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Abstract 
Multiple sclerosis (MS) is a progressive inflammatory disease of the central nervous system 

(CNS) leading to severe neurological deficits. To date, no treatment is available that halts disease 

progression, but clinical symptoms can be generally improved by therapies involving anti-

inflammatory and/or immune modulatory reagents, which may cause off-target effects. Therefore, 

there remains a high and unmet need for more selective treatment strategies in MS. 

An early event in MS is a diminished function of the blood-brain barrier (BBB) which consist of 

specialized brain endothelial cells (BECs) that are supported in their barrier function by 

surrounding glial cells.   

Leakage and inflammation of the BECs in MS patients facilitate the massive influx of leukocytes 

into the brain parenchyma, which in turn induces irreversible demyelination, tissue damage and 

axonal dysfunction. Identification of ways to restore BBB function and promote its immune 

quiescence may therefore lead to the development of novel therapeutic regimes that not only 

specifically reduce leukocyte entry into the central nervous system but also restore the disturbed 

brain homeostasis. However, the complex network of molecular players that leads to BBB 

dysfunction in MS is yet to be fully elucidated. Recent discoveries unravelled a critical role for 

microRNAs (miRNAs) in controlling the function of the barrier endothelium in the brain. Here 
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we will review the current knowledge on the involvement of BBB dysfunction in MS and the 

central role that miRNAs play in maintaining BBB integrity under inflammatory conditions. 
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1. Multiple Sclerosis (MS), the disease and its characteristics 

1.1. MS: etiology and clinical course 

MS is a progressive disease of the central nervous system (CNS) with an autoimmune component. 

Predominant clinical symptoms include motor weakness, dysfunction or spasticity in about 50% 

of patients, followed by sensory problems and fatigue (40%). About 1.3 million people are 

currently diagnosed with MS worldwide but estimates are that the total global prevalence is about 

2.5 million patients with a male/female ratio of 0.5 (1). The prevalence of MS has a strong 

geographical pattern, with the highest incidence in Europe (80 per 100.000) and the lowest in 

Africa (0.3 per 100.000).  

Despite considerable research efforts, the underlying causal factors for MS remain largely 

unknown. The common perception is that MS arises from a combination of genetic and 

environmental causes. Recent studies have identified a number of risk genes predisposing to MS 

although the influence of these genes on this disease may be limited since the predictive value of 

such known risk factors does not exceed 1% (2). That genetic predisposition is not the only factor 

involved in developing MS is also illustrated by the observations that disease concordance is 

about 30% for monozygotic twins and that children of MS patients have a 2% chance of getting 

MS during their lifetime, much higher than the 0.3% background risk for developing MS in the 

general population (3). 

The clinical course of MS is highly variable and difficult to predict for diagnosed patients. MS 

can manifest itself in three distinct disease patterns. The most common form of MS, 

approximately 85% of cases at diagnosis, is relapsing-remitting MS (RR-MS), characterized by 

periods of sudden reduction of neurologic function, followed by partial or complete recovery 

(remission). Between attacks, patients are free of disease progression. The average age of onset of 

RR-MS is 29 years (1). Most patients eventually progress to the secondary progressive (SP-MS) 

phase in which the remission periods no longer occur (3). The transition to the more progressive 

course of disease occurs in about 50% of the patients within ten years after diagnosis and the 

percentage steadily increases with disease duration, up to about 80% of patients initially 

diagnosed with RR-MS. A smaller group of patients (about 10%) experience a continuous 

progression of clinical symptoms without remissions from the onset (primary progressive or PP-

MS).  
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1.2. MS underlying pathology  

Under normal conditions, the influx of peripheral leukocytes into the brain parenchyma is 

restricted by a highly specialized barrier that consists of the endothelial cells (ECs) that line the 

inner parts of the cerebral microvasculature, the so-called blood-brain barrier (BBB). Therefore, 

the brain is often referred to as an immune privileged organ. However, this privilege is not 

absolute and immune surveillance by the adaptive immune system is a normal physiological 

process, especially close to the ventricles, choroid plexus, meninges and circumventricular organs 

(4;5). In recent years, it has become clear that, due to the specific immune status of the brain, the 

immune response in the brain may differ from that in peripheral tissues (6).  

