PF researchers and users
alike.

3.1 The “additional alphabet” or “tacit knowledge” concern

Now we go a bit further to look at the dark corners, explaining some concern we
experienced about the MDSD approach. A possibly shocking concern we docu-
mented here resembles the experience in several non-trivial instances. Therefore
it is our belief that this may be a general concern for MDSD development.

The poor experience came from the attempt to stretch the tool to support
analysing the requirements problems in two complementary modeling languages,
namely PF and i* [16]. While the PF approach focuses on understanding the
entailment relationship W,S ` R between the requirements R, solutions S and
the world context domains W , the goal-oriented modeling approach focuses on
understanding the relationships between the stakeholders (i.e., the “Who”) and
their intentional requirements (i.e., the “why”). Since their diagramming tools
have been both developed using MDSD, we would consider a generalisation of
the graphical modeling tool support.

The first attempt was to use the grammar “mixin” feature in xtext. By
inheriting concrete syntax from both grammars of PF and i*, we obtained such
a modeling language that can navigate between them: (1) a requirement node in
PF could be expanded into a detailed i* diagram where the requirement is one
of the goals; (2) an intention node in i* diagrams (goal, task, resource, softgoal)
could be expanded into a PF diagram where the requirement corresponding
to the expanded goal. After applying the xtext MDSD generation, we then
obtained a text-based parser that can transform the concrete syntax into an
abstract syntax expressed by the combined EMF model. As a result, the new
EMF model was compliant to both the metamodel in PF and the metamodel in

(a) (b)

Fig. 3: A Model Driven Software Development frame (a) and its instantiations in PF
modeling tools (b).

Fig. 4: Requirements of Model Driven Software Development in i*

i*, making it much easier to perform new kinds of analysis such as scoping the
contexts of alternatively refined subgoals programmatically [2].

However, several subtle problems arose when the two Java code bases gener-
ated from the EMF models were used together, complicating the MDSD expe-
rience.

Figure 5 summarises the alphabet concern in the “convention over configu-
ration” MDSD paradigm. By “convention”, the template code is generated by
instantiating the templates behind the scenes with the input model; by “configu-
ration” users can further modify the generated code according to their individual
requirements. The additional alphabet concern applies because neither does the
designer of the templates understand the individual users’ requirements, nor do
the users could fully understand the rationale behind the “default” behaviours.
When the two misunderstand each other, a glitch is inevitable. In the following
subsections, we document four example problems that are caused by this kind
of misunderstanding.

Fig. 5: The additional alphabet (or tacit knowledge) concern in the “convention over
configuration” MDSD paradigm. Developers of the templates may not know the re-
quirements of individual programmers, and the individual programmers may not fully
understand the rationale behind the default behaviours in the generated template code.

3.2 The “detached” requirement problem

The first problem was related to an unwanted behaviour in the graphical edit-
ing. As described earlier, a requirement node in PF is an ellipse shape, which
should connect to other domain nodes through links by the design of language.
However, while moving such a node to an angle not aligned horizontal/verti-
cally with the node on the other side of the link, the link would not be con-
necting to the requirement node physically, appearing as if it was detached.
A search on the developers forum revealed that this problem was to do with
the org.eclipse.draw2d. ChopboxAnchor class used by default in the gener-
ated code, rather than the proper org.eclipse.draw2d.EllipseAnchor. The
ChopboxAnchor in effect calculates the connection anchors based on a rect-
angle shaped outline, whilst the EllipseAnchor class uses the ellipse shape in-
stead. After replacing ChopboxAnchor with EllipseAnchor in the generated code,
however, we found that the problem not solved. Trace the execution in a de-
bugger, we found that the real problem was rooted deeply in the path resolu-
tion mechanism at the time of dynamic class loading. In fact, our customised
uk.ac.open.problem.diagram.edit.parts.NodeEditPart class generated from
the MDSD tool was never invoked. Instead, the GMF runtime system load
a org.eclipse.gef.NodeEditPart class in the runtime class library of GEF
framework. By removing such a “import” statement in the customised class, in
effect we instructed the GMF editor to load our class instead, which solved the
problem. However, when we did the same for the LinkEditPart class, the IDE
automatically inserted the unwanted “import” statement back into the code.
Ultimately, we had to explicitly coerce the class by casting the expression to the
NodeEditPart class prefixed with our exact package name.

