
Open Research Online
The Open University’s repository of research publications
and other research outputs

Towards a design theoretic characterisation of software
development process models
Conference or Workshop Item
How to cite:

Hall, Jon G. and Rapanotti, Lucia (2015). Towards a design theoretic characterisation of software development process
models. In: Proceedings of Fourth SEMAT Workshop on General Theory of Software Engineering GTSE 2015, IEEE,
pp. 3–14.

For guidance on citations see FAQs.

c© 2015 by The Institute of Electrical and Electronics Engineers, Inc.

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1109/GTSE.2015.8

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.1109/GTSE.2015.8
http://oro.open.ac.uk/policies.html


Towards a Design-Theoretic
Characterisation of Software Development

Process Models
Jon G. Hall∗, Lucia Rapanotti∗

∗Department of Computing and Communications,
The Open University, UK

Email: Jon.Hall@open.ac.uk, Lucia.Rapanotti@open.ac.uk

Abstract—Context: Effective assessment, compari-
son, selection and adaptation of software development
processes remain an acute problem in Software Engi-
neering practice. The quest for a unified theory which
might serve this purpose is ongoing.

Objective: To take a first step towards such a theory,
with focus on characterising and comparing features
of software development process models.

Method: We consider a theory of design as problem
solving and investigate how it can be applied to
characterise and explicate specific process features in
well known process models from the literature. The
intention is to characterise emerging trade-offs be-
tween resource expenditure and risk mitigation, which
result from the interplay between process efforts
into problem and solution exploration vs stakeholder
validation. The analysis, at this point performed,
is purely qualitative, and the treatment of resource
expenditure and risk quite abstract.

Results: We provide an initial characterisation and
comparison of features found in a wide range of
process models from the literature, within a design
theoretic framework using a single building block –
the Problem Oriented Engineering (POE) Process Pat-
tern – that allows the characterisation of information
flow, the relationship between actors, resource usage
and developmental risk.

Conclusions: The initial characterisation identifies
repeated structure in diverse processes, which allows
basic process comparison across models. The inter-
pretations are modular, allowing the possibility of
relationships between different process models to be
explored. As such, the theory allows for a unified
means to characterise and compare systematically
key features of different process models. In being
of an exploratory nature, the work has a number
of limitations, which should be addressed by further
research

I. INTRODUCTION

In Design research, design is considered as
the fundamental process through which real-world
problems are addressed via the invention, assem-
bly and adaptation of technologies, and which
involves much planning and decision making, as
well as the concrete realisation of artefacts. From
this perspective, software engineering/development
processes can be regarded as problem solving pro-
cesses, which begs the question of whether this
perspective may lead to useful theories to help
practitioners characterise, assess, select and adapt
software development processes to their specific
organisational, cultural and product development
needs. As a starting point, here we focus on one
such theory which has emerged in the context
of our design theoretic framework for engineering
as problem solving, Problem Oriented Engineering
(shortly POE, [12]), which over the past decade
has been applied in a wide range of real-world
engineering contexts, from safety to mission critical
systems development.

The intention of this paper is to take a first step
concerning the characterisation and comparison of
software processes. This is achieved by consider-
ing a wide range of software development process
models from the literature and use the theory to
characterise, explicate and compare key features of
such models. The process features we consider are
those identified by the theory.

The work reported is of an exploratory nature,



therefore many limitations will be noted, which will
be the subject of further research.

POE has developed through our exploration of
the engineering of real-world systems. Its applica-
tion to characterise and compare software develop-
ment process models in this paper is entirely novel.

This paper has the following structure. In Sec-
tion II we provide some background on software
process selection and tailoring, while Section III
briefly recalls relevant POE theoretical concepts.
Sections IV and V discuss the application. We end
with related work in Section VI and conclusions in
Section VII.

II. BACKGROUND

Software Engineering has a long-standing debate
on which software development processes should be
adopted to develop quality software systems on time
and to budget. An extensive catalogue of models ex-
ists, from the early product-manufacturing-inspired
Waterfall model [28], its variants, e.g. the V-Model
[22], various flavours of iterative and incremental
processes, e.g., the RUP [19], and the most recent
family of Agile processes [1]. Each model has its
supporters and detractors; each has been shown ef-
fective in particular contexts and wanting in others.
Simply, with the diversification of the software mar-
ket and the vast ranges of complexity and volatility
of the software engineering/development task there
can be no one-size-fits-all process model. Practi-
cally, this means that organisations and practitioners
adopt and adapt models as their needs change (see,
for instance, [21], [8]).

