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ABSTRACT: Correlated charge collection phenomena in CCD sensors are presently of interest due
to their potentially major implications in space and ground based astronomy missions. These ef-
fects may manifest as a signal dependent Point Spread Function (PSF), or as a nonlinearity in the
Photon Transfer Curve (PTC). We present the theoretical background to a simple analytical model
based on previously published solutions of Poisson’s equation which aims to aid conceptual under-
standing of how various device parameters relate to the magnitude of correlated charge collection.
We separate correlated charge collection into two components - firstly excess diffusion caused by
increasing drift time as the electric field in the device decreases, which is isotropic, and secondly
anisotropic pixel boundary shifting as the fringing field in the parallel transfer direction collapses.
Equations are presented which can be solved numerically to give reasonable detail, or solved ana-
lytically using simplifying approximations.
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1. Introduction

In recent years, signal dependent charge collection processes in thick CCDs have been reported
[1]. The effect may be observed as a nonlinearity in the mean vs. variance curve (even though
the illumination level vs. mean curve is linear), or as a broadening of the detector Point Spread
Function (PSF) [2]. This broadening is generally observed to be larger in the parallel transfer
direction than the serial [3], which leads to a change in the apparent aspect ratio of point sources of
different brightnesses. This phenomenon has important implications in, for example, weak lensing
measurements [4] and for deep astronomical surveys [5].

Autocorrelation analysis on flat fielded images [1] showed that the effect was due to a corre-
lation in signal levels between nearby pixels - those pixels which contain more signal become less
likely to accumulate further signal. In the flat field case, the initial variations among pixels arise
due to the shot noise of the incident illumination. Therefore, correlated charge collection ultimately
results in the variance of the pixel signals being lower than that expected by Poisson statistics (and
thus to the nonlinearity of the photon transfer curve). If the incident illumination is a point source,
then large variations in pixel signal levels result from the spatial distribution of the beam; thus cor-
relation effects lead to the broadening of the PSF, as surrounding (dimly illuminated) pixels gather
more of the charge that was intended to illuminate the central (bright) pixel.

Much progress has been made towards documenting and explaining correlated charge collec-
tion. Statistical models have been developed by Stefanov [6], which show that only very simple
correlation relationships are needed between nearest neighbour pixels to reproduce qualitatively
the form of the photon transfer curves (PTC) observed. Unfortunately, these models in themselves
do not provide much physically motivated explanation or predictive power. By considering sim-
ple cases of disruption of the drift field lines caused by collected charges, Antilogus et al. [3]
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Figure 1. Device schematic, showing dimensions and potentials as listed in Table 1

constructed a model which gave basic agreement with both the PTC and the PSF broadening.
Rasmussen [7] developed a framework where these drift field changes are regarded as, in effect,
causing pixel boundaries to become dynamic. This approach is extremely successful in both con-
ceptual and quantitative explanation. The dynamic pixel boundary approach can be used to obtain
auxilliary pixel information which can in turn be used to correct for correlated charge collection.

Our motivation is to provide a simple approach which can help in examining dynamic pixel
boundaries. We aim to avoid reliance on complex finite element approaches, and give physically
motivated analytical expressions which, whilst approximate, may be of use in areas where min-
imum computation time is of value (e.g. realtime detector simulation) and in visualising basic
relationships between detector geometry, bias conditions and charge correlation effects.

2. Analytical Charge Collection Models

We limit our consideration to thick, fully depleted devices where any diffusion effects due to a field
free region may be disregarded. We also assume that the electronic diffusivity and mobility are
constant and isotropic.

Two contributions to correlated charge collection are identified and investigated: the excess
outward diffusion caused by an increase in the drift time for collected carriers as the electric field
decreases with increasing stored charge (which is isotropic in the serial and parallel space direc-
tions), and the shift in pixel boundaries caused by changes in the fringing fields - which affects
principally the parallel transfer direction. These two effects will interact with each other, introduc-
ing further complication, though this is not considered here.

