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Abstract:  The motivation of the European Etoile project is to create high quality free open education 

in complex systems science, including quality assured certification. Universities and colleges around 

the world are increasingly using online platforms to offer courses open to the public. Massive Open 

Online Courses or MOOCs give millions of people access to lectures delivered by prestigious 

universities. However, although some of these courses provide certification of attendance and 

completion, most do not provide any academic or professional recognition since this would imply a 

rigorous and complete evaluation of the student’s achievements. Since the number of students 

enrolled may exceed tens of thousands, it is impractical for a lecturer (or group of lecturers) to 

evaluate all students using conventional hand marking. Thus in order to be scalable, assessment 

must be automated. The state-of-the-art in automated assessment includes various methods and 

computerised tools including multiple choice questions, and intelligent marking techniques (involving 

complex semantic analysis). However, none of these completely cover the requirements needed for 

the implementation of an assessment system able to cope with very large populations of students and 

also able to guarantee the quality of evaluation required for higher education. The goal of this 

research is to propose, implement and evaluate a computer mediated social interaction system which 

can be applied to massive online learning communities. This must be a scalable system able to 

assess fairly and accurately student coursework and examinations.  We call this approach “machine 

and socially intelligent peer assessment”. This paper describes our system and illustrates its 

application. Our approach combines the concepts of peer assessment and reputation systems to 

provide an independent computerised system which determines the degree and type of interaction 

between student peers based on a reputation score which emerges from the marking behaviour of 

each student and the interaction with other individuals of the community. A simulation experiment will 

be reported showing how reputation-based social structure can evolve in our peer marking system.  A 

pilot experiment using a population of ninety 16-year old high school students in Colombia measured 

the marking accuracy of our system by comparing the statistical  differences between the scores 

resulting from teacher marking (the ‘gold standard’), peer assessment using average scores,  and our 

intelligent reputation-based peer assessment. This addresses the research question: to what extent 

does the proposed approach improve peer marking in terms of marking accuracy and fairness?  We 

report the first results of this experiment, summarise the lessons learned, and describe further work. 

 

Keywords: MOOCs, automated marking, peer assessment, reputation systems, complex systems  
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1. Introduction 

The motivation of the European Etoile project is to create high quality free open education in complex 

systems science, including quality assured certification (http://www.etoileplatform.net/index). In the 

first instance we are focused on providing postgraduate education for masters and doctoral students 

and other researchers. This means that, although we can assume that our students will be well 

motivated with good study skills, we share the same general challenges of open online learning. 

Massive Open Online Education is gaining not only traction but legitimacy through the offer of open 

online courses given by prestigious academic institutions around the world. Academics from Harvard, 
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Stanford, the Santa Fe Institute, MIT and many others institutions are giving online lectures in several 

subjects to millions of students. The access to these lectures is in most cases without any academic 

restriction and without any fee.  

The offer of massive Open Online Courses (MOOCs) can be mostly found in dedicated online 

education platforms (e.g: Coursera), which offer an extensive curriculum of courses in a variety of 

subjects including mathematics, computer science, natural sciences and social sciences. 

Giving massive and ubiquitous access to high level education provides a valuable contribution to the 

expansion of knowledge in society, especially in poorer regions of the world where a large part of the 

population does not have access to university level education.  

Thanks to their content, quality and accessibility, MOOCs allows students from everywhere to gain 

significant knowledge and skills for personal and professional development. However, the question is, 

to what extent is it possible to get academic and professional recognition from a MOOC?  The answer 

concerning academic accreditation is very limited. Some courses offer a certificate of completion on 

completion of all lessons. Such certificates provide in some cases a record of the student 

performance and proof of participating in the course but do not provide any university credits that can 

be transferred to a higher education qualification.  

Granting academic recognition in a MOOC would imply a rigorous and complete evaluation of the 

student’s achievements. Taking into account the large number of students enrolled in a course which 

often exceeds tens of thousands, it is impractical to evaluate all students using conventional hand 

marking. Thus in order to be scalable, assessment must be automated.  

