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A Survey of the Forms of Java Reference Names
Simon Butler, Michel Wermelinger and Yijun Yu

Computing and Communications Department, The Open University
Milton Keynes MK7 6AA, United Kingdom

Abstract—The readability of identifiers is a major factor
of program comprehension and an aim of naming convention
guidelines. Due to their semantic content, identifiers are also used
in feature and bug location, among other software maintenance
tasks. Looking at how names are used in practice may lead
to insights on potential problems for comprehension and for
programming support tools that process identifiers.

Class and method names are already well represented in the
literature. This paper presents an investigation of Java field,
formal argument and local variable names, which we collectively
call reference names. These names cannot be ignored because
they constitute over half the unique names and almost 70% of
the name declarations in the corpus investigated.

We analysed the forms of 3.5 million reference name decla-
rations in 60 well known Java projects, examining the phrasal
structure of names composed of known words and acronyms.
The structures found in practice were evaluated against those
given in the literature. The use of unknown abbreviations and
words, which may pose a problem for program comprehension,
was also identified. Based on our observations of the rich diversity
of reference names, we suggest issues to be taken into account
for future academic research and for improving tools that rely
on names as sources of information.

I. INTRODUCTION

The name you can name isn’t the real name. – Laozi

Field, formal argument and local variable names, henceforth
collectively called reference names, constitute 52% of the
unique names, and 69% of all declarations found in a corpus
of 60 FLOSS Java projects [1], and are a potentially rich
source of information for the tools that support program
comprehension, including code search and feature location.

As Laozi observes, in general it is hard to choose a name to
reflect the real meaning. Identifier naming conventions [2][3]
provide developers with guidelines for composing names. The
guidelines can be complex, particularly for reference names,
providing developers with plenty of choice about the form
of name they create, including: phrase-like names containing
words, abbreviations and acronyms; isolated abbreviations;
acronyms derived from type names; and specialised, single-
letter abbreviations for generic or short-lived identifiers with
well-understood roles. Developers are free to ignore naming
conventions and to create identifier names as they please.
Consequently the readers of source code, including program
comprehension tools that rely on the content of names, have
only an outline of the forms names might take, and the
possibility of being surprised.

Liblit et al. identified, through observation, patterns of
naming they referred to as metaphors where they considered
names to be phrasal utterances [4]. Their metaphors are

often used as a starting point by those analysing names
for program comprehension [5][6][7]. However, the extent
to which Liblit et al.’s metaphors are used by developers
has not been established for all species of identifier — by
species we mean class, method, field, etc. Work on Java
method names [8] and class names [9] show that the metaphors
are used extensively but developers also create names with
unanticipated phrasal structures, both simple and complex.
One may expect developers to be similarly inventive with
reference names.

In this paper we seek to establish the forms of reference
names created by developers and the extent to which the vari-
ous forms are used. As mentioned earlier, naming conventions
suggest a choice of name components, e.g. dictionary words,
acronyms, and abbreviations. Our first research question is:

RQ1 What components do developers use to create refer-
ence names, and to what extent?

As part of the above question, we want to know to which
degree recognizable abbreviations are used, which might be
readily comprehended by humans but not by tools without
further processing, namely abbreviation expansion.

The literature argues that the use of natural language phrases
and metaphors can ease comprehension. We wish to know:

RQ2 What phrasal structures do developers use in refer-
ence names, and how are they related to Liblit et
al.’s metaphors?

The remainder of the paper is structured as follows. Sec-
tion II describes our method, Sections III and IV respectively
report and discuss our survey results, Section V relates previ-
ous work to ours, and Section VI draws conclusions.

II. METHODOLOGY

In this study we investigate only Java source code written
in English because it is the most widely used natural language
in software development.

The strong typing of Java offers two features that simplify
the identification of the role of a reference name. Firstly, in
Java all boolean identifiers are declared using the boolean

primitive or the Boolean object type, unlike C for example,
where numeric values may be used as booleans. This allows
us to accurately distinguish boolean identifiers to investigate
Liblit et al.’s observation that they differ in structure to non-
boolean names [4]. Secondly, analysing the types of reference
names in Java is feasible because, with the exception of the
reflection API, there are no function pointers in Java, and
there is a clear distinction between actions and entities. All



source code in this study pre-dates the introduction of method
references in Java 8.

A. The Dataset

For this survey we used INVocD [1], a freely available
database of all names occurring in 60 well-known Java FLOSS
projects from 2006–20101. Among other information, INVocD
records for each declared name its species and its type.

The corpus for this study is the bag, i.e. a set with duplicate
elements, of all reference name declarations in INVocD:
626,262 fields, 1,556,931 formal arguments, and 1,319,071
local variables. We survey declarations instead of just names
because we wish to distinguish names declared with different
species or types.

Each declaration indicates the need for a name, and the
developer has a free choice. If the developer reuses a particular
name, it indicates preference for certain identifier forms,
phrasal structures or metaphors. The reuse of names is in-
deed substantial. The declarations given above introduce only
272,228 unique field names, 81,201 unique formal argument
names and 169,428 unique local variable names.

To capture such preferences, the corpus is a bag instead of a
set, i.e. all declarations are considered, even of the same name
with the same type and species. In this way, for a program that
declares 100 integer local variables, one named xpto and the
rest i, we obtain 99% of expected name forms (namely int i),
whereas considering only unique names or unique declarations
would lead to a distorted figure of 50%, when in fact the
developer made 100 choices, only one of which deviated from
established guidelines.

For names to be considered phrases they should, in general,
consist of sufficient ‘words’ to form a phrase and not so many
as to form multiple phrases. Lawrie et al. [10] define a hard
word as one divided from its neighbour by a typographical
boundary, such as a change of case or a separator character,
and a soft word as an abbreviation or dictionary word that may
or may not be a hard word. For example, the name ANEWARRAY
(Rhino), representing a Java bytecode operation, is composed
of one hard word and three soft words: ‘a’, ‘new’, and ‘array’.
To avoid any confusion, we henceforth use the term token to
mean soft word and the term word to mean a dictionary word.