In the following discussion, all potentials are referenced to the substrate potential, which is
taken to be VSS = 0. All numerical results are given for a fictitious device with parameters as given
in Table 1, and geometry as shown in Figure 1. The depletion layer approximation is used, and the
space charge distribution within the device is taken as constant density rectangular blocks.
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Table 1. Device parameter values
Parameter Name Symbol Value

Buried Channel Donor Concentration ND 1×1016 cm−3

Bulk Acceptor Concentration NA 5×1012 cm−3

Junction Depth y j 1.0 µm
Oxide thickness d 0.1 µm

Collecting Gate Voltage VG 45V
Low Gate Voltage VT 30V

Collecting Gate Width L 5 µm
Device Thickness T 100 µm

Mobility µ 1400cm2 V−1 s−1

Diffusivity D 35cm2 s−1

Pixel Pitch α 15 µm
Silicon Permittivity εsi 11.7
Oxide Permittivity εox 3.9

3. Excess Diffusion

We start from the 1D solution to Poisson’s equation in an n-channel buried channel CCD as given
by Yin and Cooper [8]. The potential φ at a depth y deeper than the charge storage depth ym2 is
given by:

φ(y) =

Vm− q·ND(y−ym2)
2

2·εsi·ε0
+φc (y) ym2 < y < y j

q·NA(yp−y)2

2εsi·ε0
+φc (y) y > y j

(3.1)

where q is the elementary charge, and Vm is the channel potential, given by (eq. 5 from [8]):

Vm =

(
1+

NA

ND

)(
VG +V1 +V2−

√
V 2

2 +2 ·V2 · (VG +V1)

)
(3.2)

whereV1 =
q ·ND · y2

t

2 · εsi · ε0

(
1+

2 · εsi ·d
εox · yt

)
(3.3)

andV2 =
q ·NAy2

t

2 · εsi · ε0

(
1+

εsi ·d
εox · yt

)2

(3.4)

where yt is the charge adjusted junction depth:

yt = y j−
Q

q ·ND
(3.5)

with Q the charge stored in the channel. The “natural depletion depth”, yp, is given by:

yp = y j +

√
2εsi · ε0 ·ND ·Vm

q ·NA · (NA +ND)
(3.6)
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Figure 2. Illustration of the 1D analytical solution. Units of Q are e−µm−2

The compensating potential φc adjusts Yin and Cooper’s solution for a fully depleted device
of thickness T by making the solution satisfy the boundary condition φ (T ) = 0, and is given by:

φc =

A · (y+d) −d < y < 0

A
(

y · εox
εsi

+d
)

y > 0
(3.7)

where A =
−q ·NA · (yp−T )2

2 · εsi · ε0 ·
(

T · εox
εsi

+d
) (3.8)

Resulting relationships between depth and potential, and channel charge and potential are
shown in Figure 2

The electric field E can be obtained through differentiation:

E (y) =


q·ND·(y−ym2)− A

εox
εsi·ε0

ym2 < y < y j
q·NA·(yp−y)− A

εox
εsi·ε0

y j < y
(3.9)

and we then approximate (for now ignoring the 3D structure of the field lines) the drift time td
for an electron starting at depth y0 by:

td =

ˆ ym2

y0

dy
−µ ·E (y)

=
εsi · ε0

q ·µ

(
1

NA
·
ˆ y j

y0

dy
y− yp +

A
εox

+
1

ND
·
ˆ ym2

y j

dy
ym2− y+ A

εox

)

⇒ td =
εsi · ε0

q ·µ

(
1

NA
· ln

∣∣∣∣∣yp +
A

εox
− y j

yp +
A

εox
− y0

∣∣∣∣∣+ 1
ND
· ln

∣∣∣∣∣y j− ym2 +
A

εox
A

εox

∣∣∣∣∣
)

(3.10)

– 4 –



100 101 102

depth / µm

0

2

4

6

8

10

 F
W

H
M

 d
if
fu

si
o
n
 r

a
d
iu

s 
/ 
µ
m

Q = 0.00e+00
Q = 3.60e+03
Q = 7.20e+03

Figure 3. Excess diffusion radius of carriers at different depths caused by stored charge. Units of Q are
e−µm−2

Note that stored charge dependences are introduced by the charge storage depth ym2, the con-
stant A and the natural depletion yp. ym2 is given by ([8] eq. 10) :

ym2 = y j−

√
2 · εs · ε0 ·NA ·Vm

q ·ND (NA +ND)
(3.11)

the channel potential Vm being dependent on Q (see eq 3.2). Since typically, ND � NA and
(y j− ym2)� (yp− y j), eq 3.10 implies that the diffusion effect near the channel is extremely small
in this analysis1. More pertinently, since Vm decreases with increasing channel charge Q, this ef-
fect is actually in the opposite direction to that required for the observed effect: since the storage
depth increases with extra charge, the drift time as the electron passes from the junction depth to
the storage depth actually reduces. On the other hand, within the constant A, charge dependance
appears as the factor (yp−T )2 (see eq 3.8). Vm decreases with increasing Q, so that yp decreases
(see eq 3.6), and hence the first term in eq 3.10 gives an increased drift time with increasing stored
charge. The drift time variations are illustrated by Figure 3. This extra drift time corresponds to
an increase in lateral diffusion (and hence charge sharing probability) of ∼

√
4 ·D · td . Particular

charges in two adjacent pixels may of course be diffusing in opposite directions, so that the aver-
age total contribution to observed correlation will depend on the difference between the two pixel
charges. For a detailed example of the usage of this model in the flat field illumination case, see
Appendix A.

