
Open Research Online
The Open University’s repository of research publications
and other research outputs

Teaching software systems thinking at The Open
University
Conference or Workshop Item
How to cite:

Wermelinger, Michel; Hall, Jon; Rapanotti, Lucia; Barroca, Leonor; Ramage, Magnus and Bandara, Arosha
(2015). Teaching software systems thinking at The Open University. In: Proceedings of the 37th International
Conference on Software Engineering, IEEE, pp. 307–310.

For guidance on citations see FAQs.

c© 2015 The Institute of Electrical and Electronics Engineers, Inc

Version: Version of Record

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1109/ICSE.2015.161

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Open Research Online

https://core.ac.uk/display/82979774?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.1109/ICSE.2015.161
http://oro.open.ac.uk/policies.html


Teaching Software Systems Thinking
at The Open University

Michel Wermelinger, Jon G. Hall, Lucia Rapanotti, Leonor Barroca, Magnus Ramage, Arosha Bandara
Computing and Communications Department, The Open University

Walton Hall, Milton Keynes MK7 6AA, UK

Abstract—The Open University is a distance-based higher
education institution. Most of our students are in employment
and study from home, contacting their tutor and fellow students
via e-mail and discussion forums. In this paper, we describe
our undergraduate and postgraduate modules in the software
systems area, how we teach them at a distance, and our focus
on shifting our students’ minds into a reflective, critical, holistic
socio-technical view of software systems that is relevant to their
particular professional contexts.

I. INTRODUCTION

The Open University (OU) is the UK’s largest university,
with ca. 200,000 students. Apart for our on-campus PhD stu-
dents, study with the OU is at a distance: students are assigned
a tutor and provided with printed and online learning materials
which they study at their leisure, towards fixed-date assessment
points, in their own social and professional context. Most of
the students on our computing programmes are employed, with
most of our postgraduate students already working in the IT
industry. Tutors mark their students’ assignments, answer their
queries, and organise tutorials, mostly online. Tutors in the
computing programmes are largely practicing or retired IT
professionals or academics at other universities.

The 2010 Independent Review of Higher Education Funding
and Student Finance (aka Browne Review1) increased indirect
pressure on UK universities to consider their output differ-
ently: with course fees increasing substantially, students now
see degrees as commercial products and have expectations
concomitant with that status. To pay fees, most students ask
for government loans, which are only available to students
registering for a degree. This had a major impact on the OU:
our modules, whilst embedded in degrees, were designed to be
as much as possible self-contained so that students could pick
and mix modules to suit their personal interests or professional
needs, without necessarily taking a full degree.

These, and other drivers, have caused a re-evaluation of
the whole OU computing curriculum at both undergraduate
and postgraduate levels. The results of that re-evaluation—new
modules in new structures—are now being offered to students.

A. The undergraduate context

In 2011, we carried out a major review of the level 3
(final year) computing curriculum, against a background of
a changing landscape, where desktop computing is being
overtaken by ubiquitous computing, with the web becoming

1http://en.wikipedia.org/wiki/Browne Review

a universal utility, and where outsourcing and globalisation
mean that technical skills need to be at a higher level.

The main outcome of that review was that our graduates
would need to understand the issues surrounding:

• people and systems everywhere – from how different
groups of people will work and use software systems to
how people develop, design and maintain these systems;

• information services everywhere – from modelling and
storing information to accessing services on mobile plat-
forms and the cloud;

• devices everywhere – from fixed and mobile networks to
the experience of living with and building for the Internet
of Things.

Three clusters of modules were planned to address those three
issues, with the people and systems cluster being the first
developed, and the other two currently in production.

The focus of the people and systems cluster goes beyond
the initial design of the system to its use and maintenance,
for which issues of organisational context and change are
crucial. It is principally rooted in software engineering and
information systems, but it also draws upon systems thinking,
management (including project management), and science and
technology studies. This cluster was divided in two modules,
further described in Section II.