The absence of academic accreditation of MOOCs represents an issue of accessibility to widespread 

of certified higher education.  We propose in this paper an alternative to overcome this barrier through 

the design of a model capable of handling large student populations while producing high quality 

assessment. We implemented the algorithms described in our model in a computerised assessment 

system and evaluated this in an experimental study performed with ninety 16 year-old students in a 

secondary school and also in a simulated scenario with larger populations of students. 

2. Automated Assessment 

The state-of-the-art in automated assessment includes various methods and computerised tools 

including multiple choice questions, and intelligent marking techniques (involving complex semantic 

analysis). However, none satisfy all the requirements of an assessment system able to cope with very 

large populations of students also able to guarantee the quality of evaluation required for certified 

higher education. Exclusive use of any single format for assessment is not recommended (American 

Educational Research Association, the American Psychological Association, and the National Council 

on Measurement in Education, 1999). 

Multiple choice questions 

One of the most commonly used assessment formats is multiple choice testing (Haladyna, 1999; 

McDougall, 1997). This mature and well known assessment method  is recognized as an efficient way 

to evaluate a multidisciplinary range of knowledge (Haladyna, 1999). Once a multiple choice 

questionnaire has been created, it is possible to use computational tools for assessment of larger 

student populations. However, there are significant drawbacks: 

 multiple-choice assessment is not suitable to evaluate all types of knowledge.  

 testing student understanding beyond the superficial can require great ingenuity 

 multiple choice questions can be time-consuming to prepare.  

 questions can be ambiguous (but statistical methods make this easy to detect and correct). 

 students are not able to demonstrate partial knowledge of the subject in question. 

 students may gain marks by chance, spuriously indicating knowledge and learning 

 completing many multiple choice questions can be repetitive, boring and demotivating. 



Multiple choice assessment is a useful evaluation method when combined with another assessment 

formats (e.g. open questions) but using it exclusively is not enough to guarantee complete and 

accurate knowledge evaluation. 

Intelligent and Short answer marking 

This method refers to open questions with free text entry where the student has to write an answer 

usually no longer than four sentences. Here the student constructs rather selects answers 

(www.jisc.ac.uk, 2013). The aim is to obtain in the shortest possible text a definition or a set of facts. 

Short answers can then be evaluated by a computerised interpreter which may perform syntactic and 

semantic analyses of the text. The ability and accuracy of these interpreters may vary according to 

the technical complexity of the engines. Some of them use algorithmic manipulation of keywords while 

others use complex computational linguistic techniques to perform spell checking, syntax 

normalization, morphologic analysis, pronoun resolution and many others levels of linguistic 

processing (Butcher et al, 2010). The limited amount of words permitted by the interpreters does not 

allow students to create larger essays which may be necessary for more complex questions. 

Moreover, marking engines may not perform well for questions with an unpredictable range of valid 

answers e.g. ‘what is freedom?’ (www.jisc.ac.uk/media/documents/projects/shorttext.pdf (April 2013). 

There is specialized commercial software for essay evaluation e.g. ETS, which use model essays 

(pre-graded scripts) as templates to compare aspects such as style, vocabulary, length, etc. However, 

It is important to keep in mind that computerised tools are not really “aware” of the items or subjects 

they evaluate. 

Short answer marking can be very effective and can provide students with hints or further remedial 

material if at first they get the answer wrong, e.g., an incorrect response can generate automatic 

feedback telling the student to read a particular page of text, view a video, or follow a link directing 

them to material enabling them to answer the question. In this way the student can be diagnosed as 

initially not knowing something, but can be rewarded for their learning by being given credit at second 

or subsequent attempts (Johnson et al, 2012, page 231) 

Peer Assessment:  

Peer Assessment, or Peer Marking, is a method in which assessment is done by students who are 

also part of the same evaluated population or who study the same subject to be evaluated. This is 

considered an innovative assessment strategy (McDowell and Mowl, 1996)  which has demonstrated 

to improve  student learning process.  Peer assessment also has a positive impact on teachers or 

tutors by allowing them to use their time more efficiently,  and also to get the results of student 

assessments in a shorter time (Sadler et al, 2006). Because of these benefits, and taking into account 

that the size of the assessed population is equal to the number of assessors, we see in this method a 

potential solution to the gap between MOOCs and certificated higher education. However, it is 

necessary to consider reliability and validity  before going for a pure peer assessment approach. 