In MS, lesion formation is a local phenomenon that occurs predominantly in the white matter of 

the CNS, mostly near the spinal cord, brain stem, optic nerve and periventricular areas (7). White 

matter (WM) lesions are inflammatory areas with a local dense infiltration of myelin-loaded 

(foamy appearing) macrophages accompanied by a variable amount of perivascular and 

parenchymal T lymphocytes. Usually few B cells are found in active lesions (8). Such lesions can 

be readily detected using magnetic resonance imaging (MRI), as failure of the BBB allows the 

ingress of vascular contrast agents at the lesion site. The infiltrating immune cells subsequently 

cause degradation of the myelin sheaths that line the axons, leading to diminished nerve signal 

propagation, axonal loss and ultimately severe disability of patients. Active, inflammatory lesions 

are a hallmark of RR-MS (9), while progressive forms of MS are less defined by acute 

inflammation. In progressive MS, chronic progressive neurodegeneration is the most prominent 

pathological feature, which results in diffuse white matter abnormalities and accumulation of 

axonal loss (10;11).  

However, the WM is not the only area  affected by the disease as lesions can be detected in the 

grey matter (GM) as well (12). GM lesions are characterized by activated microglia, 

demyelination and neurodegeneration, but infiltrating leukocytes are scarcely detected. BBB 

failure in GM lesions is less prominent, although subtle but persistent BBB malfunctioning has 

been demonstrated (13). Accumulating evidence suggests that GM atrophy plays an important 

role in MS pathogenesis and develops early in disease (14;15). Whether these different forms of 

neuroinflammation are connected or rather independently developing processes is still an active 

research topic. 
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1.3. The BBB in MS 

In MS, the BBB becomes diminished and loses its protective function both in the relapsing 

remitting and the progressive phases of the disease. Importantly, BBB dysfunction is considered 

a common denominator in several other neurological conditions such as Parkinson’s disease (PD), 

stroke and epilepsy. A dysfunctioning BBB may contribute to neurological problems that are 

associated with HIV infection (16) and possibly plays a role in Alzheimers Disease (AD) (17). 

This raises the question whether BBB failure is a mere consequence of these diverse pathologies 

or the underlying cause of observed neuropathologies (or both). The BBB is formed by 

microvascular brain endothelial cells (BMVECs) which are in close contact with surrounding 

pericytes, astrocytes, neurons and the extracellular matrix; together forming the so-called 

neurovascular unit (18). Cellular interactions induced by their close proximity are essential to 

maintain the unique BBB properties of BMVECs. 

In contrast to peripheral endothelium, the endothelial lining of the vessels in the brain is not 

fenestrated, but forms a closed polarized structure that enables selective nutrient uptake and 

waste product efflux (19). Adjacent ECs are sealed together by tight junction (TJ) proteins in 

order to limit paracellular influx of blood-borne cells, proteins or small molecules into the brain. 

Transport of nutrients into the brain parenchyma is closely regulated by specific transporters 

which provide the brain with essential glucose and amino acids. Efflux of waste or unwanted 

products from the brain is actively regulated by ATP-binding cassette (ABC) transporters (20) 

which are highly expressed on the luminal side of BMVECs. Numerous small molecules are 

substrates for ABC transporters and effluxed from the BMVECs, thereby protecting the brain 

from potential neurotoxic compounds.  

In active MS lesions large numbers of leukocytes migrate across the immune activated BBB. 

Transendothelial migration of leukocytes may occur via two pathways; paracellular, in which the 

leukocyte passes between adjacent endothelial cells or transcellular in which the leukocyte travels 

through the ECs, leaving the junctions intact (21). Leukocyte migration through the BBB is a 

complex process that is tightly regulated by the interplay of various cell adhesion molecules 

(CAM), integrins, cytokines and chemokines (22;23). In MS, leukocyte diapedesis most likely 

occurs at post capillary venules (21;24).  

By in vitro studies, it was shown that leukocyte diapedesis negatively influences BBB integrity 

thereby aggravating BBB failure (25). This observation is supported by studies using 
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Natalizumab or Alemtuzumab, recently established monoclonal antibody therapies for MS, which 

demonstrated that blocking T cell infiltration into the brain not only reduces the inflammation but 

also reduces the number of gadolinium-enhanced lesions dramatically (26). This suggests the 

involvement of the BBB early in the disease process. Indeed, in the established animal model for 

MS, experimental allergic encephalomyelitis (EAE), it was shown that BBB leakage precedes 

leukocyte influx (27;28).  

1.4. Available treatment 

Nowadays, the treatment of MS is aimed at relieving symptoms and reducing disease progression. 

Disease-modifying drugs (DMD) aim to reduce relapse frequency and accumulated disability in 

RR-MS. Because MS is considered to be an autoimmune disease, the majority of currently 

developed DMDs target the immune system. This approach is moderately effective in RR-MS but 

has little benefit for patients suffering from progressive forms of MS.  