B. The postgraduate context
Our previous postgraduate curriculum [1] was based on 15-

credit modules and a 60-credit dissertation (research project).
This range of small modules allowed students to configure
their study to suit their interests and needs. However, it led
to many assignments and exams to get a Diploma or MSc
qualification, making them less attractive. This, and the OU’s
move to a qualification-focussed curriculum, led to a new
postgraduate curriculum with 30-credit modules and explicit
specialisations in:

• Information Security and Forensics, with compulsory
modules Information Security (M811) and Digital Foren-
sics (M812);

• Software Engineering, with compulsory modules Soft-
ware Development (M813) and Software Engineering
(M814), which together span the body of knowledge
specified in the SWEBOK [2].

The MSc research project must be aligned with the special-
isation. Section III describes the new modules except M812,
which is outside the scope of this paper.



II. THE UNDERGRADUATE MODULES

A. TM353 — IT Systems: Planning for Success

This module draws heavily on previous postgraduate teach-
ing in information systems. It starts from the observation that,
however well designed technically, IT systems in practice fail
very frequently. The premise of TM353 is that this is due to
the socio-technical nature of IT systems in use: that they are a
complex mixture of technology (including hardware, software
and networking), organisations, and people.

The goal of TM353 is to equip students with skills to enable
them to plan, design and implement IT systems which are suc-
cessful in use. The concept of socio-technical systems design
is not new — it goes back to the work of the Tavistock Institute
on industrial systems such as coal mining and manufacturing
in the 1950s, and has been applied to information technology
since at least the 1970s [3]. In recent years, it has been
explicitly linked in some literature to software engineering
[4][5], the latter calling for a new field of “socio-technical
systems engineering”. However, a concept of socio-technical
systems is frequently absent from computing curricula.

This module is strongly based within systems thinking. The
OU has a 40 year history of teaching systems thinking, making
considerable use of diagrams as a form of qualitative mod-
elling as this has proved accessible to distance education [6].
A particularly relevant form of systems thinking that has arisen
at the OU is the systems failure method, which identifies the
systemic causes of failures and enables organisations to learn
from them for the future [7]. The OU systems traditions are
enhanced by techniques from socio-technical systems design,
especially the work of Mumford [3]; and also the considerable
recent work on complexity theory and the complex interactions
between components in a large-scale IT system.

In addition to the systems framework that forms the basis of
the module, a series of concepts and techniques are drawn in as
appropriate from other areas related to IT systems. These are
concerned either with initial design to ensure systems success
(including issues of power and stakeholder analysis, informa-
tion systems methodologies, security and privacy, reliability
and dependability), or with actions to ensure ongoing success
(including information systems evolution, scenario planning
and disaster recovery). Running throughout the module is a
strand concerned with legal, social, ethical and professional
issues, and with project management.

The nature of IT systems success is not taken for granted.
The module acknowledges that this is a contested question,
deeply bound up with different stakeholder perspectives and
the power relations between stakeholders: what is a success
to one group may look quite different to others. The nature
of failure, and the different reasons why systems fail, is also
examined in detail, and a distinction drawn between success
in the execution of a project to develop and implement an IT
system, and its success at effectively meeting the needs of the
organisation where the system is situated.

Although TM353 introduces a significant number of prac-
tical tools and concepts, the module is ultimately aiming at a

mental shift among students: the development of an awareness
that IT systems are inherently socio-technical, and that their
success or failure arises from socio-technical factors rather
than purely technical ones.

B. TM354 — Software Engineering

This module teaches the principles, patterns, techniques and
practice associated with requirements engineering, analysis,
software architecture and design, as well as the principles and
techniques of implementing and testing a software system. Stu-
dents get a sound understanding of the quality issues involved
in software products and processes. The module follows a
plan-driven development contrasting it at each stage with
an agile approach; for example, while studying requirements
documentation using the Volere template2, the students also
listen to, and write about, an interview3 where the authors of
the template discuss their perspective on the implications of an
agile approach to requirements and their documentation. Stu-
dents develop a practical awareness of different approaches to
software development and an understanding of agile practices.

Although modelling techniques are taught, and a notation
like UML is used throughout the module, the emphasis is not
on the details of the techniques but rather on understanding
a problem and its context, to help students make their own
judgements on what is most appropriate for a specific situation.