Figure 6 illustrates the “detached” requirement problem in details. First of
all, (a) is observed to behave like a Chopbox with respect to the connections to
the requirement node, this is highlighted as a “runtime abnormal behaviour”.
The method implementing this behaviour is all in the generated code. The arrows
point backward along the chain of causality. First, the ChopboxAnchor was
used in the generated method body, which implements a default behaviour.
Furthermore, the parent class of the generated code is one of the predefined
classes in the GMF runtime class library. Without changing that inheritance,
the default behaviour cannot be overridden. Second, (b) is observed to behave
normally, such that the connection to the requirement nodes are not clipped
by the rectangle. The fixing changes required are (1) a customization of the
method default implementation to switch the anchor class to ellipse shape if the
node type is a requirement; (2) the generated import statements are removed
manually, such that the ShapeEditPart class in the domain-specific package is to
be used, overriding the default behaviour of the predefined GMF runtime class
library.

We were wondering why a generated class name such as NodeEditPart clashes
with the runtime library, only to realise that the MDSD tool itself had been
developed using the MDSD approach. Their choice of using “Node” to name a

Fig. 6: Contrasting the observable problems and the code implementations respectively
for the abnormal and correct behaviours.

class of nodes and using “Link” to name a class of links happened to be the same
as ours. In other words, the clash was due to the common sense.

Thinking it twice, this incident could have revealed an interesting type of
pitfalls in MDSD, which we called “model feature interaction” [13]. The design
details abstracted away in the language specification could indeed be interacting
with the generated code because they refer to the same name in different names-
paces. The runtime class loader is not smart enough to distinguish them, thereby
a sophisticated mechanism is needed to prevent this from happening again. For
example, to avoid a developer using the names “Node/Link” when modeling the
graphical language. If this is the case, the alphabet of the namespace must be
restricted, leading to the following discussions.

In general, when abstracting away design details, the advantage must be
revisited. First one needs to maintain the traceability between the abstract de-
scription and the concrete implementations, secondly one must be aware that
the designer of the MDSD tools could have introduced some unwanted alpha-
bets that may lead to unwanted behaviours when they are composed with the
generated code. Their interpretations of the additional alphabet may not be the
same as the original developers. This might have a strong implication to security
problems, adding difficulty in maintaining and checking the traceability [19].

3.3 The manual refactoring problem

The second major problem we encountered could be a headache to other devel-
opers too. As we discussed earlier, it was fine when MDSD tool were applied
separately to PF and i* languages. Each application generates a separate EMF
metamodel in Ecore (Ecore is a self-defining metamodel). The PF ecore model

was newly “generated” from the concrete syntax in xtext, while the i* ecore
model was imported from the existing release of OpenOME maintained at the
University of Toronto. The generated classes for i* plugins were thereby prefixed
by “edu.toronto.cs”. The xtext tool could not know this, as a result of its code
generation, no package prefix was added to the generated classes.

However, the combined metamodel needs to reference the i* classes in hun-
dreds of places. For example, every time when a problem node is accessed, it
could reference to an i* model element specified in the none-prefixed classes. A
subtle but annoying behaviours was caused by this because the generated classes
without prefixes were the skeleton code that should work if no customisation
had been applied. However, developers at U of Toronto have made substantial
improvements of almost every aspect in the graph editing tool. It is thereby
necessary to switch to use the Toronto classes and keep their prefix. Instead of
manually renaming all these places where the class names were referenced, we
used automated refactoring for the name of generated plugin projects to rein-
troduce the missing prefix. After such refactorings, we still had to remove the
refactored plugin projects such that at runtime the class loader would not get
confused by the class paths to throw the ClassNotFound exceptions.

Automated refactoring on Eclipse project names using LTK could have been
applied here [20], however, to accommodate every change in the PF language,
one must specify which classes need to be renamed to which, and remember to
manually change the references to the class names in the plugin specification
too. Not a trivial task without further customising the automated refactoring
tool.