The first line of treatment of MS is interferon (IFN)-β (Avonex, Rebif or CinnoVex). IFN-β 

delays the relapse frequency and shows a slight but significant effect on the accumulation of 

disability over three years (3). However, this drug has no beneficial effects in the progressive 

phase of the disease, either primary or secondary. Adverse effects of IFN-β are limited to flu-like 

reactions. Importantly, about 5-30% of the patients on IFN-β treatment develop neutralising 

antibodies, thereby reducing treatment efficacy. Another DMD is glatiramer acetate (Copaxone). 

It is a random polymer (of about 6.4 kDa) made from four amino acids that are present in myelin 

basic protein (MBP), a structural component of myelin. The exact mechanism of action for 

glatiramer remains unknown but treatment results in general dampening of the immune response 

(29). In a long-term study (15 years), it was shown that glatiramer treatment reduces the 

frequency of relapses in patients with RR-MS, but the number of patients that developed SP-MS 

was comparable to that of patients on placebo treatment (30).  

Mitoxantrone (Novantrone) was originally developed as an anti-cancer drug with its major 

mechanism of action the inhibition of DNA and RNA synthesis. In MS, treatment of patients 

with mitoxantrone leads to decreased differentiation of the T cell, B cell and macrophage cell 

pools, thereby acting as a general immunomodulatory therapy (31). Patients on mitoxantrone 

experience some beneficial effects, but at the risk of developing severe side effects such as a 

acute leukaemia and cumulative cardiotoxicity (32). Fingolimod (Gilenya) is a sphingosine -1 – 
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phosphate (S1P) receptor agonist which limits general leukocyte egress from lymph nodes, 

thereby reducing numbers levels of circulating leukocytes, limiting leukocyte entry into the CNS 

(33). Fingolimod reduces both relapse rate (by 54%) and progression to disability (by 30%) in 

MS patients compared to placebo (34). Teriflunomide (Aubagio) is a new oral anti-inflammatory 

drug that was approved for treatment of relapsing forms of MS in several regions including 

Europe, North America, Latin America and Australia (35-37). The active compound is the 

metabolite of leflunomide. Leflunomide was previously approved for the treatment of rheumatoid 

arthritis (38) and was shown to possess disease modifying properties in relapsing remitting MS. 

Although the therapeutic mode of action in MS is not fully understood yet, teriflunomide acts as 

an inhibitor of dihydroorotate-dehydrogenase (DHODH), an enzyme located in the mitochondria, 

which is involved in the biosynthesis of pyrimidines. This inhibition leads to a reduction of 

lymphocytes proliferation and function (39;40). Another new drug which is also used for the 

treatment of relapsing MS is Dimethyl fumarate (Tecfidera), also know as BG-12. It is a derivate 

of fumarate which has been used for decades in the therapy of psoriasis (41). Dimethyl fumarate 

and its main metabolite, monomethyl fumarate, act as modulators of nuclear factor E2-related 

factor-2 (NRF-2) pathway. This pathway directly regulates the response to oxidative stress and 

modulates immune response. Although the exact mechanism of action is not fully elucidated yet, 

dimethyl fumarate shows an inhibitor effect on immune cells as well as on the expression of 

adhesion molecules and proinflammatory cytokines. It also shows anti-oxidant properties (42). 

Natalizumab (Tysabri) is a monoclonal antibody against VLA-4 (α4β1 integrin), which is 

expressed on the surface of lymphocytes. It reduces the relapse rate at 1 year by 68% and the 

chance of acquiring permanent disability in a two year period by 42% (43). Unfortunately, about 

10% of the patients develop neutralising antibodies and in some cases (3.4 per 1000 patients) the 

use of Natalizumab can cause progressive multifocal leukoencephalopathy (PML), a viral 

infection of the brain which can be fatal (43). Whether Natalizumab is effective in SP-MS is now 

being assessed. 