Students are encouraged to be creative and to work with
others, sharing their artefacts and reflecting on feedback from
colleagues. They use a collaborative tool where they upload
models and give comments to, and receive feedback from,
colleagues. As part of their assessment they need to reflect
on changes they make to their own artefacts as a result of
comments received. In a distance teaching setting, this is a
way to simulate what would happen in an agile stand-up
meeting in the process of reaching a shared understanding of
a problem/solution.

TM354 was designed with the preoccupation to develop
critical reflection. As a level 3 module, it also prepares students
for the final project in software engineering, developing the
required skills, e.g., conducting research searches, assessing
and reviewing found material. To promote an understanding
of the professional context, TM354 brings in regularly updated
topics on software engineering practice, challenging students
to confront what they learn with what practitioners do.

III. THE POSTGRADUATE MODULES

A. M811 — Information Security

Whether in the public or private sector, it is the value
invested in the information assets of a modern organisation that
underpins its effectiveness and drives its profitability. M811
explores the professional and technical skills necessary to
understand, document, manage and implement strategic and
operational aspects of an organisation’s information security.

2http://www.volere.co.uk/template.htm
3http://www.se-radio.net/2012/09/episode-188-requirements-in-agile-

projects/



M811 teaches important and transferrable topics in informa-
tion security risk assessment and management, as well as
professionalism, home information security, and information
security research.

Every organisation in the UK has Information Security
responsibilities. Many large organisations (but by no means
all!) do have hard InfoSec stances, understanding the criticality
of their information assets, their threat landscape, and the
relationship of policy, technologies and strategy in protecting
them. Other organisations, typically smaller ones, have a
weaker understanding of their InfoSec needs. They are, how-
ever, constrained by the availability of InfoSec knowledge that
is directly applicable to their InfoSec needs. M811 is aimed
at employees of such organisations and, as we will describe
below, provides a fit-for-purpose pilot InfoSec management
system for that organisation.

Students are located throughout their study within their own
organisation. This provides a very rich context for the module
to draw from and permits the student to deliver value back
into their organisation from their study.

The role of the student on M811 develops from learner
at module start to InfoSec problem solver at module end.
The problem solving skills taught align with the international
InfoSec standard and are based on industry standard texts.
What M811 adds is a detailed conceptual framework that
underpins leading edge professional skills, giving the student
their own updatable learning framework which includes the
research literature and the incredibly rich, essentially daily
updated resource that includes blogs and podcasts. We achieve
this by encouraging the student to explore the InfoSec world
and to learn where are the valuable resources that are relevant
for their and their organisation’s professional situation.

All assessment in the module is based within the student’s
organisation. Typically, a student will identify a problem with
their organisation and bring it into the module. Extending
the module’s conceptual basis is a framework for guided
reflection. Almost 50% of the assessment is the student’s own
reflection on their organisation’s problems and their candidate
solutions for them. We provide a generic marking scheme
to the tutors to allow them to assess their students’ work
consistently, despite the diversity of work to assess.

Using the student’s rich context has benefits for M811 in
that it uniquely contextualises the module’s materials for the
student, forcing them to deal with real-world complexity [8].
Typically, traditional assessment needs to provide time-boxed
mechanisms for the validation of the student’s work; questions
from this year cannot be reused next year as the answers will
be the same. As the student’s rich context provides a unique
assessment environment, M811 assessment materials do not
have to change year on year.

B. M813 — Software Development

M813 is the first module in the new postgraduate Software
Engineering specialism. It teaches a wide range of software
engineering theories, principles and techniques across the life
cycle, with particular emphasis on problem definition, analysis,

design, implementation and testing, and includes systematic
and creative application to practice through a wide range
of transferrable, professional and research skills, including
critical evaluation.

With a similar approach to M811, M813 takes advantage of
its students’ rich professional context to close the gap between
academic learning and professional practice, an acknowledged
major challenge in software engineering education [9], [10],
[11]. Via the module’s assessment students engage with a
development problem of their choice, working towards a
software system for an organisation they are familiar with,
and interacting with stakeholders in that organisation. M813
uses the same generic marking scheme approach as M811.