Reliability of Peer Assessment: one of the first questions that arise when applying peer assessment is 

how accurate and reliable it is. Studies have shown that in some scenarios peer assessors tend to 

overrate their peers giving higher marks than the teacher would do (Falchikov, 2002; Roach, 1999). 

The opposite case has been also observed, where the tendency is to underrate the assessed peers 

(Penny and Grover, 1996 in Heywood, 2000, 387). 

Peer marking is widely used in schools, often with a single student peer-marking another student’s 

work, even though more than one peer marker is recommended (Bostock, 2000). This has the 

problem that for any piece of work some students will be penalised (or advantaged) if their single 

peer-marker gives a low (or high) score compared to the mark that would be given by a teacher. This 

problem may be alleviated by an argument that these discrepancies will be evened out over a number 

of pieces of work. 



Multiple peer marking addresses this problem since it gives a distribution of marks. If the markers are 

highly competent their marks will be similar. If the markers are less competence there will be greater 

variance in the marks. Thus a high variability in the scores indicates that at least one of the peer 

markers is giving erroneous marks. Taking the average of the marks reduces the error compared to 

the worst marker and increases the error compared to the best marker. In the absence of knowing 

which markers are good or bad, taking the average is a compromise that reduces the frequency of 

large errors made by individuals at the expense of accepting an average error for the group. 

In principle it is assumed that for any assessment there is a ‘gold standard’ of marking provided by the 

teacher. In other words, all teachers would give the same mark for a given piece of work, and the 

quality of peer marking is defined relative to this standard.  

In practice the marks of experts can vary considerably. At the Open University in the UK many 

courses have thousands of students and their work is assessed by teams of markers. Quality 

assurance procedures involve systematic sampled second marking. While most second marking 

confirms the original mark, sometimes there are variations outside a limit of 15% which identifies 

weak markers and triggers third marking. Such considerations are outside the scope of this paper. In 

our experiment all the students answers were marked by a single teacher and our results are relative 

to the quality and consistency of his marking. 

Improving the quality of Peer assessment 

Taking into account that the abilities and performance of students for peer assessment are not 

homogeneous, it is necessary to find mechanisms to reduce the error resulting from the use of a 

group of assessors. One aspect where more emphasis has been put is on achieving feedback which 

is as objectively as possible. Several mechanisms have been proposed for eliciting Honest Feedback 

(Prelec, 2004; N. Miller, P. Resnick, and R. Zeckhauser, 2005), among which the well known Peer 

prediction method (Miller et al, 2005) where honest reporting between peer assessors is sustained by 

a Nash equilibrium. Another mechanism aimed at eliciting honest feedback has been proposed by 

Hütter, C.; Kimmerle, T. & Böhm, K. (2012) where an incentive mechanism is used to reward 

assessors according to their feedback quality.  Increasing honest feedback in a peer assessor 

population may have a significant impact on the quality of scores. However, truthful or honest marking 

is only one of the factors affecting accurate marking. Highly deviated marking can occur due to other 

reasons, e.g. lack of knowledge about the evaluated question-answer or misunderstanding of the 

assessment criteria. Thus, having different factors affecting marking behaviour does require a 

mechanism able to identify and quantify in general terms the marking accuracy of each assessor. 

Probabilistic frameworks (Witkowski, J. & Parkes, D. C., 2012; Carpenter, 2008) using bayesian 

inference have been proposed as a strategy to predict the gold standard and classify assessors 

according to their score quality, by assigning weights to them.  

 

Similarly to Witkowski et al (2012), we also implemented a weighting mechanism according to the 

calculated performance of each assessor. However, our system uses a more simplified analysis with 

a shorter set of equations. As a complementary feature, our system automatically assigns assessors 

to the assessed population based on a probabilistic distribution so that each assessed individual has 

an equal chance to be evaluated by a group of poor and good assessors. 