That this is most often done in an ad-hoc fashion
raises the following questions: how can a planned
process be assessed for fit? Which evidence is
needed to inform decisions about adaptation? Even
given ten years’ effort (see, e.g., [20], [23] for
surveys) many knowledge gaps remain [26], [27] as
well as there being a distinct lack of understanding
of success criteria for process tailoring and of
pragmatic process application and/or adaptation in
specific contexts.

Our conjecture is that such questions can be
answered only if direct comparisons between pro-
cesses are possible. In this paper, we therefore pro-

vide an initial mapping of various process models
into our general theory so as to provide a basis for
their comparison.

III. A DESIGN-THEORETIC PROBLEM SOLVING
VIEW OF SOFTWARE DEVELOPMENT

POE takes a design-theoretic problem solving
view of software engineering. Paraphrasing G.F.C
Rogers’ definition of engineering [25] we consider
software engineering to be:

the practice of organising the design and con-
struction of any software artefact1 which transforms
the physical world around us to meet some recog-
nised need

Let Env be Rogers’ physical world, Need the recog-
nised need (AKA requirement) of G – the problem
holder – and Soln the software artefact2.

Define a software (engineering) problem to be the
proposition:

P : Env(Soln) meetsG Need

the truth value of which indicates that, when Soln is
installed in the environment Env, their combination
meets G’s Need.

Establishing the truth value of the proposition
is done within the propositional calculus, so that
design can be presented as the familiar propositional
proof tree3, albeit augmented with steps that cor-
respond to software-engineering-like process. [13],
for instance, defines ‘solution exploration’ phase
architectural expansion steps that allow a software
architecture to structure code; other ‘problem ex-
ploration’ steps constitute ‘sense making’ for envi-
ronment and need. Phases can be associated with
problem and solution validation checkpoints by
appropriate stakeholders.

If the validation associated with a phase fails,
then the resource for that phase is lost. As such,
development risk is addressable under POE ([17]).
The relationship between resource consuming prob-
lem and solution exploration phases and risk mit-
igation through validation is shown in Figure 1,

1Rogers uses artifice, less suggestive of a (physical) object.
2POE does not constrain the description language for these

problem elements.
3Which we call Natural Design; c.f. Gentzen’s Natural Deduc-

tion ([9]). Like Natural Deduction, Natural Design is amenable
to automation, [10].



and is known as the POE Process Pattern (shortly
PPP, [12]). Note: the PPP is a pattern and not a
model; it is suggestive of the ordering of phases
and validation. Although the PPP has a formal
interpretation within POE, we do not describe that
here.

Fig. 1. The POE Process Pattern (PPP): the observed structure
of problem solving in design; both Problem and Solution Explo-
ration can be seen as problem solving activities in themselves;
Validation, if done, is a separate activity involving one or more
Validators.

Consider the following software development
problem:

Example: Michael, an experienced developer, wants
a piece of software for his smart phone which
alerts him to take an umbrella when the forecast
predicts rain. Following Rogers, Michael’s physical
world includes a smart phone, the weather, weather
station, and an umbrella; the weather station moni-
tors the weather through sensors and issues weather
forecasts that are available via the Internet on his
phone. Michael (as problem explorer) describes his
need as:

Need = ‘when the weather forecast predicts rain,
I am alerted to take an umbrella′.

As a proposition Michael’s problem is:
PMichael : 〈Smart phone,Weather,

Weather station,Umbrella〉(Soln)
meetsMichael Need

where Soln is to be found. �

As described above, problem exploration led to
a (in the general case, partial) description of Env
and Need. From this understanding of the problem,
Michael can begin to construct his Soln:

Example: Given the above analysis of his problem,
Michael begins the solution exploration (or coding)

phase. Michael’s first decision is that his platform
of choice for the Soln is If This Then That
– – an internet software-as-a-service tool
for creating simple internet enabled trigger-action
programs ([29]; so-called recipes, [14]). His recipe
is shown in Figure 2, with some output. �

Fig. 2. (Left) the recipe to remind Michael to take an
umbrella if tomorrow’s forecast is for rain; and (right) an SMS
received from the service.

We can fit Michael’s process to the PPP as fol-
lows: Michael has but a single instance of problem
and solution exploration with no (external) valida-
tion: Michael is his own ‘customer’. Thus, a single
application of the PPP without validation leads to
the simple ‘bang-bang’ process representation of
Figure 4(left). We note that the graphical notation
is suggestive rather than formal.

Fig. 3. Modelling Analysis and Coding as (left) a simple ‘bang-
bang’ problem solving activity; (centre) so that a ‘bang-bang’
Analysis delivers its output to ‘bang-bang’ Coding; and (right)
in which the coder as the recipient of the Analysis output is
seen as a validator of, and perhaps even a collaborator in, that
analysis

IV. ROYCE’S SOFTWARE DEVELOPMENT
PROCESSES

In his treatise on large-scale software develop-
ment processes Royce ([28]) describes a number



of process models, ranging from the simple to the
complex, four of which are show in Figure 4. In
this section, we will use Royce’s models as part
of the exemplar basis for software development
processes characterisation in POE; later we model
more modern processes.