Together, the data above indicate that suppressing the immune system is beneficial in reducing 

the number of relapses and, to some extent, in decreasing accumulated disability in MS. However, 

this therapeutic approach cannot halt disease progression, nor can it offer relief in progressive 

forms of MS. In addition, it may lead to serious side effects and, therefore, there remains a high 

and unmet need for the discovery of more specific drugs aimed at modulating MS disease 
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progression. As the BBB plays a prominent role in MS disease pathogenesis, preventing BBB 

failure or accelerating its recovery by restoring inflammation-induced molecular changes may 

well provide a novel way of modulating disease progression.  
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2. MicroRNAs (miRNAs) are key regulators of protein expression 

Although it has been generally assumed that most relevant genetic information is transmitted by 

proteins, during recent decades it has become clear that the majority of the genomes of mammals 

and other complex organisms is in fact transcribed into RNAs that do not encode for protein, so 

called non-coding RNAs (ncRNAs). The discovery of thousands of ncRNAs has been driven by 

large-scale genome sequencing, chromatin immunoprecipitation and genome tiling approaches 

(44;45). Until recently, most of the known ncRNAs (rRNAs, tRNAs and small nuclear and 

nucleolar RNAs) were implicated in relatively generic processes in a cell ultimately leading to 

the synthesis of protein. Recent evidence suggests that ncRNA plays an important role in cell 

biology and orchestrates many physiological and pathophysiological processes in mammalians 

(for review see (46-52)). In fact, while only 2% of the human genome encodes mRNA and leads 

to the synthesis of protein, the majority is described as long (>200 nt) and short (<200 nt) 

ncRNAs. So far, a diverse set of small regulatory RNAs have been identified and characterized 

including miRNAs, PIWI-interacting RNAs (piRNAs) and promoter associated RNAs (PASRs) 

and more recently miRNAs that can act as competitive endogenous RNAs (ceRNAs) (53). 

MiRNAs are small, about 22 nucleotides, endogenous ncRNA sequences. One of their most 

important functions is regulation of protein expression by sequence specific binding to the 3’ 

untranslated regions (3’UTRs) of target mRNAs, leading to altered protein expression. Although 

the first reports on functional short ncRNA sequences (later named miRNAs) in Caenorhabditis 

Elegans stem from the early 1990’s (54;55), the first reports linking miRNAs to disease status 

started emerging from 2006. Since then it was discovered that miRNAs are deregulated in 

numerous diseases and play a role in many cellular processes. Research on miRNAs as 

biomarkers, regulators and potential therapeutic targets is still increasing.  

The general importance of miRNAs in cellular functioning was demonstrated in experimental 

developmental studies in which DICER, a protein essential for miRNAs processing, was 

eliminated. Indeed, loss of miRNAs processing led to abnormalities in cellular differentiation and 

to embryonic lethality (56;57). To date, over 1800 unique human precursor miRNAs sequences 

resulting in over 2500 mature miRNAs are annotated in miRbase (58) and still more are being 

discovered, greatly aided by the rapid development of deep sequencing techniques (59). However, 

many of these sequences need further functional analysis to determine whether they meet the 

criteria for miRNAs as described by Ambros and colleagues in 2003 (60).  
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2.1. MiRNAs: biogenesis, degradation and mode of action 

MiRNA loci can be found in intergenic regions or in introns, situated alone or in miRNA clusters 

(61;62). They are transcribed by RNA polymerase II and III, processed by Drosha and Dicer and 

eventually loaded into the RNA-induced silencing complex (RISC) (62) (Figure 1). The miRNA 

guides the RISC complex to the target mRNA, where it binds to the 3’UTR region, leading to 

either destabilisation and degradation of the targeted mRNA or to repression of mRNA 

translation (63). Whether mRNA degradation or translation inhibition is the dominant mechanism 

of action is still an active topic of debate (64). Several papers show that significant protein down-

regulation is generally accompanied by reduced mRNA levels. The reduction of protein output is 

modest, up to 50%, leading to the notion that miRNAs are mostly involved in fine-tuning of 

protein expression levels (65;66). In line with this the recent discovery of miRNAs that has a 

function as ceRNAs is of high interest (53). 

Most mRNA 3’UTRs can bind several miRNA sequences and it has been shown that multiple 

different miRNAs can target one mRNA. The binding of one miRNA to its target is sufficient to 

downregulate protein expression significantly, which has been demonstrated in a large number of 

papers. However, binding of two different miRNAs to one mRNA enhances the repressing effect 

(67) and a combinational approach may be even more effective. The amount of microRNA that is 

available for mRNA regulation in the cell is governed by different mechanisms. Apart from the 

conventional binding of miRNA to mRNA targets, miRNAs can also bind to other RNA species 

such as circular RNA, long non-coding RNA or pseudogenes. These competitive endogenous 

RNAs (ceRNA) can bind microRNAs with microRNA response elements and indirectly de-

repress miRNA target mRNA (68). In other words, an increase in RNA can sponge up more 

miRNA, allowing other RNA to act unhindered. 