 

3. The hypothesis being tested 

Our approach involves giving peer markers a reputation score that discriminates the better markers 

from the weaker markers. Weak marking can be systematic, e.g. always too high or always too low. 

This can be seen as a calibration problem and in principle can be detected by its systematic nature. In 

contrasts some weak markers give inconsistent marks with work of the same quality being given 

different marks. 



Our approach is based on the underlying hypothesis that peer markers giving similar scores are more 

likely to be good markers than peer markers giving deviant scores. On this basis the reputation of 

each marker can be recalculated after each session, as explained in Section 5. 

Hypothesis 

The aggregate mark given to an answer by triples of peer markers on the basis of dynamically 

calculated reputation and marker selection will be closer to the gold standard mark than the average 

score of triple marking with no use of reputation information. 

4. Description of Experiment 

To evaluate our approach, we conducted a study with 90 students and one teacher for a duration of 

eight weeks. One control group and one experimental group were created. Each group has a 

population of 45 students selected at random. Each student was assigned a unique code which was 

used to identify them within this study. 

The students had four hours of classes per week. The first hour on the first day was used for 

teaching. The next day half of the second hour was used for students to complete new tests, and half 

an hour used to peer mark the answers from a previous session. On the third day the hour was used 

for teaching, and on the fourth day the fourth hour was again used for answering questions (half an 

hour) and peer-marking answers from the previous session.This in four weeks, it was possible to get 

seven samples of peer marking. 

For the control group, each copy is randomly distributed to the control population (after removal of the 

student whose exam is being distributed since self assessment is out of the scope of this study). 

Once an exam has been peer reviewed, the score is calculated based on the average from the score 

given by the 3 peer assessors.  

For the experimental group, the identification code of each student which presented the examination 

is given to our system. This generates a list for each exam script with the code of its 3 peer 

assessors. Once an exam has been peer reviewed, the score given by each peer assessor is entered 

in the system. This, calculates the exam score based on the weighted sum of the peers reputation. 

During the first month of study, students have been assessed and applied peer assessment twice a 

week for a total of 560 marked exams equivalent to 1680 peer reviews. To analyse the accuracy of 

peer assessment, the teacher marked all exams as the ‘gold standard’.  

We are comparing the differences between the scores calculated in the control and the experimental 

group with the scores given by the teacher.  

The experiment was done in (Spanish) linguistics lesson corresponding to what is called English 

Language in the UK, which includes elements of spelling, grammar, comprehension, forming shorter 

abstracts of text (precise), and general concepts of literature. An example question is 

 Explique como se crea un guion tecnico y los pasos a seguir 

which translates into English as  

Explain how to create a technical script (in a theatre) and the steps to follow. 

The students’ answers to the questions had two sheets of paper. The first sheet had their name and 

other information. The second sheet included the question and their answer.  

The preparation for each lesson included making three photocopies of the question-answer sheets for 

the previous lesson with hand written codes on each identifying the student and one of the three 

selected peer markers for this students’ answer. The section algorithm usually assigned different peer 

markers to each student’s answers. 

In the second thirty minutes the students were given three scripts to peer mark, these being answers 

given by their peers in the previous lesson.  



Students were motivated to give good answers since the gold standard assessment of the teacher is 

used to grade the course. They were motivated to peer assess other students well by being told that 

their performance would also count to the overall assessment the course.  

The data reported in this paper correspond to the first four weeks of the experiment. In the first week 

the process of answering questions and peer marking was explained to the students. The test college 

has a high reputation in its city and its students are highly motivated with relatively good academic 

achievements, and the students all complied with the procedures and tried to give good peer 

assessments. 

5. The experimental peer-assessment system:   

The system has three components: 

Management of students’ data:   

The system keeps track of the students’ information by using a reputation score on a scale of 1 to 

100. There are two types of reputation: one for the role as assessor and one for the assessed role.  

The assessor reputation score indicates the performance of the individual as a peer evaluator. The 

assessed score measures the performance of the individual as a student and is built from  the result  

of one or more assessments.  Both types of reputation scores are subject specific, allowing 

independent measures in both  assessor and student roles  for each specific subject.  For instance, 

an individual may have a higher reputation as assessor in mathematics,  a lower score as assessor in 

history but a higher score as a student in the same subjects.  