As part of their submission, alongside software development
artefacts, which demonstrate to which extent they have mas-
tered specific approaches and techniques, students are also re-
quired to provide a written commentary in the form of guided
reflection, including both an articulation of justifications and
rationale for their choices in the application of what we teach
within their real-world context and the lessons learnt in the
process, as well as a critical reflection on the teaching as it
stands against their own practice. The latter closes a feedback
loop which is particularly useful to us as academics as it
enables the evaluation of what we teach and its relevance and
appropriateness in current professional practice.

C. M814 — Software Engineering

Continuing from M813, M814 is aimed at students inter-
ested in developing their systems analysis and management
skills, e.g., software developers taking on system analyst or
project manager duties, or managers coming from other disci-
plines. The module examines software’s role in organizations
from human, social, knowledge, business, and domain problem
(requirements) perspectives [12], thereby providing a system
perspective to students.

On the one hand, M814 provides an in-depth exploration
of the requirements engineering process, starting from stake-
holders, goals and scope of software projects to elicitation,
analysis and communication of requirements, centering on the
Volere approach, as described in the set book [13].

On the other hand, it covers topics like ethical issues, in-
tellectual property rights (including an interview with a patent
examiner at the European Patent Office), human motivation,
risk assessment, quality and knowledge management, and soft-
ware evolution, many of which are required for professional
accreditation, e.g., by BCS, The Chartered Institute for IT.

In order to make students reflect holistically about the mul-
tiple relationships and mutual influences between software and
the wider organisational context, some assessment questions
ask students to analyse a fictitious case study from multiple
perspectives: human resource management, ethical and legal
issues, choice of development process, etc. Those and other
questions often have no clear right or wrong answer. Instead,
the marking scheme rewards students for the arguments put
forward, for the breadth of their knowledge, and for ‘seeing
both sides of the coin’.



Information literacy and critical analysis skills are also key
learning outcomes for M814. Students have to critically read
literature to sift the original from the incremental and the
evidence from the hype, a valuable professional skill in the fast
paced IT industry. Criteria to evaluate papers are given in the
Course Guide. Each year, we strive to include one academic
paper and one magazine article to expose students to different
types of literature. Such papers help M814 maintain currency
and provide complementing or contrasting perspectives on the
issues covered in the M814 text.

A precursor module helped students gain first hand experi-
ence of managing the variety of stakeholder viewpoints that
must be reconciled as part of the requirements engineering
process, through a collaborative requirements elicitation and
analysis exercise based on a case study scenario. Despite
the challenges of undertaking this activity asynchronously, at
a distance, many students valued the experience because it
helped them gain a better understanding of the requirements
engineering process. We have retained this collaborative work-
ing activity in M814, modifying it to use an industrial config-
uration management tool (Git on GitHub) to collaboratively
edit the requirements specification documents.

M814 uses 3 dynamic system models defined with Ven-
sim and custom-made interfaces developed with Sable4. The
models illustrate trade-offs between productivity, cost and
quality [14], Brooks’ Law, and Lehman’s 2nd Law (as a
system evolves its complexity increases, unless work is done to
maintain or reduce it). Each model provides some parameters
that students can change (e.g., the team size for Brooks’ Law)
before running the simulation and seeing the results of output
values (e.g., time to complete the project). Each model comes
with various activities for students to become familiar with the
model. Solutions to activities are provided to tutors, but not to
students, so that they can discuss the activities in the online
forums. The assignments always include a question about one
of the system models, for example asking students to find input
parameter values that lead to a particular scenario and to reflect
on the use of such simulations for management decisions.

IV. CONCLUDING REMARKS

In this paper we have described the new postgraduate and
final year undergraduate software systems offering at The
Open University. Changes in the IT and UK higher education
landscapes have led to a new curriculum in which relevant
technical and soft skills are blended to provide a rounded
academic education to professionals. Topics are drawn from
multiple disciplines so that students appreciate, from ethical,
economical, management, and other perspectives, the rich
socio-technical systems formed by software, its stakeholders
and their organisations, and apply systems thinking to ascertain
risks, solve problems, and prepare for systems failure.

