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A SPECTRAL PITCH CLASS MO DEL OF THE PROBE TONE DATA

AND SCALIC TONALIT Y

ANDRE W J. MILNE

MARCS Institute, University of Western Sydney, NSW,
Australia

ROB IN LA NE Y & DAVID B. SHA RP

The Open University, Milton Keynes, UK

IN THIS PAPER, WE INTRODUCE A SMALL FAMILY OF

novel bottom-up (sensory) models of the Krumhansl
and Kessler (1982) probe tone data. The models are
based on the spectral pitch class similarities between all
twelve pitch classes and the tonic degree and tonic triad.
Cross-validation tests of a wide selection of models
show ours to have amongst the highest fits to the data.
We then extend one of our models to predict the tonics
of a variety of different scales such as the harmonic
minor, melodic minor, and harmonic major. The model
produces sensible predictions for these scales. Further-
more, we also predict the tonics of a small selection of
microtonal scales—scales that do not form part of any
musical culture. These latter predictions may be tested
when suitable empirical data have been collected.
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T HE KRUMHANSL AND KESSLER (1982) PROBE

tone data comprise the perceived ‘‘fits’’ of twelve
chromatically pitched probe tones to a previously

established major or minor tonal context. Ten partici-
pants gave ratings on a seven-point scale, where ‘‘1’’
designated fits poorly and ‘‘7’’ designated fits well. These
well-known results are illustrated in Figure 1.

The major or minor tonal context was established by
playing one of four musical elements: just the tonic triad
I, the cadence IV–V–I, the cadence II–V–I, the cadence
VI–V–I. For example, to establish the key of C major,
the chord progressions Cmaj, Fmaj–Gmaj–Cmaj,
Dmin–Gmaj–Cmaj, and Amin–Gmaj–Cmaj were used;
to establish the key of C minor, the chord progressions
Cmin, Fmin–Gmaj–Cmin, Ddim–Gmaj–Cmin, and
A�maj–Gmaj–Cmin were used. A cadence is defined

by Krumhansl and Kessler (1982) as ‘‘a strong key-
defining sequence of chords that most frequently con-
tains the V and I chords of the new key’’ (p. 352); the
above three cadences are amongst the most common in
Western music. Each element, and its twelve probes,
was listened to four times by each participant. As shown
in Table 1, for each context, the ratings of fit were highly
correlated over its four different elements—mean cor-
relations for the different elements were r(10) ¼ .90 in
major and r(10) ¼ .91 in minor—so the ratings were
averaged to produce the results shown in Figure 1. This
implies that there were a total of 10� 4� 4 ¼ 160
observations per probe tone and mode, hence a total
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FIGURE 1. Krumhansl and Kessler’s major and minor tonal hierarchies.
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of 160� 24 ¼ 3840 observations in total. All listeners
had a minimum of five years’ formal instruction on an
instrument or voice, but did not have extensive training
in music theory.

All context elements and probes were played with
octave complex tones (also known as OCTs or Shepard
tones). Such tones contain partials that are separated
only by octaves (i.e., they contain only 2n�1th harmo-
nics, where n 2 N), and the centrally pitched partials
have a greater amplitude than the lower and higher
pitched partials; precise specifications are given in
Krumhansl and Kessler (1982). Octave complex tones
have a clear pitch chroma but an unclear pitch height; in
other words, although they have an obvious pitch, it is
not clear in which octave this pitch lies. The stated
purpose of using OCTs was to ‘‘minimize the effect of
pitch height differences between the context and probe
tones, which strongly affected the responses of the least
musically oriented listeners in [an] earlier study’’
(Krumhansl, 1990, p. 26). However, OCTs are unnatural
acoustical events—no conventional musical instrument
produces such spectra; they have to be artificially synthe-
sized. Musical instruments typically produce harmonic
complex tones (HCTs) in which most harmonics are pres-
ent and such timbres contain a greater multiplicity of
interval sizes between the harmonics (e.g., frequency
ratios such as 3/2, 4/3, 5/3, and 5/4, in addition to the
2/1 octaves found in OCTs). Krumhansl and Kessler
(1982, p. 341) describe the OCT timbre as ‘‘an organlike
sound, without any clearly defined lowest or highest
component frequencies.’’ The use of OCTs, rather than
HCTs, may affect the resulting ratings of fit; that is, if
HCTs had been used instead, it is possible the results may
have been—to some extent—different, even after taking
account of pitch height effects. For example, Parncutt
(2011, p. 1339) points out that the experimental data
obtained by Budrys and Ambrazevičius (2008) indicates
HCTs may reverse the fits of the minor third and perfect
fifth—pitch classes 3 and 7—in the minor context.

Issues related to many of the design choices in the
probe tone experiment, including the use of Shepard
tones, the use of a small number of musical experts as

participants, and the length of experiment are discussed
at length in Auhagen and Vos (2000). However, it is
clear that any specific experiment has to make trade-
offs between possibly incompatible goals.

The probe tone data are considered to be one of the
most important sets of empirical data related to the
perception of tonality. For example, the results can be
generalized to predict aspects of music that were not
explicitly tested in the experiment. Notably, the degree
of fit can be used to model the stability or ‘‘tonicness’’ of
the pitches and chords found in major-minor tonality—
as originally suggested by Krumhansl (1990, pp. 16 & 19)
and reiterated by Parncutt (2011, p. 333). Also, the data
have been used to model perceived inter-key distances
(Krumhansl & Kessler, 1982), and to predict the key—
dynamically—of music as it plays (Krumhansl, 1990;
Toiviainen & Krumhansl, 2003). However, Temperley
(1999) has noted that key-finding performance is
improved if the probe tone profile is adjusted so as
to increase the weights of the fourth and seventh scale
degrees. Furthermore, there is no obvious way to use
these data to account for some other important aspects
of tonality: Why is the primary major scale the dia-
tonic, while the primary minor scale is the nondiatonic
harmonic minor scale?1 Why does the seventh degree
(leading tone) of the major scale lose much of its activ-
ity when it is the fifth of the iii (mediant) chord? Why
are certain root progressions favored over others (e.g.,
descending fifths are more common than ascending—
particularly the cadential V–I)?

Causal Explanations

An important question raised by the probe tone data set
is what is its origin—what causes the tonal hierarchy to
take the form it does? There are two broad approaches
to this question. Top-down models attempt to explain

TABLE 1. Intercorrelations (df ¼ 10) of the Fit Data for Each of the Context-Setting Elements.

Major Minor

I IV–V–I II–V–I VI–V–I I IV–V–I II–V–I VI–V–I

I 1.00 .97 .93 .85 1.00 .95 .89 .96
IV–V–I .97 1.00 .86 .80 .95 1.00 .85 .97
II–V–I .93 .86 1.00 .96 .89 .85 1.00 .84
VI–V–I .85 .80 .96 1.00 .96 .97 .84 1.00

1 We use the term diatonic to refer exclusively to the scale with two
steps sizes—L for large, and s for small—arranged in the pattern (L L s L L
L s), or some rotation (mode) thereof. The harmonic minor and
ascending melodic minor are, therefore, non-diatonic.
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the data as a function of long-term memory—the fit of
a scale degree to a tonic is a function of the implicitly
learned prevalence of that scale degree (i.e., its familiar-
ity). Conversely, bottom-up approaches attempt to
explain the data without recourse to statistical knowl-
edge of this kind. Typically, a bottom-up model will
transform the context-setting elements and the probe
according to a short-term memory model where
salience decreases over time (Leman, 2000; Parncutt,
1994) and may make transformations that reflect plau-
sible neurological, psychoacoustical, or other cognitive
processes. Examples of neurological processes include
the neural oscillations modeled by Large (2011); exam-
ples of psychoacoustic processes include virtual pitch
perception (Leman, 2000; Parncutt, 1989, 1994, 2011),
examples of other cognitive process include Gestalt
grouping principles or the impact of structural proper-
ties of scales like interval cycles (Woolhouse & Cross,
2010).

The importance of bottom-up models is that they
provide a causal explanation for the shape of the probe
tone data (and the corresponding scale degree preva-
lences in Western music) that is further back in the
causal chain and, hence, has greater explanatory power.2

It is plausible there is a causal loop (across time)
whereby, in one direction, prevalence increases fit
(through familiarity) while, in the other direction,
increased fit increases prevalence (due to composers
and performers privileging high-fit pitches). But, if
there is a sensory or other bottom-up reason for favor-
ing certain pitches regardless of their familiarity, this
both causally precedes and continually feeds into this
causal loop from the outside, thereby stabilizing the
system around values consistent with the bottom-up
processes. With no bottom-up component, a pure top-
down model can make no prediction about which spe-
cific forms the probe-tone data could plausibly take
because any initial random choice of scale degree pre-
valences would stabilize into a corresponding tonal
hierarchy.

Taken to the extreme, a bottom-up explanation
means long-term implicit learning is completely unnec-
essary to explain perceived fit and stability. We might
hypothesize that, given a collection of pitches in short-
term memory, we are able to mentally ‘‘calculate’’ or
‘‘feel’’ the sensory fit of any current pitch or chord each
time it occurs. However, even if bottom-up processes
play an important role, it would be implausible to dis-
miss the impact of long-term memory (the importance

of long-term memory has been established in numerous
music perception experiments such as Francès, 1988;
Lynch, Eilers, Oller, & Urbano, 1990; Schellenberg &
Trehub, 1999; Trehub, Schellenberg, & Kamenetsky,
1999). For instance, it is likely that certain scales (e.g.,
the diatonic and harmonic minor) are so commonly
used that we learn where the best fitting chords are
without having to mentally assess their sensory fit each
time. Furthermore, if composers favor pitches and
chords with high sensory fit, their increased prevalence
will further amplify their perceived fit. It is also likely we
become familiar with specific sequences (ordered sets)
of pitch classes and chords that exemplify musically
useful patterns of fit such as those used in cadences,
which induce tension and then resolution. For example,
as we discuss in later sections, movements from chords
containing pitch classes with low fit to those with high
fit may provide particularly effective resolutions that
strongly define a tonic. These examples suggest that
long-term memory fit templates may be quite diverse
in form, consisting of a variety of pitch and chord-
based fragments rather than just the two overarching
major and minor hierarchies described by the probe
tone data.

Often it may be difficult to make a clean distinction
between bottom-up and top-down models. For exam-
ple, a model may be formulated and presented by its
author as bottom-up but it may also be possible to
interpret it as actually being top-down (e.g., see our
discussion of Butler’s, 1989, model in the following sec-
tion). This means any assertion as to how a given model
affects the dependent variable must be examined to see
if there may be an alternative explanation. Furthermore,
a model may comprise both types of process. However,
it is often possible to characterize a model as being
essentially bottom-up or essentially top-down according
to the relative importance of its components. The key
distinction is that bottom-up models may include
top-down components that support the bottom-up
processes—they enhance their effect but don’t essen-
tially change them (as in the causal loop described in
the previous paragraph). Such models would still be
reasonably classified as bottom-up. Other models may
have bottom-up components that are subsumed by top-
down effects. Such models would be reasonably charac-
terized as essentially top-down. Other models may be
down to a complex interaction of bottom-up and top-
down processes in which both play an essential role, and
these would be most reasonably characterized as both
bottom-up and top-down.

Throughout this paper, we have attempted to catego-
rize each of the models we discuss (including our own)

2 See Deutsch (1997) and Lewandowski and Farrell (2011) for
comprehensive discussions of explanation versus prediction.
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into top-down or bottom-up categories and, perhaps
more importantly, we explore each model’s ability to
actually explain why the probe tone data take the spe-
cific form they do.

Summary of the Spectral Pitch Class
Similarity Models

In this paper we will present a small family of spectral
pitch class similarity models that provide a bottom-up
explanation for the probe tone data. We then extend one
of the models (using parameter values as optimized to
the probe tone data) to predict the tonicness of pitch
classes and chords in a variety of scales, including
microtonal. We will give the full mathematical specifi-
cation of these models in the following section. But,
before proceeding, we feel it will be helpful to provide
an overview of how they work and the music perception
assumptions upon which they rest.

To model the pitch perception of any musical sound,
we use a spectral pitch class vector. Each of the 1,200
elements of this vector represents a different log-
frequency in cents (modulo the octave), while the value
of that element is a model of the expected number of
partials (frequency components) perceived at that log-
frequency. Figure 2 illustrates a spectral pitch class vector
model of a major triad (bottom) and a harmonic complex
tone a perfect fourth higher (top). We model the fit of
any two such tones or chords by calculating the cosine
similarity of their respective spectral pitch class vectors
(the resulting similarity value lies between 0 and 1).

This model rests upon a number of assumptions,
which are now detailed. First, we model pitch as pro-
portional to log-frequency and model each pitch as

having a salience value, which is its probability of being
perceived. Second, we model each spectral component
(partial) of a tone or chord as a pitch class (i.e., its log-
frequency is represented modulo the octave). This is
a model of octave equivalence in that any two pitches
an octave apart are the same (they are in the same pitch
class). Third, we smear each spectral component in the
log-frequency domain to model perceptual inaccu-
racy—for example, we might expect that two spectral
components separated by one cent are likely to be per-
ceived as having identical pitch. The width of this
smearing—called smoothing width (�)—is a nonlinear
parameter in our models. Fourth, we treat the harmo-
nics of each tone as reducing in salience smoothly as
a function of their harmonic number. This is to ensure
the spectra used by the model are broadly representative
of those produced by musical instruments as well as
modeling the increased resolvability of lower versus
higher partials (e.g., Moore, 2005). The steepness at
which they reduce is another nonlinear parameter called
roll-off (�). Figure 2 uses roll-off and smoothing width
values as optimized to the probe tone data—note how
the partials are smeared into a Gaussian shape across
log-frequencies, and that the peaks reduce for higher-
numbered harmonics (in the top figure, harmonics 1, 2,
4, and 8 are centered at pitch class 5.00, harmonics 3, 6,
and 12 are centered at pitch class 0.02, harmonics 5, and
10 are centered at pitch class 8.86, and so forth).