Lawrie et al. found that Java names have 3.4 tokens on
average. These are mean values for all the unique names found
in the code they investigated: there was no breakdown by
name species and no measure of central tendency. INVocD
already provides each name’s tokens, as computed by INTT
[11], a freely available identifier tokeniser. Table I shows the
distribution of the length of the unique names in INVocD as
number of tokens. Field name length is similar to Lawrie et
al.’s mean, while formal argument and local variable names
tend to be much shorter. The longest name, with 39 tokens,
is one of a number of long names given to string constants in
Eclipse used as keys in resource bundles. Those names form
multiple phrases, which we discuss in Section IV.

1See http://www.facetus.org.uk/corpus.html for the list of projects.

TABLE I
DISTRIBUTION OF LENGTH (IN TOKENS) OF UNIQUE REFERENCE NAMES

Field Formal Argument Local Variable

Minimum 1 1 1
1st Quartile 2 2 2
Median 3 2 2
Mean 3.1 2.3 2.4
3rd Quartile 4 3 2
Maximum 39 10 12

As mentioned earlier, we need to examine boolean names
separately. The proportion of unique reference names declared
as boolean or Boolean in the subject projects is shown in
Table II. There is considerable variation between the projects.
We found that 1.1% to 15.5% of unique field names are
declared as booleans in the projects investigated, and over 20%
of unique formal arguments in Ant, OpenProj and Vuze.

TABLE II
DISTRIBUTION OF PROPORTIONS OF UNIQUE BOOLEAN REFERENCE

NAMES

Field Formal Argument Local Variable

Minimum .011 .024 .017
1st Quartile .067 .079 .046
Median .083 .113 .063
Mean .086 .112 .063
3rd Quartile .102 .136 .079
Maximum .155 .218 .118

Java does not permit the use of punctuation in names, such
as the use of apostrophes to identify possessive forms and con-
tractions of negated modal verbs, e.g. ER CANT CREATE URL

(Xalan). Whilst negated modal verbs are not extensively
used, they are easily recognised and expanded, allowing them
to be tagged correctly (Section II-C) to reduce noise. We
therefore expanded, prior to any further processing, all non-
apostrophised negated modal verbs to their two-word form,
e.g. ‘wont’ to ‘will not’. Although ‘cant’ (meaning hypocrit-
ical and sanctimonious talk, among other things) and ‘wont’
(meaning accustomed) are English words, we still interpret
them as negated modal verbs, as it is the most likely use
in source code identifiers. We did not attempt to identify or
expand possessive forms of nouns.

B. Partitioning Names

Our principal interest is the phrasal structure of reference
names, but not all reference names are composed of words.
Naming conventions, such as those in JLS (‘Java Language
Specification’ [2]) and EJS (‘The Elements of Java Style’
[3]), direct developers to use a mixture of well understood
single letter names, acronyms derived from the type name,
other acronyms2, abbreviations, words, and multi-token names
that combine the previous three categories. Tokens containing
digits may be known acronyms, such as ‘MP3’, otherwise they
are categorised as unrecognised.

2We use a definition of acronym that includes initialisms such as HTML.



TABLE III
CIPHERS AND THEIR CORRESPONDING TYPES

Cipher(s) Type(s) Source

b byte, Byte JLS
c char, Character JLS, EJS
d,e char, Character EJS
d double, Double JLS
e Exception JLS
f float, Float JLS
g Graphics EJS
i,j,k int, Integer JLS
l long, Long JLS, EJS
o Object JLS, EJS
s String JLS, EJS
v a value of some type JLS
x,y,z any numeric type EJS

The variety of name forms means that they cannot all be
analysed together. Accordingly we partition reference name
declarations (N ) into the following bags for each species:

• C contains ciphers, i.e. well-known or conventional sin-
gle letter abbreviations (Table III);

• T contains acronyms derived from type names;
• P contains names consisting only of ‘processed’ com-

ponents: dictionary words, known technical terms and
acronyms, and an optional redundant prefix discussed in
Section II-C;

• U contains names with at least one ‘unprocessed’ com-
ponent, i.e. an abbreviation or an unrecognised token.

Names are partitioned in the following order. A name is
first tested to determine whether it is a cipher from Table III,
and whether it is of the correct type. Table III shows that
we have widened the JLS and EJS definitions of permitted
types to include the Java v5 classes that wrap primitive types
such as Integer, so that the declarations for(int i; . . .) and
for(Integer i; . . .) are both considered ciphers.

Should the name fail that test, we check if it is a type
acronym as suggested in the JLS, i.e. an initialism derived
from the declared type name, e.g. FileWriter fw. With these
tests, Iterator i is in T , not in C.

Names not meeting the requirements for C and T are
partitioned into P and U : those that consist of recognised
prefixes, words and technical terms are assigned to P , the rest
to U . To support the creation of P and U we 1) took the
SCOWL [12] word lists (up to size 80) used to create the
dictionaries for GNU Aspell3, 2) added lists of computing
terms, Java acronyms, and terms taken from the AMAP
project4 [13] and our own work5, and 3) divided the lists into
separate dictionaries of words, abbreviations, and acronyms.

Table IV shows the distribution of declarations in each
partition in the projects analysed. Most declarations are in P ,
e.g. at least 47.8% of each project’s field name declarations use
only English words and known prefixes and technical terms.