A. Royce’s ‘essential’ development steps

Describing Figure 4.1, Royce says:
There are two essential steps common to all

computer program developments, regardless of size
or complexity. There is first an analysis step, fol-
lowed second by a coding step [...]. This sort of very
simple implementation concept is in fact all that is
required if the effort is sufficiently small and if the
final product is to be operated by those who built it.

This is Royce’s simplest model, shown in Fig-
ure 4(1), appropriate in cases such as the sim-
ple example above. Our first and simplest model
of Royce’s software processes as problem solving
processes, then, consists of a problem exploration
phase – Analysis – and a solution exploration
phase – Coding – together as a single ‘bang-bang’
application of the process pattern, as was shown in
Figure 3(left); use is internal, so there is no need
for validation in this simple case.

In simple, single person development, the results
of analysis need not formally be recorded. In multi-
developer situations, however, there are very good
reasons to separate analysis from coding, docu-
menting both. To represent this, our process model
changes: instead of a single PPP instance, we use
two, one each for the analysis and coding phases;
see Figure 3(centre). To do so, however, we must
identify the problems that are solved during analysis
and coding; the analysis problem is

to find a description of environment and need
that is suitable as the basis for communication with
the coding phase

whereas that for the coding phase is
to understand the analysis description, and to

produce from it a software artefact that satisfies it.

In contrast to the original ‘bang-bang’ model,
there are two solution artefacts of differing natures:
the first is documentation of the environment and
need, the second, code. We note that, as the analysis
phase no longer has a pure software solution, our
starting point of software problem is too restrictive,

other problems types are needed. We do not discuss
this further here, other than to say that the solution
to a problem can be based on any technology,
not just software. What this means for POE are
discussed in [12].

Returning to the multi-developer case, given that
the coding phase will begin from the analyst’s
output, to lower development risk we could set
the coder as validator for that output (see Fig-
ure 3(right)): as validator, the coder expresses their
willingness to accept (or not) the Analysis output
(point ‘b’ in the figure) before it is passed to them as
coder. This would encourage the analyst to consult
the coder during the analysis phase so that their
validation environment and needs can be better
understood.

It is this most sophisticated pattern application
that we use as the basis of our modelling of Royce’s
more complex processes.

B. Idealised ‘waterfall’ model

Although Royce doesn’t use the term ‘waterfall’
in [28], by that term is commonly understood the
idealised process that Royce documented for larger
installations, reproduced in Figure 4(2). Royce ar-
gues that while the previous model includes essen-
tial steps as representing:

the kind of development effort for which most
customers are happy to pay, since both steps involve
genuinely creative work which directly contributes
to the usefulness of the final product.

further steps are required and justified as the basis
for larger software system development, despite not
always being welcomed by developer or customer
— they only contribute to the product indirectly, but
still need planning and staffing. In this expanded
model, each phase runs to completion before the
next starts, with no thought for iteration. Given the
discussion of the last section, the reader will readily
see how Royce’s cascade of steps is simply many
sequential instances of the PPP.

C. Introducing iteration

As a stepping stone in our development, Figure 4
is useful. However, as Royce point out, this process
model is unrealistic.



Fig. 4. Royce’s first four software development process models, adapted from [28]: 1) ‘Implementation steps to deliver a small
computer program for internal operations’; 2) ‘Implementation steps to develop a large computer program for delivery to a customer’;
3) ‘Hopefully, the iterative interaction between the various phases is confined to successive steps’; 4) ‘Unfortunately, for the process
illustrated, the design iterations are never confined to the successive steps’

Figure 4(3) corresponds to a process in which it-
eration is possible between successive phases while,
in Figure 4(4), iteration is present only between
Testing and Coding and Coding and Software Re-
quirements. Royce argues from experience that the
latter is, in fact, the more realistic model and it is the
one he goes on to develop further. For completeness,
however, we provide in Figure 5 interpretations of
both: in (a) iteration is achieved by setting the cur-
rent phase development stakeholder as validator of
the preceding phase; in (b), by setting the Program
Designer as validator of the Software Requirements
phase and the Tester as a validator of the Program
Design phase.

Fig. 5. Modelling the additional linkage between the Testing and
Program Design phases of Royce’s increasingly sophisticated
models in Figure 4.3 & 4.4. In (b), the Tester uses the tests to
decide not only on the Coding step but on the Program Design
step too.