A student can be associated to several subjects depending on the courses on which they are 

enrolled. This is supported in our system by a many-to-many relationship between the student and 

subject entities. 

Selection of Peer assessors for marking   

On completion of an examination, the system generates for each given answer a pool of n (3 in our 

system) assessors. This pool is selected from the assessors population which has been previously 

associated to the subject of the question/answer.  

In order to achieve a fairer assessment, the pool of assessors is created by using a probabilistic 

selection based on the reputation score of each assessor. The objective is for every student to have 

the same probability to be assessed by at least one higher-reputation marker, one lower-reputation 

marker and one random marker when the pool size is of three or larger. In order to achieve this, each 

assessor is associated with a variable known as selection preference Sp  which is initialized with the 

reputation value of the corresponding individual. 

Once, an individual has been selected to be an assessor for a pool, their Sp variable  is assigned  a 

value equal to the average of the reputation of the entire population associated with the subject of the 

evaluated answer. This reduces the probability of the same individual being selected immediately 

after as high/low-reputation assessor, thus preventing an overload of work and also giving another 

individuals the opportunity to become assessors in a pool.  

Recovering preference: each time a new pool of assessors is selected, the Sp variable of each 

individual i  tends to reach the value of their corresponding current reputation Rp . Thus, the 

probability of being selected as high/low marker grows overtime to a value proportional to the 

individual's current reputation. The growth over time of Sp is indicated by a recovery rate Rcr (1.0 in 

our system). The recovery process  of
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The mechanisms for selection of random and high/low reputation assessors are defined as follows:  



High Reputation assessor:  for the selection of this marker the "Fitness proportionate selection" 

algorithm is used. This is also known as "Roulette wheel selection" and is widely used in genetic 

algorithms. This mechanism allows the reputation of each potential peer-assessor to be associated 

with their probability of selection. If fi  is the reputation of individual i  in the assessors population 

(associated to the question), with ii reputationf  , its probability to be selected in the markers pool 

is
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 , where N is the number of individuals in the pool population             (1)  

When an individual i is selected, this is locked by the system and cannot be selected again for the 

same assessors pool, thus avoiding the issue of repeated assessors for the same student answer. 

Low Reputation assessor: This individual is also selected based on the Fitness proportionate 

selection mechanism. However, the fitness fi is defined as the difference between the maximum 

scale value(100 in our system) and the reputation of individual i in the assessors population. 

ii reputationScaleValueMaxf  . , with a probability to be selected given by: 
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This low reputation assessor also remains locked until the pool population has been totally formed.  

Random assessor:  this individual is randomly selected from the non-locked assessors in the 

population associated to the subject of the question. 

Weighted Score Calculation: 

The score of each answer is calculated on a scale from 1 to 100  based on the weighted sum of the 

scores given by the peers in the pool.  

The weight w of the score s  of an assessor i  depends on their reputation r and is defined as 

follows: 
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, where M is the number of individuals in the assessors-pool population.     (3) 

Thus, the final score cS  of the answer is expressed as: 
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The following example illustrates this process. Suppose the following pool of three peers has been 

selected to grade a student answer. 
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Applying the formula (4) with the above calculated weights the final answer score is: 

38.544051.06816.07033.0 cS  

 

 Peer 1 Peer 2 Peer 3 

Assessor Reputation 45 22 71 

Given score 70 68 40 



Adjusting the reputation score: 

Once the score of an answer has been calculated, the next step is to adjust the reputation scores of 

each pool assessor. In order to do this, the difference Pscscsc ii  , between the score sc  

given by each assessor i and the calculated pool score Psc  is taken as the criteria to determine if 

the given score falls within a given acceptance range rTh (15 in our system):  
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where iW represents the weight to be subtracted ( w ) or added ( w ) to the current reputation score 

of the assessor i . 

In case isc falls within the range rTh  the positive weight w  is calculated as follows: 
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where Rpii BRprp   is the difference between the reputation Rp  of assessor  i  and the 

highest reputation value RpB  in the pool. plearning  is a constant which determines the increase 

factor  of the reputation (we used values between 1 and 10). 