3http://aspell.net/
4http://msuweb.montclair.edu/∼hillem/AMAP.tar.gz
5The word lists we used are available as part of the mdsc spell checking

library https://github.com/sjbutler/mdsc/

TABLE IV
DISTRIBUTION OF PROPORTIONS OF DECLARATIONS IN EACH PARTITION

Field Argument Variable

C Minimum .000 .001 .012
1st Quartile .000 .043 .056

Median .001 .066 .075
Mean .002 .065 .087

3rd Quartile .002 .086 .110
Maximum .015 .193 .240

T Minimum .000 .002 .006
1st Quartile .001 .016 .036

Median .004 .033 .054
Mean .007 .037 .060

3rd Quartile .009 .050 .079
Maximum .043 .129 .209

P Minimum .478 .267 .418
1st Quartile .748 .715 .642

Median .812 .781 .693
Mean .807 .767 .692

3rd Quartile .862 .083 .766
Maximum .961 .965 .876

U Minimum .039 .027 .045
1st Quartile .129 .081 .121

Median .172 .112 .155
Mean .185 .130 .161

3rd Quartile .238 .150 .183
Maximum .522 .711 .539

A consequence of the method used to create partitions
is that all names containing spelling mistakes and readily
understood neologisms not in our lists will also be assigned to
U . Therefore, U has names that may contain English words,
but require further processing, such as abbreviation expansion,
spell checking and neologism checking. Such names would be
a source of noise in our phrasal analysis.

We do not expand abbreviations in this paper. Abbreviations
may have more than one plausible expansion and determining
the correct one requires assumptions of the phrasal structure
of names that pre-empts any investigation of phrasal structure.

C. PoS Tagging

In previous work [9], we analysed the composition of Java
class names in terms of the parts of speech (PoS) of their
component words. In that investigation we trained a model for
the Stanford Log-linear PoS tagger [14] on a corpus of Java
class names. At the start of the current study we used that class
names model with v3.4.1 of the Stanford tagger to PoS tag a
set of Java field names. Manual inspection of the tagged field
names showed an error rate around 28%, some 15% greater
than observed when tagging class names. We decided to train
a new model on field names to see if that performed better.

We extracted 30,000 unique field names at random from the
database. A training set of 29,894 field names manually tagged
by the first author, a native speaker of English, was created —
106 names were discarded because they could not be PoS
tagged. Typically the discarded names consisted of one or
two abbreviations that were either ambiguous or unrecognised,
or incomprehensible combinations of words and abbrevia-
tions or neologisms. Examples include TRGDFTRT (Derby),



icSigPs2CRD2Tag (JDK), and WEAVEMESSAGE ANNOTATES

(AspectJ). The training set was used to obtain a model for
the Stanford PoS tagger. A further 5,000 field names were
manually tagged to provide a test set. In addition a smaller
test set of 1,000 boolean field names was created to measure
the performance of the tagger model on boolean names.

While tagging the training and test sets, we removed re-
dundant prefixes from names because they have no parallel
in natural language and cannot be reasonably tagged by the
Stanford PoS tagger. For example, some field names are
prefixed with f for ‘field’ or m for ‘member’. Single letters are
also occasionally used to represent primitive types in a manner
similar to Hungarian Notation [15], including the letters b,
c, d, f, i, l and o, standing for boolean/byte, char, double,
float, int, long and object respectively. The proportion of field
names with redundant prefixes varies according to the naming
style adopted by project developers. In many projects these
prefixes are not used, but in a few projects the use of prefixes
is conventional, particularly to indicate the role of the name,
e.g. the use of f to prefix mutable fields in JUnit.

Using the Stanford PoS tagger in its test mode, we found
the trained model tagged 85.4% of the field names in the test
set correctly (94.5% of individual tokens) and 83.0% of the
test boolean field names (93.2% of individual tokens).

Formal argument names appear similar in structure to field
names. Indeed, in some naming styles, formal arguments for
constructors and mutator methods have identical names to
fields [3]. Rather than undertake the potentially unnecessary
work of creating a PoS tagger model for formal arguments, the
first author hand tagged a test set of 5,000 formal argument
names extracted at random from the database. The field name
PoS tagger tags 91.7% of formal argument names in the test
set correctly and 96.0% of individual tokens.

As with field names, we also removed the redundant prefixes
from formal arguments used in the test set. The prefixes p and
m are used in combination to distinguish between parameters
and members with the same name, e.g. the constructor of
StandardPropertyHandler (Freemind) has the formal argu-
ment pPropertyName used to set the field mPropertyName.

Local variable names are also similar to field and formal
argument names. The process was repeated to create a test set
of 4,984 local variable names. According to the Stanford PoS
tagger test mode, 90.3% of local variable names and 95.4%
of individual tokens in the test set were tagged correctly.

After the tests, the PoS tagger model trained with field
names was used to tag all names in the P bags of field, for-
mal argument and local variable name declarations. Where a
redundant prefix was found, it was removed and the remainder
of the tokenised name tagged by the PoS tagger. The prefix
was then added back to the beginning of the tagged string with
the tag RD for ReDundant.

D. Phrasal Analysis

We use the Stanford Parser v3.4.1 [16] to identify the
phrasal structure of names in the P partition to answer RQ2.
The Stanford Parser analyses a PoS tagged string and outputs

a phrase structure tree. For example, the name showToolBar

(BlueJ) is PoS tagged as show/VB tool/NN bar/NN (where NN
is the Penn Treebank PoS tag for noun6, and VB the tag for a
verb), which the Stanford parser renders into the phrase tree
(S (VP (VB show) (NP (NN tool) (NN bar)))) or:

S

VP

VB

show

NP

NN

tool

NN

bar
where S represents a declarative statement, NP a noun phrase
and VP a verb phrase. Few of the trees returned by the parser
contain clausal elements such as S and SINV (representing
a subject-auxiliary inversion like “Is the list empty?”), so
we ignore these and treat the top-level phrasal elements as
summarising the phrase structure of the name. Our example,
showToolBar, is summarised as a verb phrase.

A name with a more complex structure is sum-
marised using the two top-level phrases. For example,
entryKeyNotInMyMap (Polyglot) has the phrase structure tree
(FRAG (NP (NN entry) (NN key)) (PP (RB not) (IN in) (NP (PRP$
my) (NN map)))) and is summarised as NP PP, where IN is
a preposition, PRP$ a possessive personal pronoun, PP a
prepositional phrase, and RB an adverb.