As discussed in more detail in the next section, dif-
ferent researchers have modeled the probe tone experi-
ment’s context elements in a number of different ways:
First, each of the eight different context-setting ele-
ments (four major and four minor) may be separately
modeled and fitted (e.g., Parncutt, 1994). Second, the
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parameters are as optimized to the probe tone data (� ¼ 0.67 and � ¼ 5.95).
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four major context elements may be aggregated into
a single major context, and the four minor context
elements into a single minor context (e.g., Butler, 1989;
Parncutt, 1989). Third, all eight elements may be repre-
sented by a single tonic pitch class (as in Krumhansl’s
consonance model, 1990). We will refer to this as the
tonic-as-pitch-class concept. Fourth, all elements may
be modeled by their respective tonic triad (so all the
major context elements are modeled with the tonic major
triad, the minor context elements with the tonic minor
triad). This latter method is Parncutt’s (2011) tonic-as-
triad concept.

In one of our models, we follow the tonic-as-triad
concept and model the context-setting elements with
a single tonic triad. In the other two models we allow
the root of the tonic triad (i.e., the tonic pitch class) to
have a greater weight than the other tonic triad tones.
This is to reflect the greater salience of the root in
a major or minor triad (Parncutt, 1988) and to allow
the model to be situated anywhere on the continuum
between tonic-as-triad and tonic-as-pitch-class. Ignor-
ing the precise form of the context elements by repre-
senting them as a tonic triad or tonic pitch class (or
somewhere between) is sensible when the elements
serve a cadential function (Krumhansl and Kessler,
1982, chose these specific contexts precisely because
they are common cadences). This is because, by defi-
nition, the purpose of a cadence is to strongly induce
a feeling of tonicness for the final chord and it seems
reasonable to assume this tonic will be our predomi-
nant perception just prior to the probe tone. The tonic-
as-triad concept also seems to mirror the probe tone
data in that the four profiles for the differing major
context elements are very highly correlated (and the
same for the minor context elements)—as shown in
Table 1.

Furthermore, we model the context chord tones and
probe tones as full harmonic complex tones (HCTs) not
as Shepard tones, which have only octave spaced par-
tials. This implies our model assumes the auditory sys-
tem adds a full harmonic spectrum to a Shepard tone
(through nonlinear processes such as those observed in
Lee, Skoe, Kraus, & Ashley, 2009, and modeled by Large
& Almonte, 2012), or that the probe tones in the exper-
iment act as a trigger (through long-term memory) for
the responses that would have occurred with HCTs of
identical pitch classes. It is important to point out that
even in the latter case, the spectral origin of the model
holds—although the model may now comprise a long-
term component it is still founded upon an important
bottom-up component that provides its explanatory
power.

Extending the Probe Tone Models

As we demonstrate in the later section A Model of Scalic
Tonality, an interesting feature of probe tone models is
that, if we equate tonicness with fit, they can be used to
model the tonicness of pitch classes or chords given
a scale. For example, we can treat the harmonic minor
scale as an abstract entity that represents a set of possi-
ble pitches, but impose no additional structure by giving
all its pitches equal weight. This enables us to talk of
a scalic tonality whereby any unique collection of pitch
classes (a scale) has unique tonal implications—even in
the absence of a pre-existing corpus using that scale. In
that section, we use the same spectral pitch class simi-
larity model—as optimized to the probe tone data—to
model the affinity of triads to a selection of Western
scales (Guidonian hexachord, diatonic, harmonic
minor, melodic minor, and harmonic major) and a selec-
tion of microtonal scales.

To be more concrete, we model the spectral pitch
classes induced by all HCTs in a scale (as if it is a big
chord) by placing them into a spectral pitch class vector
as described above. Each scale tone is equally weighted,
but the salience of each partial (as a function of its
harmonic number) and the width of the smearing is
identical to the optimal values used to fit the probe tone
data. The cosine distance between this vector and the
spectral pitch class vector of any given chord (produced
in the same as way as for the scale) is used to model the
fit—and hence tonicness—of that chord given the scale.

In the subsection Fit Profiles for 12-TET Scales, we
additionally suggest some related mechanisms that may
help to answer the three questions posed earlier (at the
end of The Probe Tone Experiment subsection). These are
that resolutions are strengthened when a worst-fitting
pitch class moves to the root of a best-fitting triad, and
that we also need to consider the fit of each pitch class
within the chord it is part of. At the moment, however,
these mechanisms are not instantiated in a formal
mathematical model and, until they are, they should be
thought of as preliminary findings or suggestions. We
hope to formally embody these latter principles and test
them against novel empirical data in future work.

Models of the Probe Tone Data

To provide the context for our model of the probe tone
data, in this section we survey a variety of other existing
models of these data. Most of these are also usefully
summarized in Parncutt (2011) so we will keep our
account brief, but we will also highlight a few areas
where we take a different stance to Parncutt. In order
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to fairly compare the predictive power of the models
(ours is nonlinear), we use cross-validation statistics
in addition to conventional correlation. When exploring
the predictive power of the models, the main focus is on
their fit to the aggregated probe tone data (all of which
are very highly correlated); however, for some of the
models, we additionally discuss what happens when
they are applied to the data arising from each context-
setting element. We also explore the extent to which
each model contributes a plausible and generalizable
bottom-up explanation.

Before discussing each of the models in turn, Table 2
summarizes their relevant statistical properties with
respect to the probe tone data (we also provide a table
of intercorrelations in Appendix A).3 When comparing
models we feel it is important to consider correlation
values over all 24 data points because the same under-
lying process should apply to the major and minor con-
texts—separately correlating them is equivalent to
calculating the r-values of two linear regressions with
different intercept and slope parameters. Because there
is no a priori reason to expect the two sets of parameters
to be different, this procedure is not ideal—precisely the
same model should be used for both major and minor.
For this reason, in the cross-validation statistics, we
apply a single set of parameter values to both major and
minor. However, it is still useful to see how well each
model performs with respect to the major and minor
contexts, so we also supply more conventional correla-
tions for each context. An important reason for using
cross-validation correlation is to allow our nonlinear
models to be fairly compared with the mostly linear
models that have been proposed so far. Utilizing un-
cross-validated statistics would be inappropriate,
because the additional flexibility of a model with addi-
tional nonlinear parameters may allow it to fit the noise
rather than the process underlying the data, thereby
giving it an unwarranted advantage. Cross-validation
statistics provide a way for models with differing levels
of flexibility (complexity) to be fairly compared, and
ensure they are not overfitting the data.

The models are ordered by their cross-validated cor-
relations over all 24 data points and, when these are not
available, by the mean of their (not cross-validated)
correlations for the major and minor contexts. This
provides an indication of their ranking in terms of pre-
dictive power. However, it is useful to bear in mind that
if we consider these 24 data points to be a sample from

a population of participants, replications, contexts, and
so forth, the correlation confidence intervals are wide;
for example, for a correlation of r(22) ¼ .95, the 95%
confidence interval is from .89 to .98. Indeed, even if we
consider the probe tone data to perfectly represent the
expected population values, the best performing models
are still very close. For example, the Bayesian Informa-
tion Criterion (BIC) of Milne 14c, Lerdahl 88, and Parn-
cutt 89 are �45.42, �43.60, and �46.33, respectively
(lower is better); typically, differences in BIC values are
only considered meaningful when greater than 2.

We used 20 runs of 12-fold cross validation, which
means the data set of 24 probe tone fit values is split into
a training set of 22 probe fit values and a validation set of
2 probe fit values. The parameters of each model are
optimized to the training set (for the linear models these
parameters are the intercept and slope; for our models
there are additional nonlinear parameters). The mod-
eled values for the two validation data points are then
calculated. This procedure is done 12 times, in each case
a different training and validation set is used, such that
each validation set never contains a data point used in
a previous validation set. This ensures we end up with
24 modeled values corresponding to all 24 data points.
The cross-validation statistic of interest is then calcu-
lated for these values (e.g., cross-validation correlation).
Cross-validation statistics have an unknown variance,
but this variance can be reduced by repeating the pro-
cess multiple times with different validation sets and
taking the mean value of the statistic. As mentioned
above, we performed 20 runs of the 12-fold cross-
validation. We give a more technical explanation of the
cross-validation statistics in Appendix B.

It is worth pointing out that the modeled data do not
need to replicate much of the experimental data’s fine
structure in order to achieve what appears to be a rea-
sonably good correlation value. For example, let us
define a basic triad model as one that gives the tonic
chords’ pitches a value of 1, and all other pitch classes
a value of 0; the resulting statistics are surprisingly
impressive looking: rCV(22) ¼ .82 and major and minor
correlations of r(10) ¼ .83 and r(10) ¼ .89, respectively.
We suggest that any model with similarly valued statis-
tics is probably struggling to describe much of the fine
structure of the data; we place this basic triad model into
the table to serve as a benchmark.

KRUMHANSL 90B: CORPUS PREVALENCE MODEL

Krumhansl (1990) suggested a model for the probe tone
data, rCV(22) ¼ .83, which is that they are correlated
with the distribution (prevalences) of scale degrees in
existing music. This is a purely top-down model of

3 The interval cycle theory of Woolhouse and Cross (2010) is not
included in Table 2 because it does not produce a single model of the
probe tone data. This theory is discussed later in this section.
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music perception, in that the perceived fits of the probe
tones are hypothesized to be down to nothing more
than learning: if we frequently hear the fourth scale
degree, we will tend to feel that scale degree has a good
fit; if we rarely hear altered scale degree �2̂/�1̂, we will
tend to feel that scale degree has a poor fit.

This model provides a straightforward explanation
for our perception of scale degree fit, but the scope of
this explanation is limited because it cannot explain why
the probe tone data/scale degree prevalences take the
specific profile they do. Indeed, an implicit assumption
of this model is that this profile is down to nothing more
than chance—for some unknown reason, composers
favored certain scale degrees and hence listeners came
to feel these scale degrees fitted better. Composers (who
are also listeners) continued to write music that utilized
these learned patterns of fit (because such music made
sense to them and their listeners), and so listeners (some
of whom are composers) continued to have their learn-
ing of these patterns reinforced. And so forth, in a cir-
cular pattern of causal effects: music perception is the
way it is because music is the way it is, and music is the
way it is because music perception is the way it is, ad
infinitum. Presumably, this theory predicts that on
a ‘‘parallel Earth’’—identical in all respects to ours
except for random fluctuations—a completely different
profile of pitch class fits might have developed. Of
course, this may be true. But it is quite plausible that
there are innate perceptual, cognitive, or core

knowledge (Spelke & Kinzler, 2007) principles that
might contribute to making one, or a small number,
of actual fit profiles possible or more likely.

LERDAHL 88: PITCH SPACE MODEL

Lerdahl’s (1988) basic pitch space has five levels: (1)
tonic, (2) tonic and fifth, (3) major tonic triad, (4) dia-
tonic major scale, (5) chromatic scale. He points out that
the five levels in this basic pitch space correlate well with
the major context’s probe tone data (p. 338). He does not,
however, suggest a formal model for the minor context.
To address this, it is necessary to create a conceptually
related ‘‘minor pitch space’’ for the minor context.
Lerdahl’s model (and its extension to the minor context)
is predictively very effective, rCV(22) ¼ .95. However, it is
deficient in terms of explanatory power because impor-
tant aspects of the basic pitch space itself are derived
from (or require) top-down explanations.

Lerdahl provides a bottom-up explanation for the
first three levels, which is that the height of a level
should correlate with ‘‘the degree of sensory consonance
of adjacent intervals’’ within it (Lerdahl, 2001, p. 272; he
defines sensory consonance psychoacoustically as
a function of both roughness and clarity of the root,
p. 321)). The perfect fifth in the second level is the most
consonant interval, and the major triad on the third
level is the most consonant triad (although the minor
triad is similarly consonant and seems a reasonable
alternative). The fourth level—which is critical for

TABLE 2. Cross-validation Correlations of Each Model’s Predictions with the Major and Minor Profiles Combined (df ¼ 22).

rCV(22) rmaj(10) rmin(10) Type Parameters

Milne 14c .96 .98 .97 bottom-up nonlinear
Lerdahl 88 .95 .98 .95 top-down linear
Parncutt 89 .95 .99 .94 top-down linear
Parncutt 94 — .96 .95 bottom-up nonlinear
Parncutt 11a .93 .94 .95 bottom-up linear
Milne 14b .92 .98 .94 bottom-up nonlinear
Milne 14a .91 .96 .93 bottom-up nonlinear
Parncutt 11b .90 .93 .92 bottom-up linear
Large 11 — .97* .88* bottom-up nonlinear
Smith 97 .87 .91 .88 bottom-up linear
Butler 89 .84 .90 .86 top-down linear
Krumhansl 90b .83 .89 .86 top-down linear
Basic triad .82 .83 .89 — linear
Leman 00 — .87 .84 bottom-up nonlinear
Krumhansl 90a .57 .76 .53 bottom-up linear
Null �.68 .00 .00 — linear

Note: The cross-validation correlations are the means of these statistics taken over twenty runs of 12-fold cross-validation. We also show the correlations (not cross-validated)
for the major and minor contexts separately. The null model is an intercept-only model—i.e., all probe fit values are modeled by their mean. The remaining models are
described in the main text. The models are ordered by their cross-validation statistics or, where these are missing, by the mean of their major and minor context correlations.
The correlation statistics for the Large model are starred to indicate different nonlinear parameter values were used for the major and minor contexts—with unified parameter
values these correlations will be lower. The models are categorized according to whether they are essentially bottom-up or top-down; these labels should be taken with some
caution because there is always some ambiguity about precisely which underlying processes a model instantiates.
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producing high correlations with the data—is the dia-
tonic major scale. Although Lerdahl gives a number of
bottom-up explanations for privileging the diatonic
scale,4 he gives only a top-down explanation for choos-
ing its Ionian (i.e., major) mode, rather than the Mix-
olydian or Lydian—he privileges the former due to its
prevalence (2001, p. 41). The predictive power of the
basic pitch space, therefore, relies on a long-term mem-
ory explanation, so we class this model as top-down.