4. Dynamic Pixel Boundaries

To approach an analytical analysis of dynamic pixel boundaries, a 2D solution of the Poisson equa-
tion incorporating stored charge is needed. We start from the elegant solution due to Lester and

1For typical values, this term is roughly 1×10−4 times smaller than the dominant contribution
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Pulfrey [9]. The 2D potential in the device φ (x,y) is written as the sum of a homogeneous compo-
nent φh (x,y), which is the solution neglecting space charge but satisfying the potential boundary
condition at the gates, and a particular solution φp (x,y) which solves for the source term, with all
the boundary conditions being set to zero.

φ (x,y) = φh (x,y)+φp (x,y) (4.1)

We incorporate stored charge into the model as follows: approximating the width of the stored
charge packet in the x direction as equal to the width of the gate, we work out the potential at
the junction depth under the collecting gates V ′G and under the non-collecting gates V ′T using the
previously described 1D model. Then, repositioning the origin of our coordinates in the y direction
such that y′ = y− y j, we solve the Poisson equation with the following boundary conditions:

V (x,0) =

{
V ′G |x|> L/2

V ′T |x|< L/2

where L is the collecting gate width (see Figure 1). The potential for a single pixel is, as given
by [9]:

φh
(
x,y′
)
= V ′T +

V ′G−V ′T
π

·

(
tan−1

(
y′

x− L
2

)
− tan−1

(
y′

x+ L
2

))

φp
(
x,y′
)
=

q ·NA

εsi · ε0

(
y′− (y′)2−T 2

2

)
(4.2)

This simple expression conceals the complexity of the p-n junction, which is now part of the
boundary conditions. Thus, it is inappropriate to use this expression to calculate potentials or fields
shallower than the junction depth.

Since the mean free path of electrons in silicon is short, and neglecting diffusion, we can regard
the streamlines of the Electric Field (see Figure 4) as electron trajectories. Whether an electron is
captured in one pixel or another is determined by the zero contour of the electric field in the transfer
direction, Ex. This can be calculated from eq. 4.2.

Ex
(
x,y′
)
=−∂φ (x,y′)

∂x
=

V ′T +V ′G
π

(
y′(

x+ L
2

)2
+(y′)2

− y′(
x− L

2

)2
+(y′)2

)
(4.3)

Note that there is no contribution from φp in eq. 4.3. 2

Next we construct a two-pixel solution Λx, using the linearity of the Poisson equation:

Λx
(
x,y′
)
=

V ′T +1 V ′G
π

(
y′(L+α

2 + x
)2

+(y′)2
− y′(

α−L
2 + x

)2
+(y′)2

)

+
V ′T +2 V ′G

π

(
y′(L−α

2 + x
)2

+(y′)2
− y′(

x−
(L+α

2

))2
+(y′)2

)
(4.4)

2In the case of a device lacking full depletion, φp now varies in both dimensions due to the depletion depth being a
function of x. The field can still easily be found analytically, but subsequent solution of the zero contour will be much
more difficult.
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Figure 4. Potential contour plot of two neighbouring pixels. Orange arrows show electron trajectories,
calculated from field streamlines. Solid black lines represent the zero field contours.
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Figure 5. Example solution for the pixel boundary when Q0 > Q1. The boundary moves towards the pixel
with more stored charge, reducing its effective area. Solid black lines represent the zero field contours.

where α is the distance between the centres of the two collecting gates, and 1V ′G and 2V ′G
are the two junction potentials, which, being obtained from eq 3.1, depend on the stored channel
charge. The equation Λx = 0 can be solved numerically (see Figure 5), or by taking y to be much
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Figure 6. Effective pixel boundary position for deep interactions. The area between the black lines indicates
the FWHM shot noise region.

larger than all other dimensions (i.e. deep interactions), the solution xb can be obtained as:

xb ≈
α

2

(
1V ′G−2 V ′G

V ′T +2 V ′G +1 V ′G

)
(4.5)

The relationship between V ′G and Q is well approximated by a quadratic fit (see Figure 2)