The modules’ content and assessment are carefully designed
so that they can be delivered at a distance and at scale to
students who have to fit study into often busy personal and

4http://www.ventanasystems.co.uk/services/software

professional lives. For example, the type and workload of
technology-mediated collaborative activities is considered.

Although the undergraduate and postgraduate modules de-
scribed cover similar ground, the latter have more open-ended,
reflective, and contextualised assessment. Higher education
delivers value to the student through validation of their learn-
ing. Locating that education in the student’s rich professional
context enhances and extends the value proposition for the
student, who is then able to contribute to the solution of
system-wide problems faced therein.

For M811 and M813, we have begun evaluating the novel
situated approach to teaching, including their impact on stu-
dents’ learning and how they are received. We will report pre-
liminary outcomes soon. Here we have provided the rationale
for the revised programme and the concepts of the modules
taught there, informed by several decades of experience at The
Open University in crafting high-quality distance learning.

REFERENCES

[1] B. Quinn, L. Barroca, B. Nuseibeh, J. Fernandez-Ramil, L. Rapanotti,
P. Thomas, and M. Wermelinger, “Learning software engineering at a
distance,” IEEE Software, vol. 23, no. 6, pp. 36–43, 2006. [Online].
Available: http://oro.open.ac.uk/12504/

[2] P. Bourque and R. Failey, Eds., Guide to the Software Engineering
Body of Knowledge, Version 3.0. IEEE, 2014. [Online]. Available:
http://swebok.org

[3] E. Mumford, “The story of socio-technical design: reflections on its
successes, failures and potential,” Information Systems Journal, vol. 16,
pp. 317–342, 2006.

[4] J. G. Hall and L. Rapanotti, “Problem Frames for Socio-Technical
Systems,” in Requirements Engineering for Socio-Technical Systems,
A. Silva and J. L. Maté, Eds. Idea Publishing Group, 2005, ch. 19, pp.
318–339.

[5] G. Baxter and I. Sommerville, “Socio-technical systems: From design
methods to systems engineering,” Interacting with Computers, vol. 23,
pp. 4–17, 2011.

[6] M. Ramage and K. Shipp, “Expanding the concept of model: the transfer
from technological to human domains within systems thinking,” in Ways
of Thinking, Ways of Seeing, C. Bissell and C. Dillon, Eds. Springer,
2012, pp. 121–144.

[7] J. Fortune and G. Peters, Information systems: achieving success by
avoiding failure. John Wiley, 2005.

[8] J. G. Hall and L. Rapanotti, “Masters-level Software Engineering
education and the enriched student context,” in Proceedings of Joint
Software Engineering Education and Training Workshop (JSEET), 2015.

[9] L. Brodie, H. Zhou, and A. Gibbons, “Steps in developing an advanced
software engineering course using problem based learning,” Engineering
education, vol. 3, no. 1, pp. 2–12, 2008.

[10] L. Johns-Boast and S. Flint, “Simulating industry: An innovative soft-
ware engineering capstone design course,” in Frontiers in Education
Conference. IEEE, 2013, pp. 1782–1788.

[11] I. Richardson, L. Reid, S. Seidman, B. Pattinson, and Y. Delaney,
“Educating software engineers of the future: Software quality research
through problem-based learning,” in Proc. 24th Software Engineering
Education and Training Conf. IEEE, 2011, pp. 91–100.

[12] P. Hall and J. F. Ramil, Managing the Software
Enterprise: Software Engineering and Information Systems
in Context. Cengage Learning, 2007. [Online]. Available:
http://edu.cengage.co.uk/catalogue/product.aspx?isbn=1844803546

[13] S. Robertson and J. Robertson, Mastering the requirements process,
3rd ed. Addison-Wesley, 2006.

[14] D. Pfahl, M. Klemm, and G. Ruhe, “A CBT module with integrated
simulation component for software project management education and
training,” The Journal of Systems and Software, vol. 59, pp. 283–298,
2001.