To extend Lerdahl’s model to account for the minor
context, Parncutt (2011) created a ‘‘minor pitch space.’’
This builds up the levels in the same way, but has a minor
triad (rather than a major triad) on the third level, and
has the harmonic minor scale (rather than the diatonic
major scale) on the fourth level. The resulting major
(basic) and minor pitch spaces are highly correlated with
their respective probe tone data, rCV(22) ¼ .94.

However, in one respect, this minor pitch space is
not in keeping with Lerdahl’s conceptualization of the
basic pitch space because it uses a nondiatonic scale (the
harmonic minor), which does not have the property
of coherence, for the fourth level. It is more in keeping
with Lerdahl’s theory to use the coherent Aeolian (nat-
ural minor scale), Dorian, or Phrygian mode—rather
than the harmonic minor—for the fourth level. The
Aeolian is probably the most prevalent (hence familiar)
of these three modes, and using it in this model gives
a higher correlation with the minor context’s data than
Parncutt’s harmonic minor version. It is this Aeolian
version of Lerdahl’s model that we include in Table 2.

This latter model is predictively extremely effective
and provides amongst the highest cross-validated cor-
relations, rCV(22) ¼ .95. As discussed in the introduc-
tion, the probe tone data in each major or minor context
are highly correlated across the four different elements
(I, IV–V–I, II–V–I, and VI–V–I). Because this model
has a good fit with the aggregated data, and it produces
the same predictions across the four elements of each
context, it also has good fits with profiles resulting from

each context-setting element (as shown in Table 3).
However, as an essentially top-down model, it has lim-
ited explanatory power.

BUTLER 89: AGGREGATE CONTEXT PITCH MULTIPLICITY MODEL

Butler (1989) presents his model as utilizing nothing
more than short-term memory, in which case, it is an
explanatory bottom-up model. However, as we shall see,
it is actually more likely that this is a top-down model of
a possible long-term memory process.

He models the probe tone ratings simply by the num-
ber of times their pitches occur in each context’s ele-
ments (i.e., the chord progressions I, IV–V–I, II–V–I,
and VI–V–I). These four elements were aggregated into
a chord collection containing IV, II, VI, three Vs, and
four Is. The model counts the number of occurrences of
each scale degree in this collection: there are six 1̂s (in
the four Is, the IV, and the VI); there are zero �1̂/�2̂s;
there are four 2̂s (in the three Vs and the II); and so on.
The resulting counts for the major and minor contexts’
elements fit the data well, rCV(22)¼ .84. As a short-term
memory model, it is bottom up and provides a mean-
ingful explanation for why, given an immediate context
element, certain pitches (probes) fit better than others:
currently heard pitches that are also salient in short-
term memory are perceived to fit better than pitches
that are not also salient in short-term memory—we are
‘‘comfortable’’ with, or ‘‘less surprised’’ by, repetition. It
also implies that there is not necessarily a stable tonal
hierarchy that serves as a fixed template against which
currently heard pitches are compared.

However, it is questionable whether this model can be
considered to be a short-term memory model. As
Krumhansl (1990, p. 62) points out, the different con-
text elements were presented to listeners in separate
blocks, not intermixed within the same block and, for
this reason, it is implausible that short-term memory—
which typically completely decays within 20 seconds
(Peterson & Peterson, 1959)—could be responsible for
aggregating the four elements (this point is also ampli-
fied by Woolhouse & Cross, 2010). If Butler’s model is
applied to each context element separately and then
averaged over them, the fit with the probe tone data is

TABLE 3. Correlations (df ¼ 10) of the Lerdahl 88 Model and the Fit Data for Each of the Context-setting Elements.

Major Minor

I IV–V–I II–V–I VI–V–I I IV–V–I II–V–I VI–V–I

.94 .88 .98 .95 .92 .95 .86 .92

Note: The mean correlation is .93.

4 Balzano’s principles of uniqueness, coherence, and simplicity, and
Clough and Douthett’s maximal evenness (Lerdahl, 2001, pp. 50–51 &
p. 269).
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substantially poorer, averaged rCV(22) ¼ .74. So, when
corrected to more accurately reflect short-term memory
processes, the model becomes predictively weak.5 Fur-
thermore, Krumhansl and Kessler (1982, p. 343) found
the ratings produced by the differing context elements to
be ‘‘very similar,’’ whereas the modeled data produced by
the differing context elements are not.

As pointed out by Parncutt (2011, p. 341), a mecha-
nism that could account for the aggregation of the four
context elements being correlated with the data would
be that the aggregated chord context is a good summary
of the prevalences of chords in Western music. How-
ever, this transforms the model into a purely top-down
model, where the fit of probe tones is solely down to
their prevalence. In other words, viewed from this per-
spective, Butler’s model is the same as Krumhansl’s
prevalence model; the difference being that Krumhansl
statistically analyses a corpus, while Butler statistically
analyses a set of common cadences—and both have
similar scale degree prevalences. For this reason, we
class this model as top-down.

PARNCUTT 89: AGGREGATED CONTEXT PITCH CLASS

SALIENCE MODEL

Parncutt (1989) adapted Butler’s model in two ways.
First, he used a different aggregation of the contexts’
elements: IV, II, VI, three Vs, and six Is. The difference
is that the tonic triad element is counted six rather than
four times, this is because Parncutt counts the tonic
triad three times for the context element that comprises
only the I chord. Despite Krumhansl’s criticism (1990,
p. 62) that this does not reproduce the stimuli used in
the experiment, it is actually quite reasonable because
the ratings produced by the four context elements were
averaged to produce the final sets of probe tone data (so,
counting the I element three times, gives it equivalent
weight to each of the other three elements; Parncutt,
1989, p. 159). Second, he included not just the notated
pitches in the context elements, but also their pitch class
(or chroma) salience profiles. The precise mechanism
by which the pitch class saliences are generated for a har-
monic complex tone is detailed in Parncutt (1989, Sec.
4.4.2). In summary, the salience of any given pitch class is
calculated from a combination of the weights of harmo-
nics and subharmonics with corresponding pitch clas-
ses—these subharmonics and harmonics extending

from each notated pitch. The subharmonics are, overall,
weighted significantly higher than the harmonic pitches,
so this is primarily a virtual (subharmonic) pitch model.

When applied to the aggregated elements in each
context, the model produces one of the best fits to the
data, rCV(22) ¼ .95. But when applied to each context
element separately—as shown in as shown in Table 4—
the model performs less well; the mean correlation is
r(10) ¼ .87. This means it suffers from the same pro-
blems as Butler’s: it cannot really be interpreted as
a model of short-term memory processes; rather, it is
a model of a possible long-term memory process, where
the aggregated cadences serve as proxies for prevalent
chords in Western music. So the model has limited
explanatory scope—although it may explain the data
given the prevalence of a small set of chords, it does not
explain why those chords, in particular, are prevalent.

LEMAN 00: SHORT-TERM MEMORY MODEL

Leman (2000) utilizes a short-term memory model
whose inputs are derived from a model of the auditory
system. The latter comprises 40 bandpass filters, half-
wave rectification and simulations of neural firings
induced by the filters, and periodicity detection (auto-
correlation) applied to those firings. Autocorrelation
automatically detects frequencies that are subharmonics
of the input frequencies. In this respect it is, therefore,
similar to Parncutt’s chroma salience model. The result-
ing signals, produced in response to the context element,
are stored in a short-term (echoic) memory model that
decays over time and, at the time at which the probe is
presented, this represents the ‘‘global image’’ of the con-
text element. The length of the decay (the half-life of the
signal) is a free parameter. This global image is correlated
with a ‘‘local image’’ produced by each of the 12 probe
tones (for each of the four context elements in both major
and minor). The twelve correlation values (for the twelve
probes) are averaged over the four major and four minor
context elements (in the same way as Krumhansl’s data),
and these are used to model the probe tone data.

The model produces correlations towards the lower
end of those discussed here, r(10) ¼ .85 for major and
r(10) ¼ .83 for minor. However, Leman chooses a decay
parameter of 1.5 seconds, when his Table 3 shows that
the maximum decay value tested (5 seconds) would
have fit the probe tone data better (he chooses the lower
time value because fitting the probe tone data is not his
only criterion). With the 5 second decay time, the cor-
relations improve, but only slightly, r(10) ¼ .87 for
major and r(10) ¼ .84 for minor.

Because of the nonlinear decay time parameter, and
without easy access to the original model, we have not

5 The only practicable way to perform the cross-validations was to
allow for the parameters, within each training fold, to vary across the
different context elements. There is, however, no a priori reason why they
should be different over different context elements. If they had have been
kept the same, the resulting statistics would have been even lower.
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calculated its cross-validation correlations. However,
since the r(22) statistics will be lower than .87—which
is the highest r(10) statistic gained by the 5 second decay
time model of the major context’s data—it is safe to
conclude that, in terms of prediction, this is one of the
worst performing models and probably no better than
the ‘‘basic triad’’ benchmark model.

KRUMHANSL 90A: CONSONANCE MODEL

Krumhansl’s (1990) other model is bottom-up and
attempts to provide a more substantive explanation
than the prevalence model. It also predicts rather poorly,
rCV(22) ¼ .57. This model hypothesizes that the probe
tone fits are due to the consonance of the corresponding
pitch class and the tonic pitch class (the first scale
degree). Clearly, this model will struggle to obtain high
correlations with the empirical data because it produces
identical predictions for the major and minor contexts
(they both have the same tonic pitch class).

Krumhansl uses consonance values that are the
averages of a variety of bottom-up models of conso-
nance (Helmholtz, 1877/1954, Hutchinson & Knopoff,
1978; Kameoka & Kuriyagawa, 1969; Malmberg, 1918),
and one set of empirically derived consonance ratings
(Malmberg, 1918). This means the model, as a whole, is
essentially bottom-up and has wide explanatory
scope—it provides an explanation for the probe tone
ratings based on innate perceptual processes. However,
it is also worth noting that—as Krumhansl points out
(1990, p. 55)—there is something of a mismatch
between the model’s explanation and the experimental
procedure used to get the empirical data: the probe
tones were played after the context-setting chords, not
simultaneously, so harmonic consonance/dissonance
does not play a direct role in the experimental stimuli.
For this model to make sense, it must be additionally
assumed that the listeners were mentally simulating
harmonic intervals comprising the tonic and the probe,
and then determining their consonance/dissonance
values either directly or from long-term memory. This
is plausible, given the musical experience of the partici-
pants, but it is an indirect explanation.

SMITH 97: CUMULATIVE CONSONANCE MODEL

Like Krumhansl, Smith (1997) also uses consonance—
but in a different way—to explain the data from the
bottom up. He takes a tonic pitch and finds a second
pitch with the greatest consonance. To these two
pitches, he then finds the third pitch that makes the
most consonant three-tone chord (in all cases, conso-
nance is calculated as the aggregate dyadic consonance,
which is the sum of the consonances of all interval
classes in the chord; Huron, 1994). To this three tone
chord, he finds the pitch of the fourth tone that creates
the most consonant four-tone chord. And so forth, until
all 12 pitch classes are utilized.

If the first pitch is C, the second pitch is G, and the
third pitch is either E or E� (the major and minor triads
have equal aggregate consonance because they contain
the same three interval classes, 3, 4, and 5). Because
there are two possible three-tone chords, the resulting
cumulatively constructed scales bifurcate at this junc-
ture. For the major triad C–E–G, the fourth tone is A;
for the minor triad C–E�–G, the fourth pitch is B� Con-
tinuing this process, leads to the following two
sequences of pitch classes: C–G–E–A–D–F/B–A�–G�/
B �–D �/E �, and C–G–E �–B �–F–D/A �–B–D �/A–E/G �
(where X/Y denotes that X and Y have the same rank-
ing). When each pitch class is assigned a value accord-
ing to its ranking (e.g., in the first sequence, C¼ 1, G¼
2, E ¼ 3, A ¼ 4, D ¼ 5, F ¼ 6.5, B ¼ 6.5, A� ¼ 8, etc.),
they provide a predictively effective model of their
respective major and minor probe tone ratings, rCV(22)
¼ .87.

This model has reasonable predictive power (though
its predictive performance is towards the lower end of
the models discussed here) and, like Krumhansl’s 90a
consonance model, has potential for good explanatory
power if the consonance values it uses are derived from
a psychoacoustic or other bottom-up model. Smith
actually uses interval class consonance values derived
by Huron (1994) from empirical data collected by
Kameoka and Kuriyagawa (1969), Hutchinson and
Knopoff (1978), and Malmberg (1918), not from mod-
eled data. Using empirical data means that the

TABLE 4. Correlations (df ¼ 10) of the Parncutt 89 Model and the Fit Data for Each of the Context-setting Elements.