E. Use of Known Abbreviations

Abbreviations may be truncations (e.g. impl for ‘implemen-
tation’), the elision of letters (e.g. ctxt for ‘context’) or multi-
word abbreviations (e.g. regex for ‘regular expression’) [13].

In RQ1 we seek to identify tokens that can be recognized
as abbreviations, even though their accurate expansion might
not be trivial. We define a known abbreviation as a token
found in our abbreviation dictionary, formed from the lists
of abbreviations a) extracted from SCOWL, b) with known
expansions from the AMAP project, and c) compiled from
our own observations of names5.

F. Threats to Validity

In addition to the PoS tagger model accuracy described
above, there are threats to construct and external validity.

Phrase structure grammars are context free, so, while their
use allows the recognition of the aggregation of types of words
into grammatically coherent groups, there is no guarantee
that the groups are meaningful. Whilst ‘The cat sat on the
mat’ is semantically correct, exchanging the nouns creates an
absurdity that is also grammatically correct. Accordingly, there
is a threat to construct validity from an underlying assump-
tion that the developers have created meaningful rather than
absurd names. However, the experimental technique cannot
distinguish between the two.

6Throughout this paper we use the Penn Treebank notation for PoS tags
and phrases (ftp://ftp.cis.upenn.edu/pub/treebank/doc/tagguide.ps.gz).



A minor threat to construct validity arises from our choices
of acronym, cipher and word lists used to partition decla-
rations into the C and P categories. Those lists may not
coincide with the vocabulary used by the developers of all
the projects surveyed — particularly the domain-specific terms
and acronyms used. Consequently, some names may have been
assigned to the U partition, resulting in a reduction of the size
of P . A further concern is that EJS specifies the use of the
ciphers x, y and z for coordinates. As there is no direct type
correspondence, for this survey we widened the definition to
accept any numeric type.

Another threat results from the order of tests. Abbreviations
such as ID that are also English words (‘id’ is a psychoanalyt-
ical term) are recognised as words rather than abbreviations,
and the name will be put in a potentially different partition
from the developer’s intended meaning of the token.

Threats to external validity arise because we constrained
our experiment in two dimensions. First, we analysed only
projects developed in Java, prior to v8, to take advantage of
its strong typing; and, secondly, we analysed projects where
names were constructed using English words. Accordingly we
cannot be sure that our findings may be applied to less strongly
typed programming languages, or that developers who create
names using languages other than English use a similar phrasal
structure. Moreover, several of the issues discussed in Section
IV do not apply to languages other than English.

III. RESULTS

A. Name Components (RQ1)

The components of a name are its tokens. Each project’s
tokens were partitioned into 6 sets (not bags), for each name
species. For example, the local variable names in Tomcat
are composed of 12 ciphers (C), 121 type acronyms (T),
8 redundant prefixes (R), 1206 English words and known
acronyms (W), 104 recognised abbreviations (A) and 163
unknown tokens (U).

Note that whilst sets W, A and U are by definition mutually
disjoint, the others are not, e.g. some tokens may occur both
as cipher and type acronym, or as prefix and unrecognized
token (if not in the first position of a name). We define a
project’s vocabulary, for a particular name species, to be the
bag of tokens obtained from the multiset union of the 6 sets for
that species, e.g. Tomcat’s local variable vocabulary consists
of 1614 tokens.

Sets C and T correspond to removing the duplicate names
in C and T , because each cipher and type acronym consists
of a single token. The names in P consist only of tokens from
R and W, whilst the names in U have at least one component
in A or U, besides possibly from R and W.

Besides the unique tokens within each set, we also consider
all occurrences of tokens in declarations. For Tomcat, the 12
unique ciphers are declared 1417 times, while the 163 unique
unknown tokens occur in 743 declarations. Table V shows,
for each species, the distribution of each type of token as a
proportion of a project’s vocabulary and, in parentheses, as a
proportion of all occurrences.

TABLE V
DISTRIBUTION OF PROPORTIONS OF UNIQUE TOKENS WITHIN

VOCABULARY AND, PARENTHESISED, WITHIN ALL OCCURRENCES

Field Argument Variable

C Minimum .000(.000) .003(.001) .002(.008)
1st Quartile .000(.000) .009(.034) .007(.038)

Median .002(.000) .013(.047) .009(.050)
Mean .002(.001) .015(.049) .011(.061)

3rd Quartile .003(.001) .019(.064) .012(.076)
Maximum .009(.008) .049(.159) .034(.203)

T Minimum .000(.000) .013(.002) .014(.004)
1st Quartile .003(.000) .033(.012) .049(.024)

Median .008(.002) .052(.023) .063(.037)
Mean .010(.003) .053(.028) .066(.042)

3rd Quartile .014(.004) .067(.039) .084(.051)
Maximum .039(.027) .113(.104) .123(.157)

R Minimum .000(.000) .000(.000) .001(.000)
1st Quartile .003(.002) .005(.003) .005(.007)

Median .005(.007) .007(.005) .006(.010)
Mean .005(.021) .007(.010) .007(.012)

3rd Quartile .006(.023) .009(.009) .008(.015)
Maximum .016(.315) .021(.081) .016(.053)

W Minimum .674(.633) .653(.202) .610(.542)
1st Quartile .828(.861) .763(.768) .730(.723)

Median .864(.891) .812(.816) .773(.775)
Mean .860(.880) .806(.801) .766(.767)

3rd Quartile .906(.921) .850(.860) .813(.841)
Maximum .963(.981) .924(.975) .876(.911)

A Minimum .008(.013) .024(.010) .032(.017)
1st Quartile .033(.040) .045(.041) .052(.057)

Median .043(.053) .059(.063) .063(.077)
Mean .044(.055) .057(.076) .063(.081)

3rd Quartile .054(.068) .066(.094) .074(.096)
Maximum .078(.121) .098(.411) .100(.393)

U Minimum .012(.003) .013(.002) .028(.008)
1st Quartile .038(.017) .040(.017) .059(.025)