A number of recent studies show that miRNAs can also bind to their target mRNA outside the 

3’UTR sequence or to DNA sequences. Indeed, some miRNAs show effective simultaneous 3’ 

and 5’ UTR binding (69), or binding on mRNA sequences in the open reading frame (ORF) or on 

DNA promoter sites of a gene (69;70). In addition, miRNA binding to their target mRNA has 

been shown in certain cases to lead to mRNA stabilisation, resulting in protein up-regulation (71). 

Although these findings may open new avenues in the field of miRNA research, they are beyond 

the scope of this review and will not be discussed here in detail.  
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Current research is focussed on the biological effects of miRNAs either in health in specific cell 

types or tissues or during pathogenesis. Yet, relatively little is known about regulation of 

miRNAs expression by environmental stimuli. MiRNAs are located at diverse positions in the 

genome. They can be located in introns of protein-coding genes or in introns or exons of ncRNAs. 

Alternatively, miRNAs can be set between independent transcription units (intergenic) alone or in 

expression clusters (72). Even miRNAs located in introns have their own transcription regulatory 

pathways, as only one third of intronic miRNAs are transcribed simultaneously with their 

flanking gene (73). Thus, regulation of transcription is diverse and not governed by one single 

mechanism. Although miRNAs are generally considered to be stable RNA sequences, they have 

diverse half-lives in the cell (74). Some destabilising sequences have been identified, explaining 

more rapid breakdown for some sequences, but it was also shown that some mature miRNAs 

have different half-lives under different conditions such as cell cycle stage or stimulation with 

growth factors that can directly influence miRNA degradation. Several miRNases are known and 

these findings suggest that miRNAs levels are actively regulated.  

2.2. Identification of downstream targets of miRNAs 

Although there is a fair grasp on the mechanisms of action of some miRNAs, identifying direct 

targets of miRNAs has proven to be difficult. MiRNAs target prediction databases have been 

valuable in determining downstream targets, although the predictive value is limited. A recent 

study comparing different algorithms showed that the average precision of nine different 

programs was 17,3 % (67). Some programs get higher percentages of accurate predictions but 

they are significantly less sensitive; they fail to predict a large number of miRNA sequences that 

were found active.  

There are several ways of identifying physiological miRNAs targets, nicely reviewed by 

Thomson and colleagues (75). Most of them rely on over-expression or inhibition of a target 

miRNA in a cell line followed by assessing the downstream effects, for example, by 

transcriptome analysis or by assessing a specific cellular function. An unbiased approach for 

defining several targets on the protein level can be obtained by using proteomics after miRNAs 

up- or down-regulation. This is a successful approach, although some caution should be taken as 

indirect effects are hard to predict (e.g. a miRNA targeting a transcription factor), miRNA 

expression levels may vary during the cell cycle (76), and over-expression of miRNAs to non-

physiological levels may lead to non physiological effects (77). Once putative mRNA targets 
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have been identified for a miRNA, luciferase assays are commonly used in order to validate this 

prediction. The 3’-UTR sequence of the target gene is subsequently coupled to the luciferase 

gene, allowing luminescent readout of miRNA effects. Ideally, additional studies with mutations 

in the miRNA binding sequences are performed to confirm miRNA involvement, as there are 

other factors capable of binding at the 3’-UTR as well (78). 
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3. MiRNAs in MS 

MiRNAs can be released into the circulation by activated cells during the pathogenesis of a 

particular disease. Some of the circulating miRNA are located within exosomes and therefore 

they are protected from RNase digestion and degradation (79;80). Circulating miRNAs can also 

be protected from degradation through their association with specific proteins in order to form a 

protein-miRNA complex such as RISC or Argonaut proteins (81). While MS-associated changes 

in levels of miRNAs in many different cell type, including peripheral blood mononuclear cells 

(PBMCs) (82;83), B lymphocytes, CD4+,CD8+ T cell (68), peripheral blood leukocytes (83;84), 

and brain astrocytes (87) have already been proven, their functions in these cell types remains to 

be largely understood whereas the role of circulating miRNAs in MS progression has not yet 

been addressed.  

3.1. Circulating miRNAs in MS 

A recent study showed that in MS a specific circulating miRNAs signature can be recognized 

(88). ). Six specific miRNAs, miR-614, miR-648, miR-572, miR-422a, miR-1826 and miR-22 

were found to be significantly increased in the plasma of MS patients when compared to healthy 

controls (HC). Importantly, all but one of these miRNAs had not yet been associated with the 

pathogenesis of MS. Amongst the identified miRNA signature, miR-614 showed the highest fold 

change between MS patients and HC. This specific miRNA can regulates the expression of a 

Forkhead transcription factor, FOXD1, which can regulate inflammatory response by suppressing 

the activation of naïve T cell (89;90). Thus, high levels of miR-614 may lead to T cell 

proliferation and systemic inflammation (89). 