3.4 The dependency injection problem

Instead of Aspect-Oriented Programming (AOP) [10], the designer of MDSD
tool xtext uses the Dependency Injection pattern implemented by the Google
Guice framework to inject functionalities at runtime. Similar to aspectJ, the new
functionalities could be injected into the base system by specifying an adaptor
class that uses the reflection mechanism of Java. Unlike aspectJ, the behaviour
of the weaved system is somewhat controlled by the base system, in order to
make the potential joinpoints explicit.

Ideally such technical details should be hidden from the developers who use
MDSD because in principle one would not bother to know how it works if it
works. However, one must be aware that the Guice framework assumes that the
classes are singletons. If they share the same namespace, e.g., prefixed by the
same package names while being located in different plugin projects scope, the
dependency injection may still result in runtime conflicts.

As watchful observers for research problems, we are “lucky” enough to ex-
perience such a problem when developing the PF/i* integration tool. When we
prefix our DSL language “Problem” and our adapted DSL language “Istar” with
the same prefix “uk.ac.open”, the generated code complains that the IDLink res-
olution class were not found even though it was present in the packages of the
plugin component. After changing the prefix of one of these language into e.g.,

“uk.ac.open.problem”, this conflict was resolved. A side effect was that we got
package named by “uk.ac.open.problem.problem” due to the particular naming
convention decided by the developer of the MDSD tool (i.e., xtext).

3.5 The synchronisation problems

When model and code co-evolve, they change concurrently. Since in MDSD,
model and generated code are related by transformations, it is required to prop-
agate changes from one end to the other.

To illustrate the problem concretely, we use a constructed example here.
Suppose an EMF user initially specifies a simple model that consists of one
Entity class with a single name attribute. Using the code generation feature of
EMF, she will obtain a default implementation which consists of 8 compilation
units in Java (Fig. 7).

⇒

Fig. 7: Default code generated from the EMF meta-model

Fig. 8 lists parts of the generated code. The Entity Java interface has
getter and setter methods for the name attribute. They are commented with
@generated annotations which indicate that the methods are part of the default
implementation. Similarly, such @generated annotations are added to every gen-
erated element in the code, e.g., shown in the skeleton of EntityImpl Java class.

The annotation @generated defines a single-trip traceability contract from
the model to the annotated code element. A change in the model or a change in
the modelling framework can be propagated to the generated code; however, a
change in the generated code will not cause a change to the reflected model and
will thus be discarded upon next code generation.

Because the default implementation is not always desired, the code gen-
eration shall keep user specified changes as long as they are not inside the
range of generated traceability, the set of methods marked by @generated that
keeps the changes of generated templates. This can be achieved by adapting the
@generated annotation into @generated NOT, a non-binding traceability that

1 package example ;

2 import org . e c l i p s e . emf . ecore . EObject ;

3 /∗∗ @mode l ∗/
4 public interface Entity extends EObject {
5 /∗∗ @mode l ∗/ public Str ing getName () ;

6 /∗∗ @g e n e r a t e d ∗/ void setName (St r ing value) ;

7 }

1 package example . impl ;

2 import example . Entity ;

3 . . .

4 /∗∗ @g e n e r a t e d ∗/
5 public c lass EntityImpl extends EObjectImpl implements Entity {
6 . . .

7 /∗∗ @g e n e r a t e d ∗/
8 protected Str ing name = NAME EDEFAULT;

9 . . .

10 /∗∗ @g e n e r a t e d ∗/
11 public Str ing getName () { return name ; }
12 /∗∗ @g e n e r a t e d ∗/
13 public void setName (St r ing newName) { . . . }
14 . . .

15 /∗∗ @g e n e r a t e d ∗/
16 @Override

17 public Str ing toSt r ing () {
18 i f (eIsProxy ()) return super . t oS t r ing () ;

19 St r ingBu f f e r r e s u l t = new St r ingBu f f e r (super . t oS t r ing ()) ;

20 r e s u l t . append (” (name : ”) ;

21 r e s u l t . append (name) ;

22 r e s u l t . append (’) ’) ;

23 return r e s u l t . t oS t r ing () ;

24 }
25 } // E n t i t y I m p l

Fig. 8: Parts of the generated code in Fig. 7

reflects programmers’ intention that it will not be changed when the implemen-
tation code is regenerated. Note that such non-binding traceability indicated by
@generated NOT is still different from those without any annotation at all: With-
out such an annotation, EMF will generate new implementation of a method
body following the templates.