Major Minor

I IV–V–I II–V–I VI–V–I I IV–V–I II–V–I VI–V–I

.88 .92 .86 .98 .94 .90 .54 .92

Note: The mean correlation is .87.
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consonance values are likely to be correct and do not
have to rely upon possibly inaccurate models (Huron,
1994). However, this weakens the explanatory scope of
Smith’s model—ideally, a bottom-up consonance model
would be substituted at some stage. Like Krumhansl’s
consonance model, this model also suffers from the
indirect relationship between harmonic consonance
(the model’s variables) and melodic fit (what the exper-
iment actually measures).

LARGE 11

Ed Large’s (2011) model is appealing because it is
founded on the neural oscillations caused by interac-
tion of hypothesized banks of excitatory and inhibitory
neurons. It is, in this respect, a principally bottom-up
model that attempts a purely physical explanation. It
additionally allows for aspects of top-down learning to
be incorporated through the mechanism of Hebbian
learning (as described below). To be more precise,
Large models a neural oscillator as resulting from
interacting populations of excitatory and inhibitory
neurons. Each oscillator has a natural frequency
(eigenfrequency). Multiple such neural oscillators are
arranged in banks in order of their oscillation fre-
quency (a gradient frequency oscillator network) and
every oscillator can be connected (coupled) to every
other oscillator in the same bank. Furthermore, more
than one bank can be used and there can be connec-
tions between oscillators in different banks. The cou-
pling strengths of the connections between pairs of
oscillators can be varied to model Hebbian learning,
which neatly allows the model to incorporate top-
down learning as well. Another parameter controls the
nonlinearity of the connections.

Given an auditory stimulus comprising frequencies f1

and f2, this mechanism results in additional oscillations
(distortion products) not present in the stimulus. These
additional frequencies occur at harmonics (nf1 and nf2),
subharmonics (f1/n and f2/n), differences (f2� f1), sum-
mations (f1 þ f2), and integer ratios (mf1/n and mf2/n),
where m and n are natural numbers.

To model the probe tone data, Large uses a gradient
frequency network with oscillators spaced at 10 cent
intervals (the overall log-frequency range spanned is not
provided in the paper). Each oscillator is coupled to
other oscillators at low integer frequency ratios close
to 12-TET (16/15, 9/8, 6/5, 5/4, 4/3, 17/12, 3/2, 8/5, 5/
3, 16/9, 15/8, and 2/1) because low integer ratios are
stable resonances in such oscillator networks and 12-
TET is presumed to have been learned through the
Hebbian process. The nonlinearity of the couplings is
a free parameter denoted ". The network was stimulated

so as to give stable oscillations at all pitches in the tonal
context (Large is not specific about whether the four
contexts were aggregated or run separately and then
aggregated). The stabilities of the oscillations resulting
from this stimulus were used to model the probe tone
profiles and result in correlations of r(10) ¼ .97 for
major and and r(10) ¼ .88 for minor. The major profile
values are amongst the best of the models considered
here, but the minor values are worse than the bench-
mark ‘‘basic triad’’ model shown in Table 2. It is also
important to point out " was separately optimized for
the major and minor profiles (" ¼ 0.78 in major and
0.85 in minor). As we noted earlier, parameters’ values
should ideally be invariant across major and minor (as
they are in the Leman and Milne models); for example,
considering Large is modeling a physical system, why
would the nonlinearities of the neuronal connections be
different for major and minor contexts? With a unified
parameter value, the fit of the model will be less than the
above figures—though without access to the original, it
is impossible to ascertain what a single correlation value
over all 24 stimuli would be.

A possible concern about this model is that there are
a large number of parameters whose values can be arbi-
trarily chosen prior to formal optimization. For example,
there are the choices of how many banks, which pairs of
oscillators should be connected and how different banks
should be connected. Each bank of n oscillators, indexed
by i and j, has parameters including: the bifurcation �,
nonlinear saturation �1, �2, . . . , �n (typically these are
constrained to take the same value), frequency detuning
�1, �2, . . . , �n (typically these are constrained to take the
same value), and connection strengths cij (also these are
typically constrained). Although explanation is given for
some of the parameter values, it is not clear from the
published paper which values were chosen for the probe
tone model, or why, and to what extent different choices
would have affected the model’s predictions.

WOOLHOUSE 10

Woolhouse and Cross’ (2010) model calculates the sum
total of interval cycles between any arbitrary pitch class
set and the diatonic scale (for the major context) and
the harmonic minor scale (for the minor context). The
interval cycle between any two pitch classes is the num-
ber of times that interval can be stacked until it reaches
the same pitch class (assuming 12-tone equal tempera-
ment). For example, a major third has an interval cycle
of three because it takes three stackings to return to the
same pitch class (e.g., C–E–G�–C). The resulting sum is
taken to be a model of the ‘‘tonal attraction’’ of the two
pitch class sets.
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We will not discuss this model in depth here because
this theory does not actually produce a single model of
the probe tone data. There are 2,044 different pitch class
sets, so this results in 2,044 different models for each fit
profile. There is no principled method to choose any
one of these models over any other—other than choos-
ing the best fitting, which would result in a model that is
too flexible to have any value (essentially the choice of
pitch class set becomes a free parameter). For this rea-
son, Woolhouse seeks to show there is a statistical link
between interval cycles and the probe tone data by cal-
culating two distributions. The first is the distribution of
correlations between the probe tone data and 127 inter-
val cycle models generated by pitch class sets compris-
ing pitch classes only from the respective context. The
second is the distribution of correlations between the
probe tone data and 4,094 interval cycle models gener-
ated by all possible pitch class sets. He then shows these
two distributions are different (using a Kolmogorov-
Smirnoff test) and that the expected correlation value
of the former is higher than the latter. As such there is,
therefore, no single interval cycle model of the probe
tone data. It would have been informative to see how
well the average of all 127 interval cycle models contain-
ing only context pitch classes correlate with the probe
tone data, but that information is not supplied in the
paper.

PARNCUTT 11 & 94: VIRTUAL PITCH CLASS MODELS

Parncutt’s 11 model (Parncutt, 2011) is a predictively
effective bottom-up model, rCV(22) ¼ .93. It builds on
Parncutt’s (1988) model of virtual pitch classes, and the
concept of ‘‘tonic as triad,’’ which is explored in Parncutt
(2011). (The model described here was first presented in
2011, though aspects of it date back to 1988.) This con-
cept treats the tonic as a triad—a major or minor chord
built upon the tonic pitch class—and it can be seen as
a break from a more traditional concept of ‘‘tonic-as-
pitch-class.’’6 For example, the tonic of the key C major
is not the pitch class C, but the triad Cmaj; the tonic of
the key B� minor is not the pitch class B�, but the triad
B�min.

The tonic-as-triad concept implies that the context-
setting elements—whose purpose is to induce a strongly
defined key and all of which end in the tonic triad—can
be effectively represented by the tonic triad. For
instance, the cadence Fmaj–Gmaj–Cmaj is used to
establish the chord Cmaj as a strong and stable tonic
chord, so it is unsurprising if our attention is more

clearly focused on the Cmaj chord than on the preced-
ing chords. Indeed, even if the elements were, for exam-
ple, Fmaj–Gmaj, or only G7, even though the Cmaj is
not actually played it is still easy to imagine it as the
most expected (and best fitting) continuation. The tonic
triad, therefore, effectively summarizes our response to
the context-setting elements used in the experiment;
importantly, it also effectively summarizes our response
to tonal context-setting devices (cadences) in general.

The probe tone ratings are modeled from the weights
of the virtual pitches that are internally generated in
response to the notated pitches in the tonic triad. (By
internally generated, we mean that virtual pitches are
produced by some aspect of the auditory or cognitive
system—they are not physically present in the stimulus
prior to entering the ear.) Virtual pitches are typically
modeled to occur at subharmonics below the notated
pitch (the first N subharmonics of a notated pitch with
frequency f occur at frequencies f, f/2, f/3, . . . , f/N).
There is well-established evidence that virtual pitches
are generated from physical frequencies—for example,
if the fundamental is removed from a harmonic com-
plex tone, its pitch still heard as corresponding to that
missing fundamental, and combination tones produced
by multiple sine waves are clearly audible phenomena.
However, the extent to which HCTs (or OCTs) produce
salient virtual pitches at pitch classes different to that of
their fundamental is less obviously demonstrable.

In Parncutt’s model, the pitch of each subharmonic is
modeled in a categorical fashion; that is, it is categorized
by the pitch class it is closest to. For example, the sev-
enth subharmonic below C4 corresponds to a pitch 31
cents above D1, but is modeled by the pitch class (cat-
egory) D. The model, therefore, hypothesizes that pitch
discrepancies of the order of a third of a semitone have
no impact on whether that pitch is mentally categorized
as a specific chromatic pitch class.7 For any given
notated pitch, its virtual pitch classes are weighted: the
virtual pitch class corresponding to the notated pitch
class itself has weight 10; the virtual pitch class seven
semitones (a perfect fifth) below has weight 5; the vir-
tual pitch class four semitones (a major third) below has
weight 3; the virtual pitch class ten semitones (a minor
seventh) below has weight 2; the virtual pitch class two
semitones (a major second) below has weight 1. These

6 An early description of the tonic-as-triad concept is given in Wilding-
White (1961).

7 Parncutt (1988, p. 70) argues such pitch differences can be ignored
because the seventh harmonic of an HCT can be mistuned by
approximately half a semitone before it sticks out. Conversely, it could
be argued that when musicians’ pitches go off by more than about 20
cents, the notes are generally perceived as out-of-tune, and so do not
comfortably belong to their intended (or any other) chromatic pitch class
category.
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weights are justified on the grounds that they are
numerically simple and are approximately proportional
to the values achieved by taking a subharmonic series
with amplitudes of i�0.55, where i is the number of the
subharmonic (a typical loudness spectrum for the har-
monics produced by musical instruments), and summing
the amplitudes for all subharmonics with the same pitch
class (Parncutt, 1988, p. 74).

These virtual pitch classes, and their weights, are
applied to the three notated pitches in the major or
minor tonic triad; when virtual pitch classes from dif-
ferent notated pitches are the same, their weights are
summed to model the overall virtual pitch class weights
produced by a tonic triad. For example, in the chord
Cmaj, the notated pitch C contributes a virtual pitch
class C of weight 10, the notated pitch G contributes
a virtual pitch class C of weight 5, the notated pitch E
contributes a virtual pitch class C of weight 3; the three
are combined to give a virtual pitch class C with a total
weight of 18. The two sets of virtual pitch class weights
for a major and minor triad closely fit their respective
probe tone data, and do so with a plausible bottom-up
(psychoacoustic) model.

The resulting model has a cross-validation correlation
of rCV(22) ¼ .93. A natural explanation provided by this
model would appear to be that the greater the common-
ality of the pitches evoked by the tonic triad (which
represents the context) and those evoked by the probe,
the greater the perceived fit. However, in this model
(which is designated Parncutt 11a in Table 2), the probe
tone itself is modeled with a single pitch, rather than as
a collection of virtual pitch classes. It is not clear why
the tonic triad should evoke virtual pitches, but the
probe does not; the probe’s missing virtual pitch classes
seems like a conceptual inconsistency in this model. If
the probe tone is given virtual pitch classes—in the same
way as the tonic triad—the resulting predictions are still
good, but slightly less accurate, rCV(22) ¼ .90. This is
shown as Parncutt 11b in Table 2.

It is interesting to note that any tonic-as-triad model
will produce the same values when applied to any of
the four major contexts individually (similarly for the

minor contexts). This is because the precise form of the
contexts is ignored so long as they serve a cadential
function. The intercorrelations of Parncutt 11a and
each of the individual contexts’ fit data are shown in
Table 5.

Clearly, this model performs well for each of the con-
texts as well as to the aggregated data—something that
does not occur with the Butler and Parncutt ’89 mod-
els). Interestingly, in an earlier model, Parncutt (1994)
utilized a similar virtual pitch class model that included
all of the chords played in each context-setting element,
but adjusted their weights to account for short-term
memory decay (similar to that described for Leman
00). The memory half-life was a nonlinear parameter
optimized to 0.25 seconds; this means the model incor-
porates the virtual pitch classes of the final tonic, and—
to a much lesser degree—the virtual pitch classes of the
preceding chords. This means the model produces dif-
ferent values for each of the contexts. As shown in Table 6,
this model also performs well for each context-setting
element and, when its predictions are averaged across
the elements, it has a slightly better correlation than the
Parncutt 11a model (as shown in Table 2, where it is
designated Parncutt 94). We were unable to calculate the
cross-validation statistics because we do not have access
to the original model, but they are unlikely to be signif-
icantly better than Parncutt 11a. These results suggest
that utilizing all the chords in a given context-setting
element works slightly better than using just the tonic
triad for predicting the response specific to that element,
but using just the tonic triad for cadential contexts is
sufficient for capturing the effects of harmonic tonality
more generally; that is, averaged over a broader range of
chord progressions.

MILNE 14: SPECTRAL PITCH CLASS SIMILARITY MODELS

For our models, we build upon Parncutt’s central
insight of the tonic as triad, but we use a different mea-
sure of the ‘‘distance’’ between the probe tones and this
tonic—we use spectral pitch class similarity rather than
virtual pitch class commonality. Spectral pitch class
similarity uses plausible psychoacoustic assumptions

TABLE 5. Correlations (df ¼ 10) of the Parncutt 11a Model and the Fit Data for Each of the Context-setting Elements.

Major Minor

I IV–V–I II–V–I VI–V–I I IV–V–I II–V–I VI–V–I

.93 .90 .89 .90 .93 .97 .80 .95

Note: The mean correlation is .91.
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to give the similarity between the perceived pitch con-
tent of one tone (or chord) and those of another.