Median .061(.037) .053(.026) .082(.032)
Mean .080(.040) .062(.036) .088(.037)

3rd Quartile .096(.050) .072(.038) .101(.044)
Maximum .281(.162) .227(.370) .243(.090)

Table V shows that at least 61% of a project’s vocabulary
are words, their use being more common in field names.
Acronyms and ciphers are most common as formal argument
and local variable names. Recognised abbreviations form at
most 10% of a project’s vocabulary, and the mean and quartile
figures are similar for unrecognised tokens (U), but there are
some projects where more than 20% of the vocabulary is
unrecognised. Outliers are also found in other types of token.
The use of redundant prefixes (R) in JUnit, for instance, is
an order of magnitude greater than any other project studied,
accounting for 31.5% of all tokens in field names. Similarly,
the use of words and acronyms as tokens in formal arguments
in Groovy is remarkably low at 20.2% of occurrences, some
36% lower than in any other project.

B. Phrasal Structures (RQ2)

It does not make sense to tag and parse the names in C and
T , and those in U require further processing for correct tagging
and parsing. Thus our second research question only concerns



the 2.6 million declarations in P , with names composed of
words, acronyms and redundant prefixes.

Applying the Stanford Parser to PoS tagged field names in P
identifies the most common phrasal structures shown in Figure
1, where the whiskers extend at most to 1.5 times the interquar-
tile range from the box. Unsurprisingly, given that field names
largely represent the attributes of entities and that the JLS and
EJS encourage developers to use nouns and noun phrases to
name them, the overwhelming majority of field names in P are
noun phrases (NP). Redundant prefixes are used in field names
in some projects, and these are seen in Figure 1 as a redundant
phrase followed by a noun phrase (RDP NP). The lowest
outlier for NP and the highest for RDP NP is JUnit, where
redundant prefixes are used extensively. The fifth category, a
noun phrase followed by a verb phrase (NP VP), contains names
that might be a sentence, e.g. FIELD IS VOLATILE (JDK). An
alternative NP VP structure is found in multi-part names such
as ConfigurationView replaceWith (Eclipse). We discuss
multi-part names further in Section IV. Importantly, Figure
1 shows that though noun phrases are the dominant phrasal
structure for field names, other phrasal forms also need to be
considered by automated analysis.

NP VP RDP NP ADJP NP VP
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Fig. 1. Proportions of most common field name phrase structures in P

Table VI shows the mean proportions of the 5 most common
phrase structures for each species. In this and following
tables, proportions are given in parentheses when they are not
amongst the five most common. The NP VP pattern seen in field
names occurs much less often in formal argument and local
variable names. Prepositional phrases (PP) are more common
in local variable names, e.g. beforeMethods (Stripes), and
adverbial phrases such as forward (OpenProj declaration
boolean forward) are found in formal arguments.

Non-boolean reference names are predominately noun
phrases (Figure 2 and Table VII). The outliers found in JUnit
in Figure 1 are also found in Figure 2.

The distribution of phrases in boolean field names is shown
in Figure 3. Liblit et al.’s observation that developers use

TABLE VI
MEAN PROPORTION OF 5 MOST COMMON PHRASE STRUCTURES IN P
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V
P

PP A
D

V
P

Field .804 .051 .039 .023 .019 (.006) (.005)
Argument .908 .021 .011 .022 (.000) (.006) .008
Variable .884 .023 .012 .023 (.004) .015 (.011)
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Fig. 2. Proportions of most common non-boolean field name phrase structures
in P

noun phrases for booleans where the verb ‘to be’ has been
elided may be confirmed by the noun phrase being the largest
category. Names beginning with a verb have been divided
by the Stanford Parser into two categories, those that are
verb phrases (VP) and those that are composed of the 3rd
person present form of a verb followed by a noun phrase
(VBZ NP), which mixes a PoS tag with a phrasal level tag.
The apparently multi-phrase form VP NP arises in boolean
names (Table VIII), particularly in local variables, because
the Stanford Parser appears to have difficulty parsing some
combinations of verbs and nouns. Names like isShowLines

(JasperReports) are difficult to parse into any form of phrasal
structure, because they are not English phrases. We discuss
these issues further in Section IV.

In Table VIII some formal argument names are categorised
as consisting of adjectives, rather than forming adjectival
phrases. The Stanford Parser sometimes categorises names
consisting of a single adjective as an adjectival phrase (ADJP)
and on other occasions as a sentence fragment containing
a single adjective (JJ). Testing shows this behaviour to be
consistent, and we have left the results as reported by the
parser. Summing the figures in the ADJP and JJ columns gives
the extent of the use of adjectival phrases in boolean names.

Tables VII and VIII answer RQ2 by showing that, for
names composed only of prefixes, words and acronyms (P ),



TABLE VII
MEAN PROPORTION OF 5 MOST COMMON PHRASE STRUCTURES FOR

NON-BOOLEAN DECLARATIONS IN P
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V
P

Field .839 .040 .037 .017 .019 (.005) (.006)
Argument .935 .011 .008 (.000) .018 (.005) .007
Variable .902 .012 .016 (.002) .021 .015 (.010)
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Fig. 3. Proportions of most common boolean field name phrase structures in
P

developers tend to use the phrasal structures identified by Liblit
et al., including the use of nouns or noun phrases as names
for booleans, where plausible use of the verb ‘to be’ has been
elided. Table VIII shows use of adjectival phrases (ADJP) and
bare adjectives (JJ ) where, similarly, plausible use of ‘to be’
has been elided, e.g. empty (XOM).