This workaround does not work when a user parametrises the toString()

method to append an additional type to the returned result. To guard the
method from being overwritten by future code generations, the annotation @generated

NOT is used. She also applies a Rename Method refactoring, changing the getName
method into getID. The modified parts are shown in Fig. 9. Propagating these
changes back to the model, the name attribute will be renamed into iD auto-
matically, following the naming convention that attribute identifiers start with
a lower case character.

Code regeneration results in the changes in Fig. 10: the setter methods and
the implementations of both getter/setter methods are modified according to
the default implementation of the new model. These are expected. However, two
unexpected changes are not desirable. First, a compilation error results from
the change in the default implementation, where the attribute name used in the
user controlled code no longer exists. Second, the default implementation of the
toString() method is generated with the original signature, which will of course
become dead code since the user has already modified all call sites of toString()
to reflect the insertion of the new type. Similarly, the user specified toString()

1 /∗∗ @mode l ∗/
2 public interface Entity extends EObject {
3 /∗∗ @mode l ∗/ public Str ing getName

:
ID() ;

4 /∗∗ @g e n e r a t e d ∗/ public void setName () ;

5 }
6 . . .

7 /∗∗ @g e n e r a t e d ∗/
8 public c lass EntityImpl extends EObjectImpl implements Entity {
9 /∗∗ @g e n e r a t e d ∗/

10 public Str ing getName
:
ID() { return name ; }

11 . . .

12 /∗∗ @g e n e r a t e d
:::
NOT∗/

13 @Override

14 public Str ing toSt r ing (
::::
String

:::
type) {

15 i f (eIsProxy ()) return super . t oS t r ing () ;

16 St r ingBu f f e r r e s u l t = new St r ingBu f f e r (super . t oS t r ing ()) ;

17 r e s u l t . append (” (name : ”) ;

18 r e s u l t . append (name) ;

19 r e s u l t . append (’) ’) ;

20
::::::::::::
result.append(type);

21 return r e s u l t . t oS t r ing () ;

22 }
23 } // E n t i t y I m p l

⇓

Fig. 9: User modifications to the generated code: insertions are
::::::::
underlined and the

deletions are stroked out; the changes are reflected

method can also become dead code, if it is no longer invoked by the new default
implementation.

Compilation errors are relatively easy to spot by the programmer with the
aid of the Eclipse IDE, but the dead code problems are more subtle because
the IDE will not complain. Therefore, it will be more difficult for developers to
notice the consequences.

In [17], we have developed a two-layered synchronisation framework, blinkit,
to address this problem.

Figure 11 presents an overview of the framework when it is applied to the case
study of EMF/GMF, where EMF is the synchronisation framework for vertical
traceability and blinkit framework is the horizontal synchronisation counterpart.
Examples in [17] indicate that when the complementary changes to templates
and user-modified code are conflicting or redundant, our tool can avoid some
dead code redundancies and raise some warnings as compilation errors.

So far we have enumerated, using the concrete example, several common
MDSD problems at the development time. Next section expands it to runtime
concerns, especially for systems that are self-adaptive.

⇒ ⇒

1 /∗∗ @mode l ∗/
2 public interface Entity extends EObject {
3 /∗∗ @mode l ∗/ public Str ing getID () ;

4 /∗∗ @g e n e r a t e d ∗/ public void s e tName
::
ID() ;

5 }
6 . . .

7 /∗∗ @g e n e r a t e d ∗/
8 public c lass EntityImpl extends EObjectImpl implements Entity {
9 /∗∗ @g e n e r a t e d ∗/

10 public Str ing getID () { return name
:
iD ; }

11 . . .