Another novel MS associated miRNA with highly expressed plasma levels in patients compared 

to control samples was miR-648. A predicted target of this miRNA is the MBP, a CNS-specific 

myelin protein, which is involved in the stabilization of the myelin sheath in the CNS (91). Once 

again, over-expression of this miRNA results in a reduction of MBP expression, thereby reducing 

myelin sheath stability. Furthermore, the expression profile of circulating miRNAs has shown to 

be different in RR-MS and SP-MS patients compared to HC and in RR-MS versus SP-MS, 

indicating a specific circulating miRNAs profile linked to disease stage and disability can be 

recognized (92). These studies together provide evidence of a unique circulating miRNAs 

signature in MS. Their role in disease pathogenesis remains to be established. However, the 
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identification of a specific panel of plasma derived miRNAs in different stages of the disease has 

laid the foundations for further analysis to use miRNAs as a promising biomarker for MS, which 

is highly sought for.  

3.2. MiRNAs as biomarker in MS 

The establishment of proper markers used to monitor a disease’s progression is an essential point 

for most pathological conditions including cancers, neurodegenerative disease, heart disease and 

diabetes. Circulating miRNAs possess the characteristics of promising biomarkers, especially 

since most are known to be stable in the circulation and resistant to RNase digestion and multiple 

freeze-thaw cycles (79). Moreover, the capability of miRNAs to act as gene regulators, make 

them potential more suitable as early stage disease biomarkers than proteins and genes.  

So far, several circulating miRNAs in plasma have been successfully identified as biomarkers for 

a number of diseases (93;94). For instance, specific glioma associated miRNAs were identified in 

serum-derived exosomes from patients affected by glioblastoma. This finding suggests that 

specific miRNAs released by tumor cells may be useful for diagnostic purpose (95). Additionally, 

the discovery of miRNAs in human salivary samples suggests a promising use of salivary 

exosomes as novel and easily accessible biomarkers for disease diagnosis (96).  

The function of exosomes as molecular carriers and their ability to delivery miRNAs to cells at a 

distance, ergo modify target cells gene expression, may further allow their use as diagnostic 

markers. This evidence allows us to postulate that miRNAs, especially those carried in the blood 

by exosomes, can be considered as ideal candidates for disease biomarkers. Furthermore, because 

exosome isolation is a non-invasive procedure and the subsequent characterization of the 

miRNAs expression profile is nowadays relatively straightforward, exosome profiling represent a 

great promise as a new diagnostic strategy. Further identification and characterization of 

exosomal and circulating miRNAs is pivotal in order to establish new miRNAs as biomarkers for 

diagnostic purposes and, therefore, potentially provide new insights into therapeutic strategies.  
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4. MiRNAs expression profiles in vascular beds in disease state 

The expression profile of miRNAs varies in different tissues, but few miRNAs were found 

exclusively expressed in specific cell types or tissues (97). In the following section, the effects of 

miRNAs and their regulation in different vascular beds will be discussed. 

4.1. Differential miRNAs expression in ECs 

ECs may have different characteristics depending on the surrounding tissue and it is therefore not 

surprising that the miRNA profile can differ as well. This is illustrated by McCall et al. (98) in a 

study comparing miRNA expression levels in healthy untreated human endothelial cells isolated 

from aorta (HAEC), coronary artery (HCEC), umbilical vein (HUVEC), pulmonary artery 

(HPAEC), pulmonary microvasculature (HPMVEC), dermal microvasculature (HDMVEC) and 

brain microvasculature (HBMVEC), the cells that form the BBB. In this study, 843 miRNAs 

were measured and 164 could be detected in ECs. Of these, 40% were differentially expressed in 

at least one comparison (e.g. HPAEC vs HCEC). Of note, the miRNA profile of HBMVEC 

showed the closest correlation with that of HUVEC cells instead of the other microvasculature 

lines. Three miRNAs were significantly different across all EC-types; let-7b, miR-20b and miR-

99b.  However, whether these three miRNAs (or others) contribute to maintaining the EC 

phenotype remains to be established.  