The metaphors proposed by Liblit et al. for names [4] were
intended to be an approximation to their phrasal structure,
rather than a comprehensive list. Two of the metaphors are
relevant to Java reference names: data are things (which
corresponds to the use of noun phrases) and true/false data
are factual assertions (corresponding to the indicative mood,
e.g. contains, isEmpty). Our results show that some 85% or

TABLE VIII
MEAN PROPORTION OF MOST COMMON PHRASE STRUCTURES OF

BOOLEAN NAMES IN P

N
P

V
P

A
D

JP

V
B

Z
N

P

V
P

N
P

JJ

Field .394 .212 .078 .062 (.039) .044
Argument .408 .267 .099 .057 (.025) .052
Variable .431 .201 .075 .072 .049 (.047)

more of non-boolean field names in P , and similar proportions
of formal argument and local variable names, are constructed
from noun phrases. The finding shows widespread use of
Liblit et al.’s metaphor and that developers also use other
forms of phrasal structure in names.

For boolean names in P the picture is more complex.
Liblit et al. observed that some boolean names are factual
statements with the verb ‘to be’ elided [4]. The latter case
includes isolated nouns, or noun phrases and adjectives, e.g.
a local variable named empty (XOM), which might easily,
and more clearly, be named isEmpty. Our results for boolean
names (Table VIII) show a large proportion of noun phrases
and isolated adjectives. Our manual inspection of isolated
adjectives and adjectival phrases confirms Liblit et al.’s ob-
servation. Many noun phrases could reasonably be preceded
by ‘is’. Indeed prepositional phrases could also, often, be
preceded by ‘is’.

From these findings we can identify a production for sin-
gle phrase reference names: RDP?(NP|VP|ADJP|PP|ADVP). We
include the use of redundant prefixes RDP as optional for all
single phrases because while they are not always represented
in the 5 most common patterns in Tables VI, VII and VIII,
reference names such as fIsDefaultProposal (Eclipse) and
bInRefresh (Vuze) are found in practice. The production
differs in two regards from the phrase structure grammar used
in SWUM [5]: firstly, our production only attempts to describe
single phrases, and secondly, as a result of our survey, includes
adjectival and adverbial phrases.

IV. DISCUSSION

In this section we discuss our results and how they provide
opportunities for improving techniques used to analyse names.

A. Problems for PoS Tagging

We encountered a number of issues that are important
for the extension of this work or its application in program
comprehension tools, and suggest some potential solutions.

Homographs (words with same spelling but different mean-
ing) can mislead the PoS tagger, e.g. some noun phrases are
actually verb phrases where the leading verb has been mis-
tagged as a noun or an adjective. Sometimes this is an error
on the part of the tagger, on other occasions information in
the name is insufficient to differentiate the use of a word such
as ‘duplicate’ as an adjective, noun or a verb in names like
duplicate peer checker (Vuze). Contextual information
from the declaration may support a particular tagging.

Developers do not always use English words in expected
ways, though they are used in ways that may be straightfor-
ward for humans to understand. An example is AboutDialog
(OpenProj) where ‘about’, a preposition, is used as a noun and
the name is intended to be a noun phrase. A similar, common
unconventional use of words is the specialised use of verbs
and verb phrases as nouns in the names of GUI elements
that represent user activity, e.g. SaveAllAction (Eclipse,
NetBeans). In prose, one could use devices such as an article
before the phrase, hyphenation, and possibly quotation marks



to indicate the unusual nature of the word usage. However, the
last two can’t be used in Java names, and the use of articles
may be seen as superfluous by developers.

A heuristic may be used to identify the conditions under
which a verb might be used as a noun (a grammatical neolo-
gism). However, any heuristic would need to be able to recog-
nise the use of verbs in reference names. For example, the exit
behaviour of Java Swing top level window classes is controlled
by a group of integer constants, including CLOSE ON EXIT,
where the conventional use of the verb is entirely clear and
understandable. Similarly, a style of identifier naming using
verb phrases for parenthetic pairs of characters or elements
may be found in some text processing code. For example,
the Eclipse plugin development environment contains code for
writing HTML where string constants such as OPEN H4 and
CLOSE H4 are defined. A further consideration is that non-
standard use of a word may occur at a very low frequency
and, thus, there is limited evidence to support any decision to
treat the word differently.

An alternative approach might be to reclassify verb PoS
tags as nouns in the names of specific GUI classes, such as
Action. More detailed study would be required to identify
relevant classes for which such re-tagging would be appro-
priate. However, a hard coded solution may be less desirable
than a reliable heuristic.

We also found that some names that might seem easy
for humans to identify as phrases are more difficult for
software designed to process sentences to interpret. The name
isTopLevelChange was erroneously tagged as two separate
phrases. The issue in this instance is that the parser doesn’t see
‘top level change’ as a noun phrase unless the preceding verb
is removed. Through experimentation we found that inserting
the determiner ‘a’ between the verb and the noun phrase would
have led the parser to identify the noun phrase as expected.

Another group consists of names composed of English
words in non-phrasal combinations, including the nonsensical,
such as ignoreActivate (Eclipse), isShowLines (Jasper-
Reports) and manual lazy haves (Vuze). Names in this
group are candidates for refactoring. While it might be
straightforward, for example, to refactor ignoreActivate

to ignoreActivation, the refactoring is difficult to justify
without source code inspection.

The final group of problematic names to consider in W
have more than one phrase. Examples include error reporting
values and string constants like ER CANT CREATE URL

where ‘ER’ is used as a prefix, and internationalised string
constant names that are also used as keys in resource
bundles. As keys the names have to contain sufficient
information on their purpose to be useful to the reader of the
resource bundle. One such constant in Eclipse has the name
CompilersPropertyPage useprojectsettings label

and some can be extremely long — 39 tokens in one case. In
this case the underscore separates phrases, but concatenating
the phrases does not form a single sentence. The concern
with this group of names is that mechanisms to parse them
using conventional natural language tools may need to make

judgements about dividing them into phrases on the basis of
typography — which is not used consistently by development
teams. In this case, the name represents a string used in the
GUI class CompilersPropertyPage that is a ‘label’ widget
on the displayed page, and relates to an instruction to use
project settings for which the text is available in translation.
An alternative solution might be for development teams to
use some mechanism to specify their naming conventions so
that they might also be used by analytical tools to identify
the components of the name.