12
::::::::
/**@generated*/

13
:::
public

::::
String

:::::::
toString()

:
{

14
:
if
::::::::
(eIsProxy())

::::
return

:::::::::::
super.toString();

15
::::::::
StringBuffer

::::
result

:
=
:::
new

:::::::::::::::::::
StringBuffer(super.toString());

16
::::::::::
result.append(”

::
(iD:

:::
”);

17
:::::::::::
result.append(iD);

18
:::::::::::
result.append(’)’);

19
::::
return

:::::::::::
result.toString();

20 }

21 /∗∗ @g e n e r a t e d NOT ∗/
22 public Str ing toSt r ing (St r ing type) {
23 i f (eIsProxy ()) return super . t oS t r ing () ;

24 St r ingBu f f e r r e s u l t = new St r ingBu f f e r (super . t oS t r ing ()) ;

25 r e s u l t . append (” (name : ”) ;

26 r e s u l t . append (name) ;

27 r e s u l t . append (’) ’) ;

28 r e s u l t . append (type) ;

29 return r e s u l t . t oS t r ing () ;

30 }
31 } // E n t i t y I m p l

Fig. 10: Regenerated code from the model: insertions are
:::::::::
underlined and the deletions

are stroked out, the compilation error is doubly underlined.

Fig. 11: An overview of the horizontal and vertical traceability links in the bidirectional
invariant traceability framework: blinkit. V1 and V2 are two revisions of model, tem-
plate or user codes extracted from the CVS repository of a software development project
using EMF code generation.

4 Runtime diagnosis of MDSD problems

Debugging high-level programming language programs requires typically trace-
ability between the location where error is spotted and the corresponding loca-
tion in the source code. Because compiler translations add a layer of indirection,
if the optimisation option such as -O has been turned on, diagnosing runtime
errors become much harder. Programmers would typically trust that the opti-
mising transformations do not change the execution behaviour, while debugging
the machine code with as few optimizations as possible, e.g., facilitated by the
option -g. Since MDSD is motivated by the success of compilers, and the models
are at a higher level of abstraction than the high-level programming languages,
trust needs to be established by a solid understanding of what to diagnose and
where to fix problems. However, the template code that addresses most users’
requirements may not be exactly what the individual user wanted. Therefore,
whenever such diagnoses trace back into the template code, the problem is get-
ting harder.

With the advent of self-adaptive systems, according to Baresi and Ghezzi [3],
the boundary between development time and runtime is disappearing. What’s
typically regarded as development time activities in MDSD may be regarded
as runtime ones. This imposes a number of interesting research questions that
we do not know an answer yet. Here we try to articulate, using the examples
presented so far, an incomplete list of such questions.

– Runtime traceability. Unlike the use of traceability at development time,
runtime traceability of MDSD systems requires a chain of relaying events
to listen to at the runtime. One example of such mechanisms is the event
handling in Java runtime virtual machnes. By cascading the listeners to the
events, the call traces at the point of failure can present the user a clue

about the fault location. However, such a mechanism require developers to
be cooperative: explicit exceptions must be thrown or caught in the try-
catch blocks. Otherwise, it can be too late to tell where the exception were
generated in the first place. Several machine learning approaches have been
proposed to address this issue, by studying the historical events in stack
traces [7]. However, runtime traceability requires responsive reactions on
the mismatching template and user code which is still not well understood.
Earlier work on monitoring and diagnosing software requirements may be
helpful to make use of the goal models as a priori knowledge to diagnose
problems in the event traces [15]. The challenges we are facing here is that
the MDSD processes use more complicated models than goal refinements.

– Monitoring mismatching requirements In one would be able to know
which requirements are implemented by the default template code, as well as
which specific customisation requirements of individual users, then it can be
promising to add runtime monitors to places where the mismatches between
the two sets of requirements happen at runtime. Right now, the requirements
conflict detection techniques require both models to have similar structures
(e.g., mergeable). If they don’t, the question is how to model them to make it
verifiable. Another research question is of course to have an explicit encoding
of requirements in the templates to prepare for such verifications.

– Model interactions problems. As we described earlier, MDSD is a com-
plicated process which may involve more than one metamodel. The “Tao” is
to have a megamodel to unify the different metamodel code generation pro-
cesses [5]. However, different metamodels may be created by different people
and thereby inherently embed interaction bombs between the tacit knowl-
edge. They are not necessarily compatible to each other, yet may not be
notified by the developers and users at the runtime. A mechanism to protect
the different MDSD generated code from feature interaction problems [12]
will be very useful. One possible direction of research is to investigate the
use of AOP technique to detect and resolve undesired interactions between
models at runtime. For instance, dynamic aspect weaving techniques provide
a mechanism to inject code to resolve runtime conflicts between models.