D. Process model with risk elimination

Royce goes on to argue that additional features
must be added to Figure 4(4) to eliminate most
development risk, leading to his most complex
model, shown in Figure 6. These additional features
concern effort required to produce non-software
artefacts and to conduct customer reviews, dis-
cussed next.

1) Review points and Customer involvement:
Review points (decorated circles in Figure 6) are
points in the process in which the customer is
involved formally, in depth and as a way of estab-
lishing commitment at points before delivery. Royce
identifies three such review points in his process
model:

• Preliminary Software Review (PSR), in which
a preliminary program design is reviewed be-
fore the (essential) Analysis step;

• Critical Software Review (CSR), in which the
full program design is reviewed before the
(essential) Coding step;

• Final Software Acceptance Review (FSAR),
in which the outcome of the testing phase is
validated before Operations.

At this point we note that to gain the customer’s
formal commitment through the PSR means that
some thought must be put into the way that the
developmental team will interact with the customer



Fig. 6. Royce’s summary of his risk-managed software development process (reproduced from [28, Figure 10, page 338])

through the process preparing the preliminary pro-
gram design. This is likely to involve working
with the customer during the Preliminary Program
Design activity to ensure that the sign-off activ-
ity will, indeed, result in customer commitment.
With reference to our process pattern, this identi-
fies the customer as a validator for the output of
Preliminary Program Design (corresponding to ‘a’
annotation in Figure 7). In reality, and although
it might nor be desirable from a developmental
perspective, it is likely that the customer will have
views on whether the problem to which the pre-
liminary program design is the solution has been
formulated properly (annotation ‘b’ in the figure).
As the software requirements were a component
of this problem, the customer may, in actuality,
decide that the preliminary program design does
not gain their commitment because the software
requirements were in error (annotation ‘c’ in the
figure)4 causing the process to iterate back to the
software requirements phase.

4Of course, the possibility exists that the software require-
ments were in error because the system requirements were in
error; however, this simple extension steps outside of Royce’s
model.

Fig. 7. The customer’s role in Preliminary Program Design
as validator may require further (a) solution or (b) problem
exploration of the preliminary program design, or even (c)
reconsideration of the Software Requirements.

When offering the customer a formal opportunity
for validation the developers must accept that the
customer can withhold it initially, until – perhaps
substantial – rework discharges their validation
needs. Such is the nature of development risk. We
have seen that the first opportunity for customer val-
idation in Royce’s model brings into question any
and all work carried out before the validation point.
Our discussion so far then suggests that, as risk is
limited to the accumulation of expended resources
between validation points, customer involvement
should be frequent and, perhaps, even more frequent
than that suggested by Royce. Indeed, this is one



of the tenets of Agile development (as we also
discuss in Section V-A). The downside of customer
involvement is the difficulty and cost of frequent
engagement and, thus, there is a trade-off to be
made between frequency and cost.

For the other areas in which formal customer
validation is suggested by Royce (CSR and FSAR),
a similar analysis applies, albeit with perhaps the
commitment of more resources and more depth. The
ramifications of customer involvement – that it may
cause the reconsideration of previous steps – are
apparent. The ramifications for the model are clear.

2) Subsidiary effort and Documentation: In the
process model of Figure 6, an undecorated ellipse
is used to represent subsidiary effort, that is effort
expended during a development step, but producing
non-software artefacts, such as the system overview
which is used for communication of ([28])

an elemental understanding of the system [to be
built]

throughout the developmental process, from
at least one person [that has] a deep understand-

ing which comes partially from having had to write
the overview document.

Among all non-software artefacts, documentation
is singled out in Royce’s model, indicated by book-
like icons. According to Royce [28, page 332]:

Management of software is simply impossible
without a very high degree of documentation

and gives a number of reasons he believes this to
be the case:

• documentation is the vehicle by which a
designer communicates with other designers,
management and the customer;

• documentation is the spec and the design in
the early stages of development;

• the monetary value of documentation is felt
during testing, operations and redesign.

For processes in which it has such a prominent
role, it follows that documentation should be fit-
for-purpose. It is reasonable, therefore, to consider
Royce’s documentation as an artefact requiring
validation by those downstream stakeholders that
would use it. As such, an explicit problem solving
process is needed for documentation, for which val-
idating stakeholders need identifying: for instance,
its downstream stakeholders may wish to serve as

validators (in a similar fashion as discussed for
the Customer as validator in the previous section).
Of course, it may be that operations and redesign
(or even testing) personnel are not be available as
validators, in which case some other scheme for
producing fit-for-purpose documentation might be
chosen, such as over-engineering [18].