In case isc falls outside the range rTh  the negative weight w  is calculated as follows: 
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where scMax  is the maximum scale value (100).  nlearning  is a constant which determines the 

decrease factor of the reputation. 

Knowing Wi  from formulas 5, 6 and 7 the new reputation Rp  of assessor i  is adjusted as follows: 

WiRpRp ii                (8) 

 

6. Results 

Table 1 shows the experimental peer marking results for sessions 5, 6 and 7. For example, in the 

leftmost column (Session 5) Student-1 was assessed at 62.75% by the three peer markers and 60% 

by the teacher (2.75% difference) , while Student-2 was assessed by the three peer markers as 61.75 

compared to 40% by the teacher (20% difference). The columns marked Error show the differences 

between the combined peer marker scores and the teacher’s score. At the bottom of these columns is 

the mean error, 12.43% for Session 5, 10,31% for Session 6 and 9.3 % for Session 7. 



 

Table 1. Experimental peer marking results for sessions 5, 6 and 7. 

 

 

  Session 1 Session2 Session 3 Session 4 Session 5 Session 6 Session 7 

Control 42% 32% 23% 14% 15% 11% 13% 

Experimental 31% 29% 20% 13% 12% 10% 9% 
 

Table 2. Mean errors for experimental and control cohorts.  

 

 

 

Our findings in Table 2 reinforce previous research that shows peer marking improves as students 

become more experienced (Hanrahan, S.J. & Isaacs, G. (2001)). These data, displayed in Figure 1, 

show that the mean difference between the peer marking and the teacher decrease over time. The 

first two sessions are shown against a grey background to indicate that the values for the reputation-

based experimental marking are arbitrary since the initial reputations are not formed or stable. 



 

 

 

 

 

 

 

 

Figure 1. The mean errors for the reputation-based scores are lower than the average-based scores 

Figure 1 gives a summary of our results and shows that the performance of the reputation-based 

system gives results about 2% - 5% closer to the gold standard than taking averages. Statistical tests 

(Table 3) suggest that this effect may not be significant for the first few sessions while the students 

are learning how to do peer marking, but by sessions 5, 6 and 7 they are unlikely to have occurred by 

chance. Thus the original hypothesis has been validated by this study, suggesting reputation-based 

systems may give a small benefit in performance compared to score-averaging systems. 

 

Table 3. An analysis of variance suggests that the control and experimental mean errors are 

significantly difference for the last three sessions.  

7. Discussion 

These results suggest that our reputation-based peer marking can give aggregate results within 9% of 

the teachers’ mark. In principle 9% difference is sufficiently close to conclude that peer marking is 

almost as good as the ‘gold standard’, especially since the teacher’s marks are all multiples of ten. 

However care must be taken with such an interpretation. 

Our goal is to create a scalable marking system that can be used as the basis of high quality 

certification. Whereas by the final session the mean difference reduced to 9%, inspection of the 

rightmost column in Table 1 shows a high proportion, 6 out of 34, of the differences were above 15%, 

a value considered unacceptable by the Open University that would trigger remarking. Thus as it 

stands our reputation-based peer marking system has not yet been demonstrated to deliver the high 

quality marking that we require.  

Computer simulation experiments of our reputation-based system suggest that the errors continue to 

reduce after eight or more sessions. Since the experiment is continuing beyond the seven sessions 

reported here, we will soon be able to test this empirically. 

Mean 

deviation 

from  

teacher’s  

gold  

standard  

mark 

weeks 

error for control cohort not using reputation 

error for experimental cohort using reputation 



Apart from these expected improvements we intend to make further developments to the system. For 

example, we could ask students to provide feedback on their assessment, saying whether or not they 

felt it was accurate. This will provide further data for the peer marker reputations. Also currently we do 

not use the time series of marker differences implicit in the data, and these may also help to 

discriminate strong and weak peer markers. 

In summary we consider this experiment to give a strong indication that our reputation-based peer 

marking can be developed to give the robust high quality assessment required for accreditation. 
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