4.2. The role of miRNAs in endothelial function 

Vascular endothelial cells have many functions such as control of angiogenesis, response to 

inflammation and the regulation of blood coagulation (99). MiRNAs are known to be involved in 

all of these processes. Upon inflammatory stimuli induced by pro-inflammatory mediators such 

as cytokines or free radicals, numerous signalling pathways are activated in ECs. A central 

pathway in endothelial inflammation is NF-κB signalling, which results in the expression of 

multiple inflammatory genes such as adhesion molecules (P- and E-selectin, vascular cell 

adhesion molecule (VCAM) , intercellular adhesion molecule (ICAM)) and various cytokines 

and chemokines (100;101). Many miRNAs that are involved in endothelial inflammation target 

genes in this pathway (table 1). 

 An important driver of angiogenesis and endothelial permeability is the vascular endothelial 

growth factor (VEGF). It has been demonstrated in several studies that VEGF reduces barrier 
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integrity by signalling through its receptors (102;103). Elevated VEGF levels were found in AD, 

PD and stroke; all conditions in which the BBB is compromised. It is known that VEGF 

signalling in ECs is directly influenced by multiple miRNAs among which miR-155 and miR-

126 (104). In an attempt to identify miRNAs which regulate the BBB, we recently performed 

expression analyses in an immortalized human cerebral microvascular endothelial cell 

(hCMEC/D3) line, hCMEC/D3 cells cultured under barrier-promoting or barrier-disturbing 

conditions. Using in vitro BBB models, we assessed miRNAs expression in hCMEC/D3 that 

were treated either with pro-inflammatory cytokines or astrocytes conditioned medium (ACM). 

Pro-inflammatory cytokines reduce barrier functioning, whereas ACM is capable of increasing 

barrier resistance. We found that under the barrier improving conditions, induced by ACM, many 

miRNAs were up-regulated. Conversely, treatment that results in lowered barrier resistance, i.e. 

pro-inflammatory cytokines, is accompanied by decreased miRNA expression levels. In short, we 

identified a set of microRNAs that are involved in BBB regulation. Within the miRNAs 

signatures, 50 miRNAs were identified that were regulated by both treatments, i.e. these miRNAs 

were downregulated in a leaky barrier and upregulated in a tight barrier. In a final set of 

experiments we wanted to show the relevance of such miRNAs in MS. To this end, we compared 

the expression of sixteen miRNAs in this specific set in BBB endothelial cells isolated from post-

mortem MS lesion areas compared to cells isolated from normal appearing white matter. 

Strikingly, all selected miRNAs were reduced in the BBB associated with MS lesions. Since 

subsequent studies showed that forced expression of miRNAs resulted in an increase in BBB 

function and reduced transendothelial migration of primary monocytes, a hallmark immune cell 

of MS, our results strongly indicate that therapeutic application of miRNAs could be a viable 

approach for treating diseases of the CNS which are marked by vascular dysfunction, in 

particular MS (105). In addition, this highly-specific MS miRNA signature can potentially be 

used as a biomarker for diagnosis, prognosis and treatment efficacy monitoring. 

4.3. MiRNAs in BBB functioning 

A small number of papers describe miRNAs in BBB functioning in various conditions. Mir-29a 

is reported to indirectly influence barrier functioning by targeting gene that regulate epigenic 

events (DNMT genes) and may be a contributing factor in ischemic brain injury (106). In another 

condition affecting BBB functioning, HIV infection, it was demonstrated that miR-101 
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expression is increased by the HIV Tat C protein. Mir-101 in turn directly targets VE-Cadherin 

expression and thus negatively influences barrier functioning (107). 

 MiR-155 is an extensively studied miRNA which has functions in inflammation (108), 

autoimmunity and proliferation (109). It is one of the most highly upregulated miRNAs in acute 

MS lesions (110). It was found that miR-155 is rapidly up-regulated under inflammatory 

conditions in vitro, has high expression levels in BECs, in the mouse EAE model and miR-155 

knockout mice develop less clinical symptoms. MiR-155 exerts its effects by directly targeting 

DOCK-1, SDCBP, ANXA-2 and Claudin-1 (111), all factors directly relevant to BBB 

functioning.  

Another relevant BBB miRNA is miR-125a-5p. miR-125a-5p is known as a tumour suppressor 

miRNA (112;113). It also has an anti-inflammatory function in macrophages by inducing the 

formation of anti-inflammatory type 2 macrophages (114). Moreover, we found that miR 125a-5p 

is severely reduced in endothelial cells derived from MS lesions and upon inflammatory stimuli 

in vitro. It directly regulated barrier function in an in vitro BBB model and can reduce monocyte 

migration through a BBB cell layer in vitro (105).  