V. POST-ROYCE SOFTWARE DEVELOPMENT
PROCESSES

Much has changed since Royce defined his initial
models. In this section, we show how agile pro-
cesses can be represented within our theory.

A. Agile processes: SCRUM

SCRUM is one of the best known agile processes.
It also one which comes with a fairly clear software
development process model (see Figure 8).

One interesting characteristic of this model is
that it includes explicit consideration of planning
activities alongside more traditional software devel-
opment activities, as well as singling out specific
stakeholder roles. This is in contrast to Royce’s
models (and those derived from them), where plan-
ning and project managing is usually done via
a separate parallel process. Our interpretation of
sprint planning, execution and review, is illustrated
in Figure 9, and discussed in the sequel.

Fig. 9. Planning, executing and reviewing sprint as a composite
problem solving process

In SCRUM, development is carried out in
time-boxed iterative and incremental cycles, called
sprints. Once a sprint’s target is set (i.e., which



Fig. 8. The SCRUM process model. Adapted from [7].

feature or requirement to address), it remains fixed
throughout the sprint, and the output is a ‘po-
tentially shippable product increment.’ Responsibil-
ity for development is with a cross-functional co-
located (Development) Team, coached and enabled
by a ScrumMaster — two stakeholder roles identi-
fied in the SCRUM model.

A possible interpretation of a sprint takes us back
to the first model we considered in Section IV-A:
the Team is jointly responsible for analysing the
(fixed) requirements and come up with a software
solution; descriptions are easily exchanged among
the co-located team members5, so that there is no
need for explicit documentation to be created. We
could argue that the enabling role of the Scrum-
Master is to mitigate risk within the sprint, as the
ScrumMaster checks that activities within the sprint
are carried out in the true spirit of SCRUM and
provides advice and support to ensure that is the
case.

Sprint planning is based on a ‘Definition of
Done’, which is agreed between the Team and
the Product Owner, another SCRUM-defined role,
responsible for identifying and prioritising product
features for development in sprints. Two Sprint
Planning Meetings are used for the Product Owner
to discuss with the Team what needs to be im-
plemented, and for the Team to decide how to
implement it.

5A 15-minute Daily Scrum is a stand-up meeting in which
the Team exchanges information at the start of the working day.
There is also a shared Sprint Backlog accessed and updated by
the Team.

As a sprint is time-boxed (usually between two
and four weeks) and work stops when time expires,
it is easy to estimate accurately each sprint’s re-
source expenditure, and development risk is con-
fined to the loss of that expenditure. The duration
of the Sprint Planning Meetings is also fixed, so,
again resource expenditure is easy to predict.

The evaluation of the output of a sprint takes
place after its completion via a Sprint Review, a
meeting where Team, ScrumMaster, Product Owner
and other invited stakeholders (e.g., customer, users,
executives) participate. It is intended as an ‘inspect
and adapt’ meeting for the product: inspecting what
has been developed as well as how external fac-
tors or expectations may have changed, and adapt
as necessary to plan the next product increment.
Alongside Sprint Review, there is also a Sprint
Retrospective, in which inspection and adaptation
applies to the development process and environ-
ment: this is where the Team review their own
working practices to decide what needs preserving
or changing. This is often facilitated by a Scrum-
Master for another Team. As everything else in
SCRUM, these reviews are also time-boxed.

The responsibility for overall product planning
lies with the Product Owner, who needs to max-
imise return on investment by identifying and priori-
tising product features for development in sprints.
The Product Backlog, a list of prioritised features,
is used for this purpose: features from the Product
Backlog are input to Sprint Planning Meetings, and
the list is updated following Sprint Reviews.

Note: Scrum does not prescribe how the Product



Owner should go about selecting and prioritising
features: like Royce’s model, how the initial re-
quirements are set and validated with customers,
users, and other stakeholders, lies outside of the
scope of Scrum. There is, however, an expectation
that the Product Owner be sufficiently senior and
experienced to perform this function: risk is mit-
igated by appointing an appropriately experienced
person.

B. Scalable Agile processes: DAD SCRUM

While Agile approaches are welcome as people-
centric process models, they are also criticised, at
least in their vanilla form, for being difficult to scale
up to large scale development projects. As observed
by Ambler [2]:

Although agile teams have pretty much figured
out how to effectively address functional require-
ments, most are still struggling with NFRs and
constraints. [...] Agile requirements management
strategies [...] assume that requirements are self-
contained and can be addressed in a finite period of
time, an assumption that doesn’t always hold true
for NFRs and constraints.