– Meaningful change propagation. While the models and code co-evolve,
a systematic approach is required to propagate the changes from one end to
the other. Earlier we have developed the meaningful change detection tools
from the specifications what changes are meaningful to different stakehold-
ers [21], as well as the bidirectional transformation framework to propagate
the meaningful changes between the template code and the user modifica-
tions [17]. One future direction to consider is how to guide the users to
specify such meaningful changes or to learn from examples [18].

– Feedback loops Since boundary between development-time and runtime
is disappearing, the distinction between adaptation and evolution in such
systems is also getting blurred. Depending on whether requirements change
at runtime, one may separate evolution from adaptation. Yet, the blurring
boundary in practice makes it necessary to address MDSD concerns at run-
time too. Runtime self-adaptive systems require some form of feedback loops,

e.g., using the PID controller [4], to be able to react to quality require-
ments changes accordingly. It is our hope that the tacit knowledge concern
of MDSD can be addressed such that one can also apply the feedback loop
mechanisms to the runtime MDSD problems.

5 Summary

There can be more feature interactions in the development if we were to follow
the MDSD blindly. In summary to the three reported problems, we propose an
additional alphabet or tacit knowledge concern to the MDSD frame. The concern
can be expressed as follows: “When MDSD tool generates code with additional
alphabet introduced (in the form of plugin names, package names, class names,
or method names), one must ensure these names are not conflicting with the
names (subconsciously) introduced by the developer for the modeling language”.
To avoid such feature interaction problems at runtime, it is required to have
additional tools to check any violation of the concern.

Fig. 12: Runtime problem diagnosis for MDSD systems: tracing the causal chain of
events backwards

Figure 12 presents a promising framework to combine tacit knowledge into
the consideration of runtime problem diagnosis. The various sources of informa-
tion including the template in the hidden development, the assumptions of the
environmental contexts, are brought together to the attention of users at the
runtime. Through predefined runtime monitors, information is already collected
in such a way that when the abnormal execution traces are obtained, one can
trace backwards to understand the location of fault. If the faults reside in the
wrong trust assumptions to the environmental contexts, appropriate runtime
adaptation to alternatives in the machine will be switched to at runtime [11].

6 Acknowledgement

This work is supported by the ERC Advanced Grant no. 291652 ”ASAP: Adap-
tive Security and Privacy” (2012-2017) - http://www.asap-project.eu. We thank

our colleague Michael Jackson for useful discussions on earlier drafts. Most of the
work could not have be done without easy-to-use MDSD tools. We have also ben-
efited from fruitful discussions with Jan Koehnlein and anonymous developers
through open-source fora (e.g., https://bugs.eclipse.org/bugs/show bug.cgi?id=326220).

Appendix

The concrete syntax of PF:

grammar uk.ac.open.Problem with org.eclipse.xtext.common.Terminals

generate problem "http://open.ac.uk/problem"

ProblemDiagram: "problem" ’:’ name=ID ("for" highlight=[Node])?

((nodes+=Node|links+=Link))*;

Node:

name=ID (type=NodeType)?

(’:’ description=STRING)?

(""

(hiddenPhenomena+=Phenomenon

(’,’ hiddenPhenomena+=Phenomenon)*)?

(subproblem+=ProblemDiagram

| "see" "domain" problemNodeRef+=[Node]

| "see" "problem" problemRef+=[ProblemDiagram]

| "see" href+=STRING)*

"")?;

enum NodeType:

REQUIREMENT="R" | MACHINE="M" | BIDDABLE="B" | LEXICAL="X"

| CAUSAL="C" | DESIGNED="D" | PHYSICAL="P";

Phenomenon:

(type=PhenomenonType)? (isControlled?="!")? name=ID

(’:’ description=STRING)?;

enum PhenomenonType:

UNSPECIFIED="phenomenon" | EVENT="event" | STATE="state";