We will now provide a brief overview of the mathe-
matical formalization of the model (a more complete
description is provided in Appendix C, and the
MATLAB routines can be downloaded from http://
www.dynamictonality.com/probe_tone_files/). We
model the pitch perception of each probe tone and tonic
triad tone as taking the form of an HCT (harmonic
complex tone). All such HCTs have 12 harmonics. The
harmonics, indexed by n ¼ 1 to 12, of each tone are
weighted by the roll-off parameter � using 1/n�. This
weighting is used as a simple model for their perceptual
salience, which is conjectured to be lower for higher
harmonics because they are typically acoustically qui-
eter and less easy to perceptually resolve (because adja-
cent higher harmonics have smaller frequency ratios).
The pitch of each harmonic is expressed in a cents (log-
frequency) value relative to a reference frequency (e.g.,
middle C, which is 261.63 Hz) and then transformed
modulo 1,200 (the octave in cents). More explicitly, the
cents value of a frequency f is given by 1200 log2(f / fref)
mod 1200, where fref is the reference frequency. In other
words, the pitch of each harmonic is represented as
a finely grained pitch class.

Each such harmonic is embedded in a separate vector
each with 1,200 elements indexed from zero to 1,199. For
example, the first harmonic of an HCT with a nominal
pitch of C4 would be represented by a value of 1 at the
zeroth element of the first 1,200-element vector; the sec-
ond harmonic would be represented by a value of 1/2� at
the zeroth element of a second vector, because 0 is the
closest integer to 1200 log2(2) mod 1200; the third har-
monic by a value of 1/3� at the 702nd element of a third
vector, because 702 is the closest integer to 1200 log2(3)
mod 1200; and so on, until all twelve harmonics are
embedded in twelve vectors. If the notated pitch had been
G4, then all the above vectors would have the same ele-
ments but circularly transposed up by 700 cents (the 12-
TET perfect fifth). Each of these twelve vectors is then
circularly convolved by a discrete normal distribution
with standard deviation �, which is the smoothing width
parameter. As illustrated in Figure 3, the convolution

spreads (smears) the salience values across the log-
frequency domain and models pitch perceptual uncer-
tainty or noise in that, after convolution, there is a non-
zero probability that two similar but nonidentical log-
frequencies will be represented by the same (finely
grained) pitch class.

The twelve convolved vectors are then summed to
give a single 1,200-element spectral pitch class vector
denoted x. If each of the weights given to the original
harmonics is interpreted as a model of their probability
of being perceived, the value of each element in the final
pitch class vector models the expected number of par-
tials perceived at that log-frequency pitch class.

Using the above-described procedures and para-
meters we embed the tonic triad in one vector and
a probe tone in another. We model their fit with their
cosine similarity, which takes a value between 0 and 1.
Cosine similarity s(x,y) is the cosine of the angle
between the vectors x and y and it equals 1 when both
vectors are parallel and 0 when they are orthogonal.
More formally, s x; yð Þ ¼ xy

0
=
ffiffiffiffiffiffiffiffiffiffiffiffi
xx0yy0

p
, where x and y

are row vectors and 0 is the matrix transpose operator
that converts a row vector into a column vector.

In two of our three models we allow for different
weightings of the tonic triads’ tones. In Model a, we
give all their tones the same weights—that is, the sal-
iences of the partials in its three pitch classes, as previ-
ously determined by �, are multiplied by 1 and so left
unchanged. In Model b, two weightings are available—
the tonic triads’ roots have unity weight, while the
remaining pitch classes have a weight of !, which takes
a value between 0 and 1; for example, if the tonic triads
are Cmaj and Cmin, the saliences of the partials of the
pitch class C are left unchanged, while the saliences of
the partials of all the remaining pitch classes are multi-
plied by !. In Model c, there are still two weightings, but
this time the unity weight is applied to the roots of the
major and minor tonics and also the third of the minor
tonic, while the weighting of ! is applied to the remain-
ing pitch classes; for example, if the tonics are Cmaj and
Cmin, the weights of the partials of the pitch classes C
and E� are unchanged, while the weights of the remain-
ing pitch classes are multiplied by !.

TABLE 6. Correlations (df ¼ 10) of the Parncutt 94 Model and the Fit Data for Each of the Context-setting Elements.

Major Minor

I IV–V–I II–V–I VI–V–I I IV–V–I II–V–I VI–V–I

.93 .91 .93 .93 .93 .98 .81 .95

The mean correlation is .92.
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Model a is a pure tonic-as-triad model (all its three
pitch classes are equally weighted), but the separate
weightings in b and c allow these models to be situated
in continua between tonic-as-triad and tonic-as-pitch-
class models. This is useful because it is plausible that,
of the tonic triad’s pitches, the tonic pitch is the most
salient and tonic-like. Model c treats the third of the
minor triad as an additional root and as a frequent
substitute tonic. A bottom-up (sensory) justification
for considering the root of a major triad and the root
and third of a minor triad as having greater importance
is because a typical sensory model will predict that
these pitch classes closely correspond to those that are
likely to be perceived as possible fundamentals (virtual
pitches). For example, Parncutt’s (1988) psychoacous-
tic model predicts the third of a minor triad to have
a greater salience than the fifth (salience, in this con-
text, is the extent to which it is heard as a fundamental
pitch class after matching with a harmonic template).
There are also top-down explanations for giving the
third of a minor chord a higher weighting than the
fifth—in Western music, the third of the minor chord
is often treated as a stable root (minor chords in first
inversion are not treated as dissonances) and, in minor
keys, modulations to the relative major are very com-
mon (the tonic of the relative major is the third of the
minor tonic’s triad). We class models b and c as
bottom-up because there are plausible bottom-up
explanations, though we acknowledge that top-down
aspects may be playing an important role here too and
that the additional predictive abilities of b and c over
a may be a result of top-down processes.

The above means that, in addition to the intercept
and slope parameters (which are part of every model
discussed so far due to the process of obtaining

correlation values),8 Model a has two nonlinear para-
meters (� and �), while models b and c have three
nonlinear parameters (�, �, and !). This nonlinearity
means the parameter values cannot be optimized ana-
lytically, so we used MATLAB’s fmincon routine to
optimize them iteratively. We optimized each model
so as to minimize the sum of squared errors between
its predictions and the probe tone data—this is the
same for all the models discussed in this paper, because
obtaining correlation values automatically chooses
intercept and slope values that minimize the sum of
squared errors.

The optimized parameter values all seem quite plausi-
ble: for Model a, �̂ ¼ 0:52 and �̂ ¼ 5:71; for Model b,
�̂ ¼ 0:77, �̂ ¼ 6:99, and !̂ ¼ 0:63; for Model c, �̂ ¼ 0:67,
�̂ ¼ 5:95, and !̂ ¼ 0:50.9 The values of � are all similar to
the loudnesses of partials produced by stringed instru-
ments (a sawtooth wave, which is often used to synthe-
size string and brass instruments, has a pressure roll-off
equivalent to a � of 1 and, using Steven’s law, this approx-
imates to a loudness roll-off equivalent to � ¼ 0.60).
Under experimental conditions, the frequency difference
limen (just noticeable difference) corresponds to
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FIGURE 3. Discrete log-frequency embeddings of two partials——one at 400 cents, the other at 401 cents. On the left, no smoothing is applied, so their

distance under any standard metric is maximal; on the right, Gaussian smoothing (standard deviation of 3 cents) is applied, so their distance under any

standard metric is small.

8 The correlation coefficient between a model’s data and the empirical

data is given by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðŷ � yÞ0ðŷ � yÞ=ðy � �yÞ0ðy � �yÞ

q
, where 0 is the

transpose operator which turns a column vector into a row vector, y is
a column vector of the empirical data, �y is a column vector all of whose
entries are the mean of the empirical data and, critically, ŷ is a column
vector of the model’s predictions after having been fitted by simple linear
regression.

9 With iterative optimization, there is always a danger that a local
rather than global minimum of sum of squared errors is found; we
tried a number of different start values for the parameters, and the
optimization routine always converged to the same parameter values so
we are confident they do represent the global optimum.
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approximately 3 cents, which would be modeled by
a smoothing width of 3 cents (Milne, Sethares, Laney,
& Sharp, 2011, Online Supplementary: App. A). In
a music experiment like the one being modeled, we
would expect the smoothing to be somewhat wider, and
the value of around 6 cents seems plausible. It is also
worth noting that in an earlier experiment using a related
model, our optimized values were �̂ ¼ 0:42 and
�̂ ¼ 10:28 (Milne, Laney, & Sharp, 2015; these values are
similar to those found for this experiment, because using
them instead has only a small negative impact on the
resulting fit (reducing the correlation values by approx-
imately 0.003). This also indicates that the model is
robust over such changes to these parameters.

The optimized spectral pitch class similarity models
are predictively effective—for models a, b, and c, respec-
tively, the cross-validation statistics are rCV(22) ¼ .91,
rCV(22) ¼ .92, and rCV(22) ¼ .96. The predictions made
by the three models are shown in Figure 4. They also
have great explanatory power—like Parncutt’s virtual
pitch class model, we are using psychoacoustic princi-
ples to explain the specific shape taken by the probe
tone data.

Like some of the other models discussed in this paper
(e.g., Lerdahl 88 and Parncutt 11), each of ours produces
the same outputs across the four contexts, and they also
have high fits with the probe tone data for each of the
individual contexts, as shown in Table 7.

However, there is one aspect of these models that does
not bear a direct relationship with the experimental
procedure. In the experiment, the stimuli were all OCTs,
not HCTs. In our models, we use HCTs (if OCTs are
used as variables, the models perform very poorly).
(This is also the case in Krumhansl’s and Smith’s con-
sonance models, because their consonance values are all
derived from HCTs.) There are at least four possible
explanations that can bridge the gap between the mod-
el’s use of HCTs and the experiment’s use of OCTs.
First, nonlinearities in the auditory system—such as the
distortion products measured in brainstem responses to
simple chords Lee et al. (2009)—may add harmonics to
the OCTs (e.g., a combination tone of any two adjacent
OCT partials with frequencies f and 2f, has a frequency
at 3f —a third harmonic). Second, when listeners were
making their judgments of fit, the representations of the
tonic triad and probe they retrieved from short-term
memory may have been ‘‘contaminated’’ by long-term
representations of HCTs with the same pitch (HCTs
being much more familiar). Third, listeners may have
recalled the levels of fit, stored in long-term memory, of
equivalently sized HCT intervals. Fourth, listeners’
judgments of the fit of the probe and the tonic triad are

due to musical prevalence, but these musical preva-
lences are themselves a function of the psychoacoustic
process modeled here: specifically, composers usually
work with HCTs (not OCTs) and build up a set of tonal
prevalences based upon their desire to follow their
innate and universal perceptual processes (and ‘‘consu-
mers’’ support music that accords with their similar
innate processes). In each of the latter explanations,
top-down processes play a role of some kind. But at
root, it is the sensory component of this model (spectral
pitch class similarity) that actually dictates the final
form of the probe tone data. In that sense, these are all
essentially bottom-up models even if top-down pro-
cesses may play an important role in supporting, and
indeed strengthening, the patterns determined by spec-
tral pitch class similarity.
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FIGURE 4. The circles show the probe tone data, the upwards pointing

triangles show the data as modeled by Model a, the rightwards

pointing triangles show the data as modeled by Model b, the

downwards pointing triangles show the data as modeled by Model c.
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A Model of Scalic Tonality

In the previous section, we modeled the fit of pitch
classes to a given tonic triad. The same model can also
be used to model the tonicness of pitch classes or triads
given a scale (when the scale is treated as a pitch class
set). We call this a model of scalic tonality, because the
tonicness of a chord is a function of the scale against
which it is compared—even when the scale’s pitches
have equal weight.10 To do this relies on an assumption
that tonicness and fit are related—that is, that a pitch
class or chord must have a high fit to be a tonic. Of
course, there may be other factors that affect tonicness,
but this is the focus of this model. We do, however, make
some speculations about some possible processes that
are related and may play an additional role.

In our model of scalic tonality, the spectral pitches of
all of a given scale’s pitch classes are embedded in one
spectral pitch class vector, and the spectral pitches of
each possible pitch class or triad are embedded into
another, as described in the previous section (each spec-
tral pitch class is given a salience value as determined by
the roll-off parameter � and smeared according to the
smoothing width parameter �). In this way, the fit of the
scale and the pitch class or chord—and hence the tonic-
ness of the pitch class or chord—can be modeled by
their spectral pitch class similarity. In all of the examples
in this section, we used � ¼ 0.67 and � ¼ 5.95, as
optimized for Model c (we could have chosen the values
as optimized for any of the three models, but Model c’s
values fall between those of models a and b, so seemed
a sensible choice; furthermore, the results are robust
over the three sets of values). Also, the candidate tonic
triads have equally weighted pitch classes, which means
the model is effectively equivalent to Model a described
in the previous section. In other words, the root-

weighting parameter ! is not used in the scalic tonality
model.

It should be noted that Parncutt uses a similar fit-
based technique (using virtual rather than spectral pitch
classes) to determine the pitch class tonics for the dia-
tonic scale (Parncutt, 2011; Parncutt & Prem, 2008) in
medieval music. However, his approach is inconsistent
in the same way as in the Parncutt 11a model in that the
scale pitch class set is modeled with virtual pitches,
while the candidate tonic pitch classes are not. In the
following examples, we additionally look for tonic triads
as well as pitch classes, and we model the scale and
candidate tonics consistently—their pitch classes have
identical harmonic spectra and all pitch classes are
equally weighted (with one noted exception).