We also observed what appears to be inconsistent behaviour
in the Stanford Parser. Names such as isZip (BCEL) are
tagged as is/VBZ zip/NN and parsed as the phrase tree (SINV
(VBZ is) (NP (NN zip))), where SINV is a subject-auxiliary in-
version. However, names of the form isEmpty (Groovy),
tagged as is/VBZ empty/JJ, are classified as fragments by the
Stanford Parser, with the parse tree (FRAG (VP (VBZ is) (ADJP
(JJ empty)))), from which we extract the top-level verb phrase
(VP) to categorise the name.

B. Boolean Names

Two issues appear to contribute to the inaccuracies observed
when tagging boolean names. One is where an imperative form
of a verb is used at the start of the name that might also
be considered a noun, e.g. request or update. This problem
can be attributed to the behaviour of the Stanford PoS tagger
in the context of names, where there is so little information
to help the tagger differentiate between usage. Consider a
name such as requestValue: is it a declarative or imperative
statement? With only limited information available, the tagger
tags ‘request’ as a noun rather than a verb. This behaviour is
quite reasonable, and is a limitation of the PoS tagger in the
context of names.

The second issue concerns differentiating between the past
participle of a verb and an adjective, for example in a phrase
such as ‘is enabled’. Santorini [17] provides a series of
tests to be applied to whole sentences to distinguish between
adjectives and past participles. We have applied Santorini’s
rules insofar as we could to names in the training and test
sets, but the limited information available in names makes it
difficult to distinguish the two uses.

A constraint we placed on ourselves was to rely only on the
information contained in the name for phrasal analysis, so that
we could observe the extent to which developers use Liblit et
al.’s metaphors. Developers of a tool are able to leverage
the declaration context as a source of information to support
phrasal analysis. For example, a word such as request, in
the absence of corroborating evidence such as a subsequent
determiner, might be tagged as a noun when it is part of a
non-boolean name and otherwise tagged as a noun or as a
verb, with the phrase structures resulting from the alternatives
used to support a preferred PoS tagging.

C. Abbreviations and Neologisms

The name partitions C and T , containing ciphers and type
name acronyms, are used for generic identifiers and contain



no phrasal information. There is little to be gained from
expanding ciphers and type name acronyms into words. We
found declarations of field names in both partitions in some
projects. In most cases, fields with generic names are found
in classes with coordinates such as int x and int y, and in
inner classes that implement actions activities such as string
processing for the containing class. The use of type acronyms
as field names is limited to a few projects. For example JBoss,
type acronyms appear to have become part of the project
vocabulary for some commonly used classes.

Abbreviations used in identifier names vary from the readily
expandable buf to mnemonics such as CSTMBCS (Derby). The
latter are more difficult to expand, though techniques have
been proposed [13]. A key problem in abbreviation expansion
is that an abbreviation may have more than one expansion.
For example, names like iStream (NetBeans) and oStream

(BlueJ) use ‘i’ and ‘o’, typically used for ‘integer’ and ‘object’,
to mean ‘input’ and ‘output’. In these examples, the type name
should help identify the correct expansion. Truncations with
multiple expansions also cause problems. Among the names
in our corpus ‘auto’ is used as a contraction of ‘automated’,
‘automatic’ and ‘automatically’. Abbreviation expansion is
a complex topic [13][18] and is outside the scope of this
paper. Abbreviation expansion could be applied either prior to
phrasal analysis or as an iterative solution to identify possible
corrections to unanticipated phrase structures. For example, the
boolean name isAutoActivated (Eclipse) could be expanded
to is/VBZ automated/JJ activated/VBN, is/VBZ automatic/JJ
activated/VBN and is/VBZ automatically/RB activated/VBN,
allowing the latter to be selected as the candidate expansion.

Some truncated abbreviations can be difficult to detect
because they are also words (e.g. ‘auto’ also has the meaning
of ‘automobile’ in American English) and thus give rise to
an unintended interpretation of grammatical structure. For
example, common abbreviations such as inFile (NetBeans)
and outFile (Ant) are PoS tagged as IN NN and thus seen
as prepositional phrases by the Stanford Parser.

Other than abbreviations, neologisms and spelling mistakes
are included in the U bag. Spelling mistakes can be identi-
fied and, potentially, corrected using spell checking software.
Techniques exist to identify neologisms derived from existing
words, but completely new words and ‘grammatical neolo-
gisms’ are less easy to detect [19].

D. Research Agenda

We summarise our discussion with a suggested research
agenda, listing issues that need to be addressed in order to
improve tools that rely on identifier names to support program
comprehension, software maintenance and other tasks.

• Improve PoS tagging algorithms in order to:
– distinguish homographs with different grammatical

categories (verb and noun, past participle and adjec-
tive, etc.).

– recognise possessive nouns without apostrophes.
• Develop algorithms to recognise and parse names con-

sisting of multiple phrases.

• Apply neologism recognition techniques to identifiers.
• Develop heuristics to identify non-phrasal combinations

of words.

V. RELATED WORK

In this section we describe two principal themes of related
research. The most closely related concerns the investigation
and cataloguing of identifier name structure. The second strand
concerns the ‘pragmatic’ grammars used in approaches devel-
oped to extract semantic information from identifier names.

Influencing all but the earliest work is Liblit et al.’s wide
ranging treatise on identifier naming [4], which observed
that names are ‘pseudo-grammatical utterances’ or phrase
fragments. On the basis of programming experience and ob-
servation, but without systematic quantification of their use in
practice, Liblit et al. described metaphors for identifier names
that reflect the role of the name. One metaphor is data are
things, so that identifiers of data objects are named with nouns
or noun phrases, and methods that behave as mathematical
functions are named with noun phrases that reflect the returned
value [4], e.g. the method size() in Java collection classes.
Our study provides evidence of the prevalence of phrasal forms
matching the use of metaphors in reference names.