Link:

from=[Node] (type=LinkType) to=[Node] (’’ phenomena+=Phenomenon

(’,’ phenomena+=Phenomenon)* ’’)? (’:’ description=STRING)?;

enum LinkType:

INTERFACE="--" | REFERENCE="~~" | CONSTRAINT="~>";

terminal ID: (’#’ (!(’#’))+ ’#’) |

(’^’? (’a’..’z’ | ’A’..’Z’ | ’_’)

(’a’..’z’ | ’A’..’Z’ | ’_’ | ’0’..’9’)*);

The concrete syntax of i*:

grammar uk.ac.open.istar.Istar with org.eclipse.xtext.common.Terminals

import "platform:/resource/openome_model/model/openome_model.ecore"

Model:

"istar" (name=ID)? ":"

(containers+=Container

| intentions+=Intention

| decompositions+=Decomposition

| dependencies+=Dependency

| contributions+=Contribution

| associations+=Association)*

;

Container: Actor | Agent | Role | Position;

Actor: "actor" name=ID

(is_a+=[Actor] | is_part_of+=[Actor])*

(""

(intentions+=Intention)*

"")?

;

Agent: "agent" name=ID

(""

(intentions+=Intention)*

"")?

;

Role: "role" name=ID

(""

(intentions+=Intention)*

"")?

;

Position: "position" name=ID

(""

(intentions+=Intention)*

"")?

;

Intention: Goal | Softgoal | Task | Resource | Belief;

Goal: "goal" name=ID

(""

(decompositions+=[Decomposition])*

""

)?;

Softgoal: "soft" name=ID;

Task: "task" name=ID;

Resource: "resource" name=ID;

Belief: "belief" name=ID;

Link: Association | Dependency | Decomposition | Contribution;

Dependable: Intention | Container;

Association: source=[Container] "~~>" target=[Container];

Dependency: dependencyFrom=[Dependable] "~>"

dependencyTo=[Dependable];

Decomposition: AndDecomposition | OrDecomposition;

AndDecomposition: target=[Intention] "<-(and)-" source=[Intention];

OrDecomposition: target=[Intention] "<-(or)-" source=[Intention];

Contribution: AndContribution | OrContribution

| HelpContribution | HurtContribution | MakeContribution | BreakContribution;

AndContribution: source=[Intention] "-(and)->" target=[Intention];

OrContribution: source=[Intention] "-(or)->" target=[Intention];

HelpContribution: source=[Intention] "-(+)->" target=[Intention];

MakeContribution: source=[Intention] "-(++)->" target=[Intention];

HurtContribution: source=[Intention] "-(-)->" target=[Intention];

BreakContribution: source=[Intention] "-(--)->" target=[Intention];

terminal ID: (’#’ (!(’#’))+ ’#’) |

(’^’? (’a’..’z’ | ’A’..’Z’ | ’_’) (’a’..’z’ | ’A’..’Z’ | ’_’ | ’0’..’9’)*);

An example instance of the problem diagram description.

problem: #Workpiece#

CE R :"Command Effects"

ET M :"Editing Tool"

U B :"User"

WP X : "Workpiece"

ET -- U : "b"

ET -- WP : "c"

CE ~> WP : "d"

CE ~~ U : "a"

An example instance of the i* description.

istar:

role Developer

goal #create and maintain modeling tool#

soft #maintainability#

soft #productivity#

soft #compliance by developer#

role Researcher

goal #define PF language#

soft #compliant extent#

role User

goal #create/edit PF models#

soft #compliant intent#

soft #compliance#

#create and maintain modeling tool# -(++)-> #maintainability#

#create and maintain modeling tool# -(++)-> #productivity#

#create and maintain modeling tool# -(++)-> #compliance by developer#

#define PF language# -(++)-> #compliant extent#

#create/edit PF models# -(++)-> #compliant intent#

#compliance# <-(and)- #compliant intent#

#compliance# ~> #compliance by developer#

#compliance# <-(and)- #compliant extent#

References

1. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques,
and Tools. Prentice Hall, 2 edn. (Aug 2006)

2. Ali, R., Dalpiaz, F., Giorgini, P.: A goal-based framework for contextual require-
ments modeling and analysis. Requir. Eng. 15(4), 439–458 (2010)