For this scalic tonality model to make sense requires
that we consider the scales as known entities (in either
short-term or long-term memory). For a scale to be
known, it must be perceived as a distinct selection of
pitches or as a specific subset of a chromatic gamut of
pitch classes. A composer or performer aids this by
ensuring all scale pitch classes are played over a stretch
of time short enough for them all to be maintained in
short-term memory, and by utilizing scales that have
relatively simple and regular structures (well-formed
scales provide an excellent example of a scale type that
is both simple and regular and, more generally, scales
that are subsets of a relatively small gamut of ‘‘chro-
matic’’ pitches). Long-term memory is also likely to play
an important role in that certain scales are learned
through repetitive exposure.

Up to this point, we have used uppercase Roman
numeral notation, so IV–V–I in a major key means all
chords are major, while IV–V–I in a minor key means
the first and last chords are minor. In the following
sections we are dealing with specific scales, so we use
upper case to denote major triads and lower case to
denote minor. For example, the above minor tonality
cadence is now denoted iv–V–i.

FIT PROFILES FOR 12-TET SCALES

In this section, we consider a variety of scales that can be
thought of as subsets of the twelve pitch classes of
twelve-tone equal temperament.

TABLE 7. Correlations (df ¼ 10) of the Milne 14c Model and the Probe Tone Fit Data for Each of the Context-setting Elements.

Major Minor

I IV–V–I II–V–I VI–V–I I IV–V–I II–V–I VI–V–I

.97 .92 .97 .92 .94 .98 .86 .96

Note: The mean correlation is .94.

10 It is worth noting that, for an abstract scale in which all pitch classes
are equally weighted, a pure short-term memory model (such as Butler’s,
1989) will give homogeneous fits for all in-scale pitch classes or chords.
The additional structure resulting from the addition of harmonics, or
subharmonics, makes the fits of different in-scale pitch classes and chords
heterogeneous.
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Major (Guidonian) hexachord. This six-tone scale
formed the basis of much medieval music theory and
pedagogy (Berger, 1987). It is equivalent to a diatonic
scale with the fourth or seventh scale degree missing.
For instance the C hexachord contains the pitches C, D,
E, F, G, A. There is no B or B� to fill the gap between A
and C. In modal music, the note used to fill the gap was
either a hard B (a B�) or a soft B (a B�).11 The choice of
hard or soft was not notated but was made by perfor-
mers to avoid simultaneous or melodic tritones—this
practice is called musica ficta (Berger, 1987). This scale
is illustrated in Figure 5.

In Figure 6, we will assume that pitch class 0 corre-
sponds to C. Figure 6a shows that the pitch classes E and
F (4 and 5), which are a semitone apart, are the least
well-fitting of the hexachord tones. In Gregorian chant,
the finalis (final pitch) was D, E, F, or G (corresponding
to the modes protus, deuterus, tritus, and tetrardus). Of
these modes, Figure 6a shows that the pitch classes with
the highest fit are at D and G (2 and 7), which suggests
these two modes have the most stable final pitches. This
tallies with statistical surveys, referenced in Parncutt
(2011), which indicate these two modes were the most
prevalent. The relative fits of D and G are even higher
when the hexachord has a Pythagorean tuning in which
all its fifths have the frequency ratio 3/2—such tunings
were prevalent prior to the fifteenth century (Lindley,
2013).

When we look at the modeled fit of each of the hexa-
chord’s major and minor triads with all the pitches in
the hexachord, the results are quite different (Figure
6b). Here, every major or minor chord has identical fit
with this scale. It is as if the Guidonian hexachord—
when used for major/minor triad harmony—has no
identifiable best-fitting tonic chord. As shown in the
next example, all of this changes when that missing
seventh degree is specified, thereby producing a specific
diatonic scale.

Diatonic major scale. The diatonic scale—regardless
of its mode—has numerous properties that make it
perceptually and musically useful. A number of those
properties follow from its well-formedness (Carey &
Clampitt, 1989; Wilson, 1975) such as Myhill’s property,

maximal evenness, uniqueness, coherence, and transpo-
sitional simplicity.12 Furthermore, it contains numerous
consonant intervals (approximations of low integer fre-
quency ratios), and supports a major or minor triad on
all but one of its scale degrees. For tonal-harmonic
music, the major scale (e.g., C, D, E, F, G, A, B) is the

FIGURE 5. C (Guidonian) hexachord.
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FIGURE 6. Modeled pitch class and chord fit with the Guidonian

hexachord.

11 The shape of the natural and flat symbols derive from two different
ways of writing the letter ‘‘b.’’

12 Myhill’s property is that every generic interval (e.g., second, third,
fourth) comes in two specific sizes (as measured in a log-frequency unit
like semitones or cents). Maximal evenness means an N-tone scale’s large
and small steps are arranged so as to most closely approximate an N-tone
scale with equally sized steps. Uniqueness means each scale degree is
surrounded by a unique set of specific intervals (this does not occur in
equal-step scales or scales with patterns that repeat at sub-octave intervals
like the diminished). Coherence means the interval size (in cents or semi-
tones) spanned by any n consecutive scale notes is always larger than the
interval size spanned by n � 1 consecutive scale notes; for instance,
a diatonic scale in Pythagorean tuning is not coherent because the (aug-
mented) fourth between F and B is larger than the (diminished) fifth from
B to F. Transpositional simplicity means the scale can be transposed so as
to produce a new scale that shares all but one pitch class with the untran-
sposed scale.
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most important and prevalent mode of the diatonic
scale. The only other mode that comes close is the Aeo-
lian (e.g., A, B, C, D, E, F, G, or C, D, E�, F, G, A�, B�)—
also known as the natural minor scale—which is one of
the three scale forms associated with the minor scale
(the other two are the harmonic minor, in which the
Aeolian’s seventh degree is sharpened, and the ascend-
ing melodic minor in which the sixth and seventh
degrees are sharpened). The C major diatonic scale is
illustrated in Figure 7.

The addition of a seventh tone to the hexachord—
thereby making a diatonic scale—makes the fits of its
triads more heterogeneous. Figure 8b illustrates this
with the diatonic major scale—note how the Ionian and
Aeolian tonic triads (the chords shown on pitch classes
0 and 9, respectively) are modeled as having greater fit
than all the remaining triads. This, correctly, suggests
they are the most appropriate tonics of the diatonic
scale—the major scale’s tonic and the natural minor
scale’s tonic, respectively. The tonicness of the diatonic
vi chord is also reflected in its use as a substitute for the
tonic (I) in deceptive cadences (Macpherson 1920, p.
106; Piston & Devoto, 1987, p. 191), and the frequent
modulation of minor keys to their relative major (Piston
& Devoto, 1987, p. 61). It is also interesting to observe
that the fourth and seventh degrees of the major scale
have lower fit than the remaining tones. This possibly
explains why these two scale degrees function as leading
tones in tonal-harmonic music—scale degree 7̂ resolv-
ing to 1̂, and 4̂ resolving to 3̂—for example, both these
motions occur in the dominant seventh to tonic cadence
(i.e., V7–I). They function as leading tones because lis-
teners anticipate that a poor-fitting, hence unstable,
tone will move to a stable good-fitting tone.

There are five aspects of major-minor tonality not
obviously explained by the above fit profiles: (a) in the
diatonic scale, the Ionian tonic is privileged over the
Aeolian tonic; (b) in the major scale, the seventh scale
degree is typically heard as more active—more in need of
resolution—than the fourth degree; (c) the importance of
the V–I cadence; (d) the activity of the seventh degree of
the major scale is significantly reduced when it is the fifth
of the iii (mediant) chord in comparison to when it is the
third of the V (dominant) chord. We propose two addi-
tional hypotheses that may account for these features.

A bottom-up hypothesis to explain the first two fea-
tures is that the strongest sense of harmonic resolution
is induced when a bad-fitting (low spectral pitch class
similarity) tone moves by semitone to the root of a best-
fitting (high spectral pitch class similarity) chord, where
the spectral pitch class similarities are measured with
respect to the scale. In the white-note diatonic scale,

there are two best-fitting triads (Cmaj and Amin) and
two worst-fitting pitch classes (B and F). This means
that only Cmaj has a root (C) that can be approached by
semitone from a worst-fitting pitch class (B); for Amin,
the root (A) cannot be approached, by semitone, by
either B or F. If we assume that this provides a built-
in advantage to the Ionian mode, this introduces an
interesting feedback effect. Let us now weight the pitch
class C a little higher than the other tones to reflect its
status as the root of a best-fitting triad that is
approached, by semitone, by a worst-fitting pitch—the
results of this are illustrated in Figure 9 where the
weight of C is twice that of the other tones (possibly
an extreme value, but it demonstrates the effect).
Although the pitch class C is a member of both the C

FIGURE 7. C major scale.
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FIGURE 8. Modeled pitch class and chord fit with the major scale.
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major and A minor tonics, Figure 9b shows that increas-
ing its weight disproportionately enhances the fit of the
triad Cmaj over the triad Amin. It also decreases the fit
of B (Figure 9a). It seems likely, therefore, that this
results in a positive feedback loop: we hypothesize that
the resolution of the poor-fitting B to the root of Cmaj
increases the perceived fit of C; we model this by giving
the C a greater weight, and this disproportionately
increases the fit of Cmaj over Amin, and reduces the fit
of B; this is likely to result in an even stronger resolution
from B to the root of Cmaj (B is worse fitting than
before, and Cmaj is better fitting) and this, in turn, will
further enhance the fit of pitch class C and thereby
enhance the fit of Cmaj over Amin, and so on in a pos-
itive feedback loop.

The third feature—the importance of the V–I
cadence, which is typically described as the ‘‘strongest’’
or ‘‘most powerful’’ progression in tonal music (Piston
& Devoto, 1987, p. 21; Pratt, 1996, p. 9)—also follows, in
part, from the same hypothesis that resolution is
enhanced by a low-fit pitch moving to the root of
a high-fit triad. This favors the resolutions V–I or
vii�–I (which contain the scale degrees 7̂–1̂—a resolution
to the tonic’s root), over IV–I or ii–I (which contain the
scale degrees 4̂–3̂—a resolution to the tonic’s third). It is
also interesting to note that V7–I and vii�–I, which pro-
vide the strongest tonal resolutions, contain both 7̂–1̂
and 4̂–3̂.

However, this suggests that iii–I would also provide an
effective cadence because it too has the worst-fitting 7̂
resolving to the root of I. But such cadences are rare
(Piston & Devoto, 1987, p. 21), and the activity of the
seventh degree is typically felt to be much reduced when
it is the fifth of the iii chord—a common use of the
iii chord is to harmonize the seventh degree when it
is descending to the sixth (Macpherson, 1920, p. 113).
This may be explained by a second hypothesis, which is
that we need to consider the fit of pitches not just in
relation to their scalic context, but also in relation to
their local harmonic (chordal) context. Against the con-
text of a major or minor chord, the third is the worst-
fitting pitch—see Figure 10 (all triad pitches are equally
weighted), which shows that both chords’ thirds (pitch
class 4 for the major triad, and 3 for the minor) have
lower fit than the root and fifth (pitch classes 0 and 7).
This suggests that the higher fit of scale degree 7̂ in iii—
due to it being the chord’s fifth—makes it less active;
while the lower fit of 7̂ in V—due to it being the chord’s
third—makes it more active. This hypothesis, therefore,
explains the greater stability of the seventh degree in iii
compared to V, and completes the explanation for the
importance of the V–I, V7–I, and vii�–I cadences.

These additional hypotheses (the importance of semi-
tone resolutions from poor-fit tones to roots of good-fit
triads, and the decreased fit of pitches that are the thirds
of chords) seem promising in that they may determine
precisely which semitone movements will function as
leading tone resolutions and which will not. In future
work, we hope to precisely specify these effects, and use
them to model responses to a variety of chord progres-
sions and scalic contexts.

Harmonic minor scale. An important aspect of the minor
tonality is that the harmonic minor scale is favored over
the diatonic natural minor scale—particularly in com-
mon practice cadences where (the harmonic minor) V–
i is nearly always used in preference to (natural minor) v–i
(Piston & Devoto, 1987, p. 39). The harmonic minor scale
is equivalent to the Aeolian mode with a sharpened sev-
enth degree. This change has an important effect on the
balance of chordal fits—and goes some way to explaining
why this scale forms the basis of minor tonality in
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FIGURE 9. Modeled pitch class and chord fit with a major scale with

a double-weighted tonic pitch class.
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Western music. The C harmonic minor scale is illustrated
in Figure 11.

Figure 12a shows that 7̂ is clearly the worst-fitting
scale degree; the next worst are �6̂ and 2̂. Figure 12b
shows that the best-fitting triad is i; furthermore, every
pitch in this tonic i chord can be approached by the
three most poorly fitting scale degrees which, there-
fore, act as effective leading tones: 7̂–1̂, �6̂–5̂, and
2̂– �3̂—as exemplified by a chord progression like
Bdim7–Cmin, or G7 �9–Cmin. These properties appear
to make this scale a context that provides unambiguous
support of a minor triad tonic. Compare this to the
diatonic mode, where there is an equally well-fitting
major triad; for example, Macpherson (1920, p. 162)

writes that, ‘‘any chord containing the minor 7th usually
requires to be followed as soon as possible by a chord
containing the Leading-note . . . otherwise the tonality
easily becomes vague and indeterminate, and the music
may tend to hover somewhat aimlessly between the
minor key and its so-called ‘relative’ major.’’