With this problem in mind, Ambler defines his
Disciplined Agile Delivery (DAD) framework [3],
as a way to combine architectural strategies with
Agile process models. The DAD SCRUM model
introduces the role of Architecture Owner to take
ownership of the incremental development of the
system architecture in a way which mirrors the
way the Product Owner takes ownership of product
features for development. At the start of the project,
alongside the Product Owner working towards the
initial Product Backlog, the Architecture Owner
works towards an initial architectural vision, which
is then shared with the Team and becomes the
subject of scrutiny both in sprint planning and
review meetings.

To model Ambler’s architectural extensions, we
look again at the assumptions underpinning Royce’s
process development. Royce’s process is claimed to
manage risk [28, page 335] under the assumption
that:

At any point in the design process after the
requirements analysis is completed there exists a
firm and closeup, moving baseline to which to return
in the event of unforeseen design difficulties. What
we have is an effective fallback position that tends to

maximize the extent of early work that is salvageable
and preserved. [28, page 328]

i.e., risk management is predicated on the complete-
ness of requirements analysis.

In volatile contexts, the completeness of the re-
quirements analysis cannot be guaranteed, whence
Royce’s claim does not necessarily hold. Indeed,
when requirements and/or environment are in a
constant state of flux, its clear that a rigorous
application of Royce’s process would never end
– each change of requirements would necessitate,
essentially, the whole process to be restarted.

Fig. 10. In which (left) monolithic software requirements are
(right) bundled into two allowing independent development paths
for each bundle. Grey shading indicates backtracked develop-
ment.

Arguably, we might identify the deficiencies of
Royce’s process in volatile contexts as its depen-
dence on monolithic software requirements: Fig-
ure 10(left) illustrates that any change of require-
ments implies a complete redevelopment under
Royce’s model. As suggested in Figure 10(right)
however, if software requirements could be pack-
aged into two (or more) independent pieces then
the cost of failure, and so developmental risk, could
be reduced; even in the non-terminating situation,
something – the left-hand side of Figure 10(right)
– could be delivered.

The splitting of requirements in this way is not
trivial. In [13], we define the problem transfor-
mation SEPARABLE PROBLEM that decomposes a
problem’s requirements into n subproblems if it can



be shown that those sub-problem do not interfere6.
This is a severe constraint, however, and does not
generally hold.

In [11] (expanded in [12]), however, we develop
a characteristic relationship between functional and
non-functional requirements, architectures and de-
sign rationale which is the basis of a much more
general decomposition operation. In essence, the
basis of the characterisation is the observation that
architectures address quality (or non-functional) re-
quirements whereas components address functional
requirements. Briefly, if we assume that we have
isolated required qualities Q from required function
F and if AQ(S1, ...,Sm)

7 is an architecture that
discharges Q then the solution of

Env(Soln) meetsG F subject to Q

reduces to the solution of

Env(AQ(S1, ...,Sm)) meetsG F

In practice, if the functional requirements can be
expressed as a conjunction, F = F1 ∧ . . . ∧ Fn,
then we can build a matrix relationship between the
Si and the Fj by which to identify their respective
contributions.

The importance of this characterisation is that
it allows us to progress from a process based
on a single monolithic requirement to independent
modular sub-developments corresponding to some
decomposition thereof. We note that:

• as illustrated in Figure 11, the cost of the trans-
formation is an Architectural Analysis phase
that (i) develops an appropriate architecture
and (ii) finds a suitable partitioning to enable
the subsequent modular sub-developments;

• each of the independent modular sub-
developments may still be susceptible to
Royce’s risk managed development model.
Indeed, should they be sufficiently simple,
then his simplest development model, that of

6The definition of interfere is technical and is omitted for
brevity. Details in [13]

7We have simplified the form of AQ for brevity; see [12] for
full details.

Figure 4(1), might once again apply8.

Fig. 11. In which an Architectural Analysis step allows
the decomposition of complex requirements into modular sub-
developments. With the correct choice of architecture, each
module can be developed independently, such as occurs in
agile processes. This links Royce’s waterfall model with Ambler
sophisticated scalable agile processes.

It is important to recall the difference between
the way architectures are dealt with in plan-driven
process models compared to the Agile version, in
the context of DAD SCRUM, for instance: only an
initial vision is set at inception time (i.e., before all
sprints start) which is the subject of adaptation as a
result of work within sprints, with the Architecture
Owner working collaboratively with the Team to
develop knowledge and a shared understanding. So
the architecture emerges over time, starting from
the Architecture Owner’s initial vision, through
increments which reflect the growing knowledge of
both Architecture Owner and Team.