The first grammar of identifier name structure was dis-
covered by Caprile and Tonella [20], who analysed C func-
tion names. The grammar described the majority of function
names. The grammar was subsequently applied to refactor
function names to make them more meaningful [21]. A similar
analysis of Java method names was undertaken by Høst and
Østvold using a specially developed PoS tagger that also
considered type names to be a separate part of speech [8], i.e.
the PoS tagger also did some semantic processing. Høst and
Østvold found a complex grammar with many ‘degenerate’
forms. They also found a relationship between the structure of
a method name and the functionality of the method, sufficient
to automate the detection of names that did not accurately
describe the implemented methods [22].

We have analysed the structure of Java class names using a
model for the Stanford PoS tagger trained on class names [9].
We focused on individual words, and the repetition of tokens in
super class and super type names. We found common patterns
of PoS tags, but were unable to identify a grammar.

A survey of field names by Binkley et al. [23] employed
the default Stanford tagger model trained on the Wall Street
Journal corpus to analyse C++ and Java field names containing
only words, abbreviations and acronyms found in the SCOWL
lists up to size 50. The survey used four templates to provide
additional context for the PoS tagger, e.g. the tokens were
followed by ‘is a thing’ to nudge the tagger towards treating
the name as a noun. Three other templates were used that
treated the name as a sentence, a list item, and a verb. The main
aim of the survey lay in evaluating the efficacy of the method
rather than an exhaustive survey of field name structure. It was
found that 88% of names were PoS tagged correctly using the
four templates. This is similar to our findings for field names
in Table VI for noun and verb phrases. Binkley et al. do not



report any use of prepositional phrases, for example, or the
long multi-phrase names that we identified.

A survey of class, method and field names in C++ and
Java by Gupta et al. [7] employs the technique of using
WordNet [24] to identify candidate PoS tags that were then
used to determine the phrasal structure of names, instead of
employing conventional PoS tagging techniques. A simplified
set of PoS tags are deemed sufficient for identifiers rather
than the Penn Treebank. Gupta et al. found that non-boolean
field names are typically noun phrases, while boolean fields
are generally verb phrases that ask a question. However, their
study concerned the evaluation of their PoS tagger and does
not quantify their finding on field name structure. Our findings
above agree with Gupta et al. on the most common structure
of non-boolean field names, and offer insights into the other
phrasal structures used. However, we contradict their finding
on the most common structure of boolean names.

Lawrie et al. [10] undertook a statistical investigation of the
differences in identifier name quality between 78 proprietary
and open source projects written in different programming
languages, and projects developed at different times over a
30 year period. Their measures of name quality include the
relative proportions of dictionary words, abbreviations, and
single-letter abbreviations in names, and the length of names as
the number of tokens. Our work differs not just in its intent,
but also in the scope and nature of the analysis (Table V).
We document the variation in composition of reference names
only, rather than all names, and use finer-grained definitions of
tokens with a focus on the level of processing the token might
require. We give a per-species analysis of name composition to
inform the suitable strategies to be adopted by the developers
of program comprehension tools .

The literature describes a range of approaches to the ex-
traction of semantic information from names. All rely on
PoS tagging to help identify the structure of names. In some
cases assumptions are made about the structure of names to
simplify processing. The most comprehensive approach so
far is adopted in the software word usage model (SWUM)
developed by Hill [5]. SWUM uses a general grammar for
all species of name to support semantic parsing. The grammar
relies on a smaller set of PoS tags than the Penn Treebank and
includes productions for noun, preposition and verb phrases.
Hill does not quantify name structure, nor the coverage of the
grammar for the various species of name. Our work suggests
that the grammar used in SWUM should be extended to
include adjectival and adverbial phrases.

Abebe and Tonella developed the system of using templates
(adopted by Binkley et al. [23]) to try to create a statement
or sentence that provides additional context to support a
PoS tagger [6]. The approach uses Minipar to parse the
resulting name and template combination, which is rejected
if Minipar cannot identify an element in the sentence. The
approach uses a limited number of templates — 5 for field
names — that can only be used to identify a few types of single
phrase names. The technique is intended to support concept
identification, and was subsequently used to extract ontologies

from source code [25]. Richer concept extraction techniques,
resulting in more detailed conceptual models, might result
from the development of templates for the wider variety of
field name structures identified in this paper.

VI. CONCLUDING REMARKS

Reference name declarations constitute around 69% of all
declarations in source code and are therefore a rich source of
information for developers and tools that perform or support
software maintenance tasks, including program comprehension
and code search. This paper contributes:

• the first systematic survey of reference names, including
the distribution of their components (types of tokens) and
forms (phrasal structures);

• the empirical confirmation of extensive adherence to
forms suggested in the literature;

• the identification of other reference name forms;
• a research agenda to improve reference name processing.
The survey consists of a quantitative study of the com-

ponents and most frequent forms of 3.5 million declarations
of 522,857 unique field, formal argument and local variable
names, extracted from 60 FLOSS Java projects, complemented
by an in-depth qualitative observation of individual names,
gained from manually tagging almost 46,000 names.

We found that the majority of names use the components
suggested in naming conventions (ciphers, type acronyms,
dictionary words, etc.) and consist of phrases, especially
phrases that largely follow the grammar of Hill and the
metaphors observed by Liblit et al., often used by program
comprehension tools.

However, our study also found a non-negligible amount
of components (e.g. 18% of field names on average) that
require further processing (abbreviation expansion or spell
and neologism checking), which is a barrier to tool-supported
program comprehension. However, we must emphasise that
there can be considerable variation in the proportions of the
categories between projects with, in extreme cases, more than
70% of the formal arguments in some projects requiring
further processing.

Moreover, we found that developers use a richer range of
phrases than documented in previous work, including long
names composed of multiple phrases, adjectival and adverbial
phrases, and non-phrasal names with dictionary words.

All these findings provide insights on how reference names
are constructed in practice, and the issues they raise for
program comprehension, whether by humans or by software
tools that rely on standard techniques. The close inspection of
how names are tagged and parsed led us to point to several
possible avenues of further research and development in the
natural language processing of reference names.
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