Ascending melodic minor scale. It is well-recognized in
music theory that the harmonic minor scale provides
effective harmonic support for a minor tonic, but that it
is also melodically awkward due to the augmented sec-
ond between its sixth and seventh degrees. When
a melodic line is moving from the sixth to the seventh
degree, this awkward interval is typically circumvented
by sharpening the sixth degree—this produces the
ascending melodic minor scale (the descending melodic
minor scale is identical to the natural minor scale; Aeo-
lian mode). The C ascending melodic minor scale is
illustrated in Figure 13.

Figure 14b shows that, in terms of chord fits, this scale
has returned to a similar situation as the Guidonian
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FIGURE 10. Modeled pitch class fits with unweighted major and minor

triads.

FIGURE 11. C harmonic minor scale.
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scale.
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hexachord: all chords have equal fit, hence there is no
obvious tonic. This suggests that using this scale, for
brief periods of time to improve the melodic line, will
not disrupt a minor tonality previously established with
the parallel harmonic minor scale. However, this scale
cannot form the foundation of a minor tonality, because
it has no specific tonal centre (when triads are used).
Again, this seems to be in accord with conventional
tonal music theory, which specifies that the primary
function of this scale is to improve melodic connections
rather than to provide the basis for harmony (the use of
the raised sixth degree, like A� in C minor, is usually
subject to strict melodic conventions—e.g., Schoenberg
(1969, p. 18) advises that it should not move to the
‘‘natural’’ sixth, which is A� in C minor, or the ‘‘natural’’
seventh degree, which is B� in C minor).

Harmonic major scale. In the same way that sharpening
the seventh degree of the Aeolian mode can make its tonic
unambiguously the best-fitting, it is interesting to con-
sider if there is a different alteration that can do the same
for the Ionian mode. The alteration that seems to provide
a similar benefit for the Ionian is to flatten its sixth degree,
which forms the harmonic major scale. The harmonic
major scale plays a notable role in Russian tonal music
theory as exemplified by Rimsky-Korsakov (1885). The C
harmonic major scale is illustrated in Figure 15.

In comparison to Figure 8b, Figure 16b shows how
the I chord is now the uniquely best-fitting chord. This
appears to indicate that flattening the sixth degree of the
major scale strengthens the major tonality. This accords
with Harrison’s (1994, pp. 15-34) description of the
chromatic iv in major as the tonic-strengthening dual
of the ‘‘chromatic’’ V in minor. However, like the har-
monic minor scale, this alteration creates an awkward
sounding melodic interval—the augmented second
between the sixth and seventh degrees—which maybe
explains why this scale is not considered to be the pri-
mary major tonality scale.

FIT PROFILES FOR MICROTONAL SCALES.

Unlike all of the previously discussed models, ours is
generalizable to pitches with any tuning (e.g., microtonal
chords and scales). It is interesting to explore some of
the predictions of pitch class and chord fit made by the
model given a variety of microtonal scales. All of the
microtonal scales we analyze here are well-formed. We
do this under the hypothesis that the simple and regular
structure of such scales may make them easier to hold
in short-term memory, or learn as part of long-term
memory—all well-formed scales have a number of use-
ful musical properties including the previously

described Myhill’s property, uniqueness, maximal even-
ness, transpositional simplicity.13
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FIGURE 14. Modeled pitch class and chord fit with the ascending

melodic minor scale.

FIGURE 13. C ascending melodic minor scale.

FIGURE 15. C harmonic major scale.

13 Equal step scales are structurally simpler and more regular than
well-formed scales, but they are actually too regular because their internal
structure is completely uniform—every pitch class or chord bears the
same relationship to all other scale pitches and chords. The structure of
equal step scales cannot, therefore, support a different musical function
on different scale degrees—such a musical function may be imposed by
pitch repetition or a drone, but it is not inherent to the scale, merely to its
usage.
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Quarter-comma meantone diatonic scale. This tuning
was first described by Pietro Aaron in 1523 (cited in
Barbour, 1951) who described a system of temperament
where every perfect fifth is equally flattened slightly but
all major thirds are perfectly tuned. This is around the
time that modal music began its gradual transition into
harmonic tonality, and may have been a prevalent tuning
at that time. For that reason it is interesting to see what, if
any, impact it has on the fit of the diatonic pitches and
chords. One aspect that differentiates meantone tunings
from 12-TET is that enharmonically equivalent pitches
(e.g., C� and D�) do not have identical tunings. For this
reason, we use a gamut of 19 pitch classes (e.g., the chain-
of-fifths from C� to E�), which provides a sharp and
a flat for every diatonic scale degree (e.g., C, D, E, F, G,
A, B) except for the fourth (e.g., F) which has no flat,
and the seventh (e.g., B) which has no sharp. Another
difference is that its major and minor triads are, by any
standard metric, closer to the low integer ratios of just
intonation (4:5:6 and 10:12:15, respectively) than the

12-TET versions: the just intonation triads are, to the
nearest cent, (0, 386, 702) and (0, 316, 702); the quarter-
comma meantone triads, to the nearest cent, are (0, 386,
697) and (0, 310, 697); the 12-TET triads are (0, 400,
700) and (0, 300, 700).

For the diatonic scale degrees and chords, the overall
pattern of fits is similar to that produced by 12-TET—as
shown in Figure 17. The fourth and seventh scale
degrees are still modeled as the worst fitting, and the
Ionian and Aeolian tonic triads are still modeled as the
best fitting. This suggests that this pattern and, hence,
its tonal implications, are robust over such changes in
the underlying tuning of the diatonic scale.

22-TET 1L, 6s porcupine scale. In the following three
examples, we look at different well-formed scales that
are subsets of 22-tone equal temperament. The names
of these temperaments (porcupine, srutal, and magic)
are commonly used in the microtonal community, and
are explained in greater detail in Erlich (2006) and the
website http://xenharmonic.wikispaces.com/. In all of
these scales, the tunings—rounded to the nearest cent—
of the major triads are (0, 382, 709), and the tunings of
the minor triads are (0, 327, 709). These tunings are, by
most standard metrics, closer to the just intonation major
and minor triads than those in 12-TET. For each scale,
the spectral pitch class similarities suggest one or more
triads that will function as tonics. We do not, at this stage,
present any empirical data to substantiate or contradict
these claims; but we suggest that collecting such empir-
ical data—tonal responses to microtonal scales—will be
a useful method for testing bottom-up models of tonality.
Audio examples of the scales, their chords, and some of
the cadences described below, can be downloaded from
http://www.dynamictonality.com/probe_tone_files/. The
intervallic structure of these scales can also be gleaned
from Figures 18a, 19a, and 20a, where the scale pitches
are shown by dark bars against a light grey 22-TET
‘‘chromatic’’ background.

The porcupine scale has seven tones and is well-
formed—it contains one large step of size 218 cents and
six small steps of size 164 cents (hence its signature 1L,
6s), and the scale pitch classes are indicated with dark
bars in Figure 18a. Figure 18b shows that the major
triad on 18 and the minor triad on 9 are modeled as
the best-fitting. This suggests that, within the con-
straints of this scale, they may function as tonics. The
worst-fitting pitch classes are 6 and 12, which can both
lead to the root of the minor triad on 9. Neither of these
potential leading tones are thirds of any triads in this
scale, which possibly reduces their effectiveness when
using triadic harmony. However, the above suggests the

0 1 2 3 4 5 6 7 8 9 10 11
0

0.2

0.4

0.6

0.8

1

(a)

(b)

Pitch classes (scale pitches are dark, non−scale pitches are light)

S
pe

ct
ra

l p
itc

h 
si

m
ila

rit
y 

of
 a

ll 
pi

tc
h 

cl
as

se
s 

an
d 

ha
rm

on
ic

 m
aj

or
 p

itc
h 

cl
as

se
s

0 1 2 3 4 5 6 7 8 9 10 11
0

0.2

0.4

0.6

0.8

1

Triad roots (major are dark, minor are light)

S
pe

ct
ra

l p
itc

h 
si

m
ila

rit
y 

of
 

ha
rm

on
ic

 m
aj

or
 tr

ia
ds

 a
nd

 p
itc

he
s

FIGURE 16. Modeled pitch class and chord fit with the harmonic major

scale.
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most effective cadences in this scale will be the minor
chord on 12 leading to the minor chord on 9, the major
chord on 15 (whose fifth is pitch class 6) leading to the
minor chord on 9, or a variety of seventh chords con-
taining both 6 and 12 like the dominant seventh built on
15 (whose third is 6 and seventh is 12) also leading to
the minor chord on 9. Using Roman numerals, taken
relative to the minor tonic on pitch class 9, these are ii–i,
III–i, and III7–i, respectively.

22-TET 2L, 8s srutal scale. This ten-tone microtonal
scale—first suggested by Erlich (1998)—is unusual in
that it repeats every half-octave (it is well-formed within
this half-octave interval). This repetition accounts for
why the fit levels—shown in Figure 19—also repeat at
each half-octave. It contains two large steps of size 164
cents, and eight small steps of size 109 cents. The scale
pitches are indicated with dark bars in Figure 19a. The
modeled fits suggest there are two possible major triad

tonics (on pitch classes 4 and 15) and two possible
minor tonics (on pitch classes 2 and 13). The roots of
both the minor chords can be approached by a poorer-
fitting leading tone (pitch classes 0 and 11) than can the
major (pitch classes 2, 6, 13, and 17). This suggests effec-
tive cadences can be formed with the major chord on 15
(whose third is pitch class 0) proceeding to the minor
chord on 2 (or their analogous progressions a half-octave
higher), or variety of seventh chords such as the domi-
nant seventh on 4 (whose seventh is pitch class 0). Using
Roman numerals relative to the minor tonic on 2 (or 13),
these are VII–i and II7–i, respectively. These cadences can
be thought of as slightly different tunings of the familiar
12-TET progressions V–i and �II7–i.

22-TET 3L, 7s magic scale. This microtonal scale also
has ten tones, and is well-formed with respect to the
octave (so no repetition at the half-octave)—it has
three large steps of size 273 cents and seven small steps
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FIGURE 17. Modeled pitch class and chord fit with the 1/4-comma

meantone diatonic major scale.
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FIGURE 18. Modeled pitch class and chord fit with the porcupine 1L, 6s

scale.
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of size 55 cents. As before, the dark bars in Figure 20a
indicate the scale pitches. In this scale, every degree
that is a root of a major triad is also a root of a minor
triad (and vice versa). For this reason, in Figure 20b,
only the better fitting (major or minor) is shown on the
chart; for the pitch class 9, however, the major and
minor triad have equal fit, so this should be borne in
mind.

The modeled fits, in Figure 20b, suggest two possible
major tonics (with roots on pitch classes 2 and 9) and
two possible minor tonics (on pitch classes 9 and 16).
Figure 20a shows that, in terms of fit, pitch class 17
looks like a promising leading tone to the root of the
minor triad on 16. However, this pitch class is not the
third of any triad in the scale. The other leading tone
contenders are on 1 and 8, and both of these can be triad
thirds. This implies the major chord on 2, and the major
or minor chord on 9, may function as tonics in this
scale. This suggests effective cadences can be formed

with the major chord on 16 (whose third is pitch class
1) proceeding to the major triad on pitch class 2, or the
major chord on pitch class 1 (whose third is pitch class
8) proceeding to the major or minor triad on pitch class
9. In Roman numeral notation, relative to their respec-
tive tonics, these are VII–I, VII–I, and VII–i. Interest-
ingly, in all these examples the cadences are—in terms
of 12-TET—similar to a major chord, whose root is
pitched in-between V and �VI, proceeding to I or i (the
distance between these roots is 764 cents).

Conclusion

We have shown that there at least two types of plausible
bottom-up model—Parncutt’s virtual pitch class com-
monality models, and our spectral pitch class similarity
models—that can explain why the probe tone data take
the form they do. We argue that bottom-up explana-
tions, such as these, are able to account not just for the

0 1 2 3 4 5 6 7 8 9 1011121314 15161718192021
0

0.2

0.4

0.6

0.8

1

(a)

(b)

Pitch classes (scale pitches are dark, non−scale pitches are light)

S
pe

ct
ra

l p
itc

h 
si

m
ila

rit
y 

of
 2

2 
pi

tc
h 

cl
as

se
s 

an
d 

th
e 

2L
, 8

s 
w

el
l−

fo
rm

ed
 s

ca
le

 p
itc

he
s

0 1 2 3 4 5 6 7 8 9 1011121314 15161718192021
0

0.2

0.4

0.6

0.8

1

Triad roots (major are dark, minor are light)

S
pe

ct
ra

l p
itc

h 
si

m
ila

rit
y 

of
2L

, 8
s 

sc
al

e’
s 

tr
ia

ds
 a

nd
 p

itc
he

s

FIGURE 19. Modeled pitch class and chord fit with the srutal 2L, 8s

scale.

0 1 2 3 4 5 6 7 8 9 1011121314 15161718192021
0

0.2

0.4

0.6

0.8

1

(a)

(b)

Pitch classes (scale pitches are dark, non−scale pitches are light)

S
pe

ct
ra

l p
itc

h 
si

m
ila

rit
y 

of
 2

2 
pi

tc
h 

cl
as

se
s

an
d 

th
e 

3L
, 7

s 
w

el
l−

fo
rm

ed
 s

ca
le

 p
itc

he
s

0 1 2 3 4 5 6 7 8 9 1011121314 15161718192021
0

0.2

0.4

0.6

0.8

1

Triad roots (major are dark, minor are light, 
but the triad on 9 can be either)

S
pe

ct
ra

l p
itc

h 
si

m
ila

rit
y 

of
 3

L,
7s

 s
ca

le
’s

 tr
ia

ds
 a

nd
 p

itc
he

s

FIGURE 20. Modeled pitch class and chord fit with the magic 3L, 7s

scale.