VI. RELATED WORK

Some of the ideas in our paper resonate with
Jeffrey’s work from the mid-90s ([15]) in which
he argues the necessity to account for aspects of

8Even if their complexity remains high, it may be that further
architectural analysis can be applied to further simplify the
requirements.



the human role in projects ‘even in situations that
seem purely technical.’ One aspect of his argument,
which is particularly relevant, is the observation
that, as project teams become large, diverse ‘com-
munities’ are formed, each with their own ‘internal
logic’, which cause them to ‘see the overall system
in terms of the part they are creating.’ Jeffrey
suggests as mitigation

every time, at every level, when the output of
a process is input to some other subcommunity,
include a member of the ‘customer’ community on
the team doing the task to be the provider of reality
checks for the team.

This is consistent with what our theory suggests
as choice and role of validators among related
development activities.

A recent survey of process tailoring [16] has
identified 49 criteria and 20 related measures which
have been observed or reported in the practice of
process tailoring. Although a useful starting point
and a good indication to its relevance in current
practice, this survey falls short of providing any
insight as to the interplay between those criteria
and measures, their applicability or effects. It may
be an interesting exercise for future work to apply
our theory to try and explicate such relationships.

The Incremental Commitment Model (ICM) [4],
[5] is a fairly recent generic software development
process model which includes explicit consideration
of process adaptation: risk-driven decision points
are included to help practitioners tailor the process
to the needs of their own projects/organisations
by applying guiding risk patterns provided. Both
model and patterns are based on the authors’ own
experience and understanding of best features of
other mainstream process models, such as Royce’s
and the Agile models we have discussed in this
paper. It is not clear at this point in time the extent
such a model has been adopted and/or evaluated in
practice. Differently from our approach, this is a full
process model developed on a purely experiential
basis, rather than a theory-based process pattern
which can be used as an instrument of analysis,
as is the intent of our approach.

Other work (e.g., [24]) looks at how to ex-
tend process modelling languages to include ex-
plicit notation for variation points. Such work fits

within the extensive literature on software process
modelling, which according to [6] relates to two
main categories: descriptive models, with their clear
identification of activities, roles, responsibilities and
input/output artefacts; and executable models, that
allow simulation and enacting of the modelled pro-
cess ([30]). Both categories facilitate human under-
standing and communication and support process
management and improvement. Our proposal may
contribute to providing descriptive models with as-
sociated heuristics: our theoretical interpretation of
process elements allows us to reason about resource
expenditure and risk mitigation [17].

VII. CONCLUSION

In this paper, we have interpreted a diverse
collection of software development processes as
problem solving processes within a design theoretic
framework. The scope of the interpretation was
broad, ranging from traditional plan-driven pro-
cesses to the most modern Agile ones. To do so,
we have used a single building block – the POE
Process Pattern – to capture process elements such
as sense-making, solution design, and validation.
When expressed in terms of the pattern, information
flow and the relationship between actors in the
processes are clarified as is resource usage and
developmental risk.

Based on a single building block, the regularity of
representation allows relationships between differ-
ent process models to be seen – even in this proof-
of-concept work, we already see the relationships
between elements, and the structure, of Royce’s
early process models and those of modern Agile
approaches. From our interpretation we have been
able to explain why, in volatile contexts, Royce’s
model fails, which corresponds to observations of
practice. We also argue, from first principles, that
Agile’s scalability to large systems requires an
Architectural Analysis phase to be included tak-
ing their expression beyond Royce’s early process
models; this also agrees with Ambler’s thoughts on
scaling Agile processes.

In future work, we will extend our initial qual-
itative analysis through the definition of process
metrics with the intention of imbuing our interpre-



tations with a predictive capability. Producing fully
detailed, predictive models of software processes
is one such challenge which, if met, would allow
parametrisation against real world instances leading
to a falsifiable general theory of software engineer-
ing processes.

ACKNOWLEDGMENTS

We thank the reviewers for their very helpful
comments.

REFERENCES

[1] Agility. Agile alliance. http://www.agilealliance.org/home,
2004. Last accessed November 2004.

[2] S. W. Ambler. Beyond functional requirements on agile
projects. Dr. Dobb\’s Journal, 33(10):64–66, 2008.

[3] S. W. Ambler. Agile architecture: Strategies for scaling
agile development. Webpage, 2012.

[4] B. Boehm. An initial process decision table and a process
evolution process. In Proceedings of the 2014 International
Conference on Software and System Process, pages 187–
188. ACM, 2014.

[5] B. Boehm, J. Lane, and S. Koolmanojwong. A risk-driven
process decision table to guide system development rigor.
In Proceedings of the 19th International Conference on
Software Engineering, Singapore (July 2009), volume 162,
2009.

[6] G. Canfora, F. Garcı́a, M. Piattini, F. Ruiz, and C. A.
Visaggio. A family of experiments to validate metrics for
software process models. Journal of Systems and Software,
77(2):113–129, 2005.