3. Baresi, L., Ghezzi, C.: The disappearing boundary between development-time
and run-time. In: Proceedings of the FSE/SDP workshop on Future of software
engineering research. p. 1722. FoSER ’10, ACM, New York, NY, USA (2010),
http://doi.acm.org/10.1145/1882362.1882367

4. Chen, B., Peng, X., Yu, Y., Zhao, W.: Are your sites down? requirements-driven
self-tuning for the survivability of web systems. In: Requirements Engineering Con-
ference (RE), 2011 19th IEEE International. pp. 219–228. IEEE (Sep 2011)

5. Djuric, D., Gasevic, D., Devedzic, V.: The tao of modeling spaces. Journal of Object
Technology 5(8), 125–147 (2006)

6. Hailpern, B., Tarr, P.: Model-driven development: The good, the bad, and the ugly.
IBM Systems Journal 45(3), 451–461 (2006)

7. Han, S., Dang, Y., Ge, S., Zhang, D., Xie, T.: Performance debugging in the large
via mining millions of stack traces. In: Proc. 34th International Conference on Soft-
ware Engineering (ICSE 2012) (June 2012), http://www.csc.ncsu.edu/faculty/
xie/publications/icse12-stackmine.pdf

8. Jackson, M.: Problem Frames: Analyzing and structuring software development
problems. Addison Wesley (2001)

9. Jackson, M.: Some notes on models and modelling. In: Conceptual Modeling: Foun-
dations and Applications. pp. 68–81 (2009)

10. Kiczales, G.: Aspect-oriented programming. ACM Comput. Surv. 28(4es), 154
(1996)

11. Salifu, M., Yu, Y., Nuseibeh, B.: Specifying monitoring and switching problems
in context. In: Requirements Engineering Conference, 2007. RE ’07. 15th IEEE
International. pp. 211 –220 (Oct 2007)

12. Tun, T.T., Trew, T., Jackson, M., Laney, R.C., Nuseibeh, B.: Specifying features
of an evolving software system. Softw., Pract. Exper. 39(11), 973–1002 (2009)

13. Tun, T.T., Yu, Y., Laney, R.C., Nuseibeh, B.: Early identification of problem
interactions: A tool-supported approach. In: Glinz, M., Heymans, P. (eds.) REFSQ.
Lecture Notes in Computer Science, vol. 5512, pp. 74–88. Springer (2009)

14. Turing, A.M.: Computability and lambda-definability. J. Symb. Log. 2(4), 153–163
(1937)

15. Wang, Y., McIlraith, S.A., Yu, Y., Mylopoulos, J.: Monitoring and diagnosing
software requirements. Autom. Softw. Eng. 16(1), 3–35 (2009)

16. Yu, E.: Modelling strategic relationships for process reengineering. University of
Toronto Toronto, Ont., Canada, Canada (1995)

17. Yu, Y., Lin, Y., Hu, Z., Hidaka, S., Kato, H., Montrieux, L.: Maintaining invari-
ant traceability through bidirectional transformations. In: Proc. 34th International
Conference on Software Engineering (ICSE 2012). ACM/IEEE, Zurich, Switzerland
(Jun 2012)

18. Yu, Y., Bandara, A., Tun, T.T., Nuseibeh, B.: Towards learning to detect meaning-
ful changes in software. In: Proceedings of the International Workshop on Machine
Learning Technologies in Software Engineering. p. 5154. MALETS ’11, ACM, New
York, NY, USA (2011), http://doi.acm.org/10.1145/2070821.2070828

19. Yu, Y., Jürjens, J., Mylopoulos, J.: Traceability for the maintenance of secure
software. In: ICSM. pp. 297–306. IEEE (2008)

20. Yu, Y., Jürjens, J., Schreck, J.: Tools for traceability in secure software develop-
ment. In: ASE. pp. 503–504. IEEE (2008)

21. Yu, Y., Tun, T.T., Nuseibeh, B.: Specifying and detecting meaningful changes in
programs. In: 26th IEEE/ACM International Conference On Automated Software
Engineering (Nov 2011), http://oro.open.ac.uk/29450/, to appear