388 Andrew J. Milne, Robin Laney, & David B. Sharp



existence of fit profiles (as provided by top-down mod-
els), but also for the specific form that they take. In light
of both theories’ ability to explain and predict the data,
we suggest that there is now little reason to believe the
probe tone data are a function purely of top-down pro-
cesses. We cannot, on the basis of the probe tone data,
determine whether the primary mechanism is spectral
pitch class or virtual pitch class similarity. To distin-
guish between these effects would require novel
experiments.

We have also used our model to predict candidate
tonic triads for a number of scales that are subsets of
the full twelve chromatic pitch classes. The results
accord well with music theory. Furthermore, we have
suggested some additional mechanisms that may
account for strong cadences (a poor-fitting tone moving
to the root of a best-fitting triad) and how this, in turn,
may cause the diatonic scale to become more oriented to
its major (Ionian) tonic rather than its minor (Aeolian)
tonic. We also suggested a possible reason for why the
seventh degree loses much of its activity (need to
resolve) when it is the fifth of the mediant (iii) chord.

And, in combination, these two mechanisms support
the use of V–I as a cadential chord progression. These
latter hypotheses are somewhat speculative because they
have not been included in a formal mathematical
model, but we feel they are promising ideas that warrant
further investigation.

Finally, we have pointed to the way in which micro-
tonal scales can also be analyzed with this technique,
and how this may become an important means to
explore our general perception of tonality, and to test
models thereof. Ideally, any model that purports to
explain—from the bottom up—how Western tonality
works, should also be able to make useful predictions
for the possibly different tonalities evoked by com-
pletely different scales and tunings.

Author Note

Correspondence concerning this article should be
addressed to Andrew J. Milne, MARCS Institute, Univer-
sity of Western Sydney, Locked Bag 1797, Penrith, 2751,
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Appendix A

INTERCORRELATIONS OF MODELS AND DATA

Appendix B

CROSS-VALIDATION CORRELATION

We performed 20 runs of 12-fold cross-validation of
the models. Each of the 20 runs utilizes a different
12-fold partition of the probe tone data, each fold
containing 2 samples. Within each run, one fold is
removed and denoted the validation set; the remain-
ing 11 folds are aggregated and denoted the training
set. All parameters of the model are optimized to
minimize the sum of squared errors between the mod-
el’s predictions and the 22 samples in the training set.
For the linear models discussed in this paper, there are
only two parameters—intercept and slope. Our spectral
models have additional nonlinear parameters. Cross-
validation statistics, which measure the fit of the pre-
dictions to the validation set, are then calculated. This
whole process is done for all 12 folds and this consti-
tutes a single run of the 12-fold cross-validation. The
same process is used for all 20 runs of the 12-fold
cross-validation—each run using a different 12-fold
partition of the data. The cross-validation statistics are
averaged over all 12 folds in all twenty runs.

More formally: Let the data set of I samples be parti-
tioned into K folds (the probe tone data comprise 24

values, so I¼ 24, and we use 12-fold cross-validation, so
K ¼ 12). Let k[i] be the fold of the data containing the
ith sample. The cross-validation is repeated, each time
with a different K-fold partition, a total of J times. The
cross-validation correlation of the jth run of the cross-
validation is given by

rCV j½ � ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XI

i¼1

ðyi � ŷnk i½ �
i Þ2

.XI

i¼1

ðyi � �yÞ2;

vuut ð1Þ

where ŷnk½i�i denotes the fitted value for the ith sample
returned by the model estimated with the k[i]th fold of
the data removed, and �y is the mean of all the sample
values yi. The final cross-validation correlation statistic
is the mean over the J runs of the cross-validation (in
our analysis, J ¼ 20):

rCV ¼
1
J

XJ

j¼1

rCV j½ �: ð2Þ

TABLE A1. Intercorrelations of the Probe Tone Data and the Models.

PD BT K90b K90a S97 L88 B89 P89 P11a P11b P94 M14a M14b M14c

Probe data 1.00 .86 .87 .65 .89 .96 .88 .96 .94 .92 .96 .94 .95 .97
Basic triad .86 1.00 .80 .57 .76 .88 .82 .84 .84 .93 .86 .91 .91 .89
Krumhansl 90b .87 .80 1.00 .57 .90 .91 .96 .89 .77 .92 .81 .94 .90 .85
Krumhansl 90a .65 .57 .57 1.00 .59 .66 .50 .65 .70 .67 .70 .65 .69 .65
Smith 97 .89 .76 .90 .59 1.00 .90 .87 .87 .83 .93 .85 .93 .89 .89
Lerdahl 88 .96 .88 .91 .66 .90 1.00 .89 .96 .89 .95 .91 .98 .99 .97
Butler 89 .88 .82 .96 .50 .87 .89 1.00 .91 .80 .90 .83 .92 .88 .85
Parncutt 89 .96 .84 .89 .65 .87 .96 .91 1.00 .93 .92 .96 .95 .96 .96
Parncutt 11a .94 .84 .77 .70 .83 .89 .80 .93 1.00 .88 .99 .88 .91 .93
Parncutt 11b .92 .93 .92 .67 .93 .95 .90 .92 .88 1.00 .91 .99 .97 .95
Parncutt 94 .96 .86 .81 .70 .85 .91 .83 .96 .99 .91 1.00 .90 .93 .94
Milne 14a .94 .91 .94 .65 .93 .98 .92 .95 .88 .99 .90 1.00 .98 .96
Milne 14b .95 .91 .90 .69 .89 .99 .88 .96 .91 .97 .93 .98 1.00 .98
Milne 14c .97 .89 .85 .65 .89 .97 .85 .96 .93 .95 .94 .96 .98 1.00
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Appendix C

FORMAL SPECIFICATION OF THE SPECTRAL PITCH CLASS SIMILARITY

MODEL OF THE PROBE TONE DATA

In this section, we give a formal mathematical specifi-
cation of our model. The techniques used are based on
those introduced by Milne et al. (2011). The MATLAB
routines that embody these routines can be downloaded
from http://www.dynamictonality.com/probe_tone_
files/.

Let a chord comprising M tones, each of which con-
tains N partials, be represented by the matrix
Xf 2 RM�N . Each row of Xf represents a tone in the
chord, and each element of the row is the frequency of
a partial of that tone. In our model, we use the first
twelve partials (so N ¼ 12); this means that, if Xf is
a three-tone chord, it will be a 3 � 12 matrix.

The first step is to convert the partials’ frequencies
into pitch class cents values:

xpc m; n½ � ¼ 1200blog2 xf m; n½ �=xrefð Þe mod 1200; ð3Þ

where [�] is the nearest integer function, and xref is an
arbitrary reference frequency (e.g., the frequency of
middle C). These values are then collected into a single
pitch class vector denoted ~xpc 2 Z12M indexed by i such
that xpc½m; n�7!~xpc½i�, where i ¼ ðm� 1ÞN þ n.

Let each of the partials have an associated weight
xw[m, n], which represents their salience, or probability
of being perceived. We test three models (a, b, and c).
Given model ‘, where ‘ 2 fa; b; cg denotes the model,
the saliences of the tonic triad’s partials are parameter-
ized by a roll-off value � 2 R, and a chord-degree weight-
ing value ! 2 ½0; 1�, so that

! m =2 R‘½ �xw m; n½ � ¼ n��

m ¼ 1; . . . ;M; and n ¼ 1; . . . ; 12;
ð4Þ

where ½m =2 R‘� denotes an indicator function that
equals 0 when tone m is member of the set R‘ of tones
classed as chord roots in model ‘, and is otherwise 1. In
Model a, all tones are classed as roots, hence all tones
have a chord-degree weighting of 1; in Model b, only the
conventional roots of the major and minor triads are
classed as roots (i.e., pitch class C in the chord Cmaj or
Cmin), all other tones have a chord degree weighting of
!; in Model c, the third of the minor triad is also classed
as a root (e.g., E� in Cmin), the remaining tones have
a chord degree weighting of !. Ignoring the chord
degree weighting value, Equation (4) means that when
� ¼ 0, all partials of a tone m have a weight of 1; as �
increases, the weights of its higher partials are reduced.
These values are collected into a single weighting vector

~xw 2 R12M also indexed by i such that xw½m; n�7!~xw½i�,
where i ¼ ðm� 1ÞN þ n (the precise method used to
reshape the matrix into vector form is unimportant so
long as it matches that used for the pitch class vector).

The partials (their pitch classes and weights in ~xpc and
~xw) are embedded in a spectral pitch class salience
matrix Xpcs 2 R12N�1200 indexed by i and j:

xpcs i; j½ � ¼ ~xw i½ � � j� ~xpc i½ �
� �

i ¼ 1; . . . ; 12N; and j ¼ 0; . . . ; 1199;
ð5Þ

where �[z] is the Kronecker delta function, which equals
1 when z ¼ 0, and equals 0 when z 6¼ 0. This equation
means that the matrix Xpcs is all zeros except for 12N
elements, and each element indicates the salience
xpcs½i; j� of partial i at pitch j.

To model the uncertainty of pitch perception, these
12N delta ‘‘spikes’’ are ‘‘smeared’’ by circular convolution
with a discrete Gaussian kernel g, which is also indexed
by j, and is parameterized with a smoothing standard
deviation � 2 ½0;1Þ to give a spectral pitch class response
matrix Xpcr 2 R12N�1200, which is indexed by i and k:

xpcr i½ � ¼ xpcs i½ � � g; ð6Þ

where xpcr½i� is the ith row of Xpcr, and � denotes cir-
cular convolution over the period of 1200 cents; that is,

xpcr i; k½ � ¼
X1199

j¼0

xpcs i; j½ �g k� jð Þ mod 1200½ �;

i ¼ 1; . . . ; 12N; and k ¼ 0; . . . ; 1199:

ð7Þ

In our implementation, we make use of the circular
convolution theorem, which allows (6) to be calculated
efficiently with fast Fourier transforms; that is, f � g ¼
F�1ðF fð Þ � F gð ÞÞ, where � is circular convolution,
F denotes the Fourier transform, � is the Hadamard
(elementwise) product, and f stands for xpcs½i�.

Equation (6) can be interpreted as adding random
noise (with a Gaussian distribution) to the original pitch
classes in Xpcs, thereby simulating perceptual pitch
uncertainty. The standard deviation of the Gaussian
distribution � models the pitch difference limen (just
noticeable difference) (Milne et al., 2011, Online Sup-
plementary, App. A). In laboratory experiments with
sine waves, the pitch difference limen is approximately
3 cents in the central range of frequency (Moore, 1973;
Moore, Glasberg, & Shailer, 1984). We would expect the
pitch difference limen in the more distracting setting
of listening to music to be somewhat wider. Indeed, the
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value of � was optimized—with respect to the probe
tone data—at approximately 6 cents.

Each element xpcr½i; k� of this matrix models the prob-
ability of the ith partial in xpc being perceived at pitch
class k. In order to summarize the responses to all the
pitches, we take the column sum, which gives a vector of
the expected numbers of partials perceived at pitch class
k. This 1,200-element row vector is denoted a spectral
pitch class vector x:

x ¼ 10Xpcr; ð8Þ

where 10 denotes a row vector of 12N ones. The spectral
pitch class similarity of two such vectors x and y is given
by any standard similarity metric. We choose the cosine:

s x; yð Þ ¼ xy
0

ffiffiffiffiffiffiffiffiffiffiffiffi
xx0yy0

p ; ð9Þ

where 0 denotes the matrix transpose operator that turns
a row vector into a column vector (and vice versa).
Because x and y contain only nonnegative values, their
cosine similarity falls between 0 and 1, where 1 implies
the two vectors are parallel, and 0 implies they are
orthogonal.

We use this model to establish the similarities of a
variety of probes with respect to a context. Let the context
be represented by the spectral pitch class vector x, and
let the P different probes yp be collected into a matrix
of spectral pitch class vectors denoted Y 2 RP�1200. The
column vector of P similarities between each of the
probes and the context is then denoted sðx;YÞ 2 RP. For
example, the context may be a major triad built from
HCTs and the probes may be single HCTs at the twelve
chromatic pitches. In this case, the thirty-six harmonics

from the context (12 partials for each of the three differ-
ent chord tones) are embedded into a single spectral
pitch class vector x, as described in (3–8). Each of the
twelve differently pitched probe tones’ 12 harmonics
are embedded into twelve spectral pitch class vectors yp.
The similarities of the context and the twelve probes are
calculated—as described in (9)—to give the vector of their
similarities sðx;YÞ.

Models a, b, and c can now be summarized in math-
ematical form: Let the vector of probe tone data for both
contexts be denoted d 2 R24; let the vector of associated
modeled similarities be denoted s x;Y; �; �; !; ‘ð Þ 2 R24,
where �, �, ! are the roll-off, smoothing, and chord
degree weighting parameters discussed above, and
‘ 2 fa; b; cg denotes the model; let 1 be a column vector
of 24 ones;

d ¼ �1þ �s x;Y; �; �; !; ‘ð Þ þ "; ð10Þ

where � and � are the linear intercept and slope para-
meters, and " is a vector of 24 unobserved errors that
captures unmodeled effects or random noise.

Each model’s parameter values were optimized, itera-
tively, to minimize the sum of squared residuals between
the model’s predictions and the empirical data; that is,
the optimized parameter values for model ‘ are given by

�̂; �̂; �̂; �̂; !̂
� �

‘½ � ¼ argmin
�;�;�;�;!

�
d� �1� �s �; �; !; ‘ð Þð Þ

0

d� �1� �s �; �; !; ‘ð Þð Þ
�
;

ð11Þ

where argmin f (θ) returns the value of θ that minimizes
the value of f(θ).
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