Future research will be directed on the identification of specific miRNAs profiles that regulate 

BBB function under different pathological conditions, in order to come to a panel of miRNAs 

that may be suitable as therapeutic strategies to restore BBB function to prevent disease 

progression in MS. 
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5. Concluding remarks 

MiRNAs are important regulators of protein expression which are involved in many cellular 

processes. They may prove to be valuable diagnostic markers for a number of diseases and play a 

yet enigmatic role in intercellular communication. In neuroinflammation, a clear role for 

miRNAs is emerging as key regulators of endothelial functioning and endothelial response to 

external stimuli. We and others have shown that miRNA expression levels are altered under 

inflammatory conditions as seen in MS and potentially several other neurological conditions. 

Moreover, there are clear indications that restoring miRNA expression levels is beneficial for 

BBB functioning.   

The potential of miRNAs as therapeutic agents is, at this point in time, still rather limited. There 

are some clear advantages for targeting miR sequences as a therapeutic approach. MiRNAs have 

several predefined targets which will all be influenced by the same sequence. Therefore miRNAs 

are regulators of cellular functions by targeting several key genes in a pathway rather than by a 

single target approach, such as siRNA. The sequence is endogenous and is therefore not likely to 

elicit immune responses. Moreover, the exact nucleotide sequence of the targeted miRNA is 

known, limiting lead optimisation to chemical stabilisation and optimisation of delivery. 

Despite the relative novelty of the field, two miRNA-based strategies are currently being tested in 

clinical trials, paving the way for further development of miRNA-based therapeutics. One such a 

therapy involves Miravirsen, a miR-122 inhibitor used for treating hepatitis C, which showed 

efficacy in a phase II clinical trial (115). Recently, Mirna Therapeutics started a clinical phase I 

trial using a miR34a mimic for unresectable primary liver cancer. Based on the outcome of such 

studies, the use of miRNA-based therapeutic approaches to restore BBB function in MS may 

become within reach.  
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6. Abbreviations 

MS: Multiple sclerosis  

CNS: Central nervous system 

BBB: Blood-brain barrier 

BECs: Brain endothelial cells 

miRNA: microRNA 

RR-MS: Relapsing-remitting MS 

SP-MS: Secondary progressive MS 

PP-MS: Primary progressive MS 

ECs: Endothelial cells 

GM: Grey matter 

BMVECs: Microvascular brain endothelial cells 

CAM: Cell adhesion molecules 

DMD: Disease-modifying drugs 

INF-β: Interferon beta 

MBP: Myelin basic protein 

ncRNAs: Non-coding RNAs 

ceRNAs: Competitive endogenous RNAs 

UTR: Untranslated region 

RISC: RNA-induced silencing complex 

HC: Healthy controls 

VEGF: Vascular endothelial growth factor 

hCMEC/D3: Human cerebral microvascular endothelial cell  
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Figure 1: miRNA biogenesis.  
MiRNAs are transcribed from the genome (sometimes in clusters as depicted) by RNA 

polymerase resulting in the pri-miRNA. Drosha processes the pri-miRNA to a pre-miRNA which 
is a 70-100 nt hairpin structure. The pre-miRNA is exported to the cytoplasm by exportin-5 and 
cleaved by dicer, resulting in an active and a passenger strand. The passenger strand is degraded 
and the active strand is loaded into the RISC complex. The miRNA guides the RISC complex to 

the target mRNA leading to translational repression or mRNA degradation   
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Table 1: MiRNAs with endothelial functions 

MicroRNA Process Molecular Targets Reference 

Hsa-miR-361-5p Angiogenesis VEGF (116) 

Hsa-miR-124 Angiogenesis Ras (117) 

Hsa-miR-125b Angiogenesis MAZ (118) 

Hsa-miR-146 Angiogenesis/Inflammation IRAK1, TRAF6, HuR, TLR4 (119) 

Has-miR-126 Angiogenesis/Inflammation VCAM, VEGFR2 (120;121) 

Hsa-miR-155 Angiogenesis/Inflammation VEGFR2/ANXA2, CLDN1, 

SDCBP, DOCK1 

(101;111) 

Hsa-miR-125a-5p Angiogenesis/Inflammation Endothelin-1/ TJ proteins (105;122) 

Hsa-miR-138 Inflammation S110A1 (123) 

Hsa-miR-712 Inflammation TIMP-3 (124) 

Hsa-miR-149 Inflammation ?, TNF pathway (125) 

Hsa-miR-181 Inflammation Importin α3 (100) 

Hsa-miR-221 Inflammation Ets-1 (126) 

Hsa-miR-31 Inflammation E-selectin (127) 
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