[7] P. Deemer, G. Benefield, C. Larman, and B. Vodde. A
lightweight guide to the theory and practice of scrum (ver-
sion 2.0). Technical report, Technical report, http://www.
scrumprimer. org, 2012.

[8] B. Fitzgerald, K.-J. Stol, R. O’Sullivan, and D. O’Brien.
Scaling agile methods to regulated environments: An in-
dustry case study. In Proceedings of the 2013 Interna-
tional Conference on Software Engineering, pages 863–
872. IEEE Press, 2013.

[9] G. K. E. Gentzen. Untersuchungen über das logische
schließen. Mathematische Zeitschrift, 39:176–210, 1935.

[10] J. G. Hall and L. Rapanotti. Software engineering as the
design theoretic transformation of software problems. In-
novations in Systems and Software Engineering, 8(3):175–
193, 2012. DOI 10.1007s11334-011-0171-2.

[11] J. G. Hall and L. Rapanotti. Beauty in software engineer-
ing. IEEE Computer, 46(2):85–87, February 2013.

[12] J. G. Hall and L. Rapanotti. A general theory of engi-
neering: Thinking bigger than software. Technical Report
2015/01, Computing and Communications Department,
The Open University, UK, 2015.

[13] J. G. Hall, L. Rapanotti, and M. Jackson. Problem Oriented
Software Engineering: solving the package router control
problem. IEEE Trans. Software Eng., 34(2):226–241,
March 2008 2008.

[14] IFTTT. ifttt.com, Last Accessed, 26 Feb, 2015.

[15] H. J. Jeffrey. Addressing the essential difficulties of
software engineering. Journal of Systems and Software,
32(2):157–179, 1996.

[16] G. Kalus and M. Kuhrmann. Criteria for software process
tailoring: a systematic review. In Proceedings of the 2013
International Conference on Software and System Process,
pages 171–180. ACM, 2013.

[17] D. Kaminsky and J. G. Hall. Towards process design for
efficient organisational problem solving. In Proceedings of
BUSTECH 2015, 2015.

[18] J. Kerievsky. Stop over engineering. Software Develop-
ment, April, 2002.

[19] P. Kruchten. The Rational Unified Process: An Introduction
(2nd Edition). Addison-Wesley Professional, 2 edition,
Mar. 2000.

[20] T. Martı́nez-Ruiz, J. Münch, F. Garcı́a, and M. Piattini.
Requirements and constructors for tailoring software pro-
cesses: a systematic literature review. Software Quality
Journal, 20(1):229–260, 2012.

[21] M. Mc Hugh, O. Cawley, F. McCaffcry, I. Richardson, and
X. Wang. An agile v-model for medical device software
development to overcome the challenges with plan-driven
software development lifecycles. In Software Engineering
in Health Care (SEHC), 2013 5th International Workshop
on, pages 12–19. IEEE, 2013.

[22] L. Osborne, J. Brummond, R. D. Hart, M. Zarean, and
S. M. Conger. Clarus: Concept of operations. Technical
report, 2005.

[23] O. Pedreira, M. Piattini, M. R. Luaces, and N. R. Brisaboa.
A systematic review of software process tailoring. ACM
SIGSOFT Software Engineering Notes, 32(3):1–6, 2007.

[24] R. M. Pillat, T. C. Oliveira, and F. L. Fonseca. Introducing
software process tailoring to bpmn: Bpmnt. In Software
and System Process (ICSSP), 2012 International Confer-
ence on, pages 58–62. IEEE, 2012.

[25] G. F. C. Rogers. The Nature of Engineering: A Philosophy
of Technology. Palgrave Macmillan, 1983.

[26] G. Rong. Are we ready for software process selection,
tailoring, and composition? In Proceedings of the 2014
International Conference on Software and System Process,
pages 185–186. ACM, 2014.

[27] G. Rong, B. Boehm, M. Kuhrmann, E. Tian, S. Lian, and
I. Richardson. Towards context-specific software process
selection, tailoring, and composition. In Proceedings of
the 2014 International Conference on Software and System
Process, pages 183–184. ACM, 2014.

[28] W. Royce. Managing the development of large software
systems. In Proceedings of IEEE WESCON, volume 26,
pages 1 – 9, 1970.

[29] B. Ur, E. McManus, M. Pak Yong Ho, and M. L. Littman.
Practical trigger-action programming in the smart home.
In Proceedings of the 32nd annual ACM conference on
Human factors in computing systems, pages 803–812.
ACM, 2014.

[30] H. Zhang, B. Kitchenham, and D. Pfahl. Software process
simulation modeling: an extended systematic review. In
New Modeling Concepts for Today’s Software Processes,
pages 309–320. Springer, 2010.