V ′G = β + γ ·Q+δ ·Q2 (4.6)

And if the simplifying assumption is made that Q0 ≈ Q1 ≈ Q̄ (valid, for example, in the flat
field illumination case), and that V ′T ≈ β , we can simplify eq 4.5 to:

xb ≈
α

2

( (
γ +2 ·δ · Q̄

)
·∆Q

3 ·β +2 · Q̄ ·
(
γ +δ · Q̄

)) (4.7)

where ∆Q is the difference between charges. This expression can be used as the starting
point for Monte Carlo or approximate statistical simulations of experimental measurements such
as PTCs and autocorrelation matrices. Alternatively, by solving eq 4.4 numerically, more detailed
calculations can be performed giving the wavelength dependence of the boundaries. From Figure
6, it can be seen that for flat field illumination even the deep interactions (blue light in a back
illuminated device), we expect that at around half the full well (Q∼ 6000 e− µm−2), about half the
pixels will experience a boundary shift of ∼ 20nm or more, a correlation at around the 0.1% level.
This is in reasonable agreement with recorded observation [6], when taken also with the larger
isotropic component at the ~5% level.
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5. Conclusions and Future Work

We have presented the underpinnings of a simple model which we hope can aid understanding
of correlated charge collection effects in CCDs. Two components were considered, the isotropic
excess diffusion caused by the reduction in the electric field perpendicular to the collecting gates,
and the anisotropic component caused by a shift in the fringing field boundaries. Both of these
parts warrant much further analytical investigation, and of course experimental testing. We have
shown a simple, very naive example of calculating some real world numbers from the model (see
Appendix A) , and much more work needs to be completed in this area before the approach may
be labelled “robust”. We soon hope to present verification of our model against both numerical
finite element simulations, and laboratory data (using various thicknesses of the back illuminated
e2v CCD-261 device).
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A. Appendix: Calculation of Isotropic spreading under Flat Field Illumination

We begin by assuming that the charge generated in a δ -function like distribution within the device
will diffuse in a Gaussian manner in 1D, resulting in a probability distribution for the electron
positions x of

f (x) =
1

σ
√

2 ·π
· exp

(
−x2

2 ·σ2

)
(A.1)

where σ is related to the drift time td and diffusivity D by σ =
√

4 ·D · td .
Flat field illumination is accounted for by integrating over the interval [−1

2 ,
1
2 ] (working in

pixel units throughout - see Figure 7). We integrate once more to find the cumulative distribu-
tion function, and then work out the total probability that an electron ends up outside the original
pixel (for simplicity, we assume any electron outside the pixel it arrived in ends up in its nearest
neighbour, and use only multiplicative factors to introduce 2D dependence):

g(σ) =
1
2
+

√
2 ·σ

2 ·
√

π

(
1− exp

(
−1

2 ·σ2

))
− 1

2
· erf

(
1√
2 ·σ

)
(A.2)

We can use the analysis in Section 3 (and particularly illustrated by Figure 3), to translate this
drift time function g(td) to an absorption depth and signal dependence, which is referred to as
ḡ(z,q), since the drift time is related to both of these quantities. For a back illuminated device, the
probability density for a photon being absorbed at a depth z is:

pBI (z) = exp
(
−(T − z)

z0 (λ )

)
(A.3)

and for a front illuminated device, simply:

pFI (z) = exp
(
−z

z0 (λ )

)
(A.4)
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where z0 (λ ) is the absorption length in Si at wavelength λ 3, which is obtained from empirical
data [10]. A weighted sum over all possible depths gives the total probability of an electron to be
transferred to a surrounding pixel:

P(λ ,q) =
ˆ T

0
exp
(
−(T − z)

z0 (λ )

)
· ḡ(z,q) ·dz (A.5)

which may be evaluated numerically. The results of this for both back and front illuminated
cases are shown in Figure 8. Most of these transferred electrons are due to the static PSF of the
device, and it is the excess signal dependent component which is of interest. To calculate the
average signal per pixel that we expect to be moved “in excess” of the static PSF 〈q〉excess, the
following formula is used:

〈q〉excess =

ˆ q

0
q′ · ∂P(λ ,q′)

∂q′
·dq′ (A.6)

Somewhat simplistic estimates may then be made of correlation coefficients (by using the
quantity 〈q〉excess /〈q〉). A photon transfer curve may also be approximated, by plotting mean
signal 〈q〉 against 〈q〉− 〈q〉2excess. Both of these show qualitative agreement with published data
(see Figure 9), the correlation coefficients being similar to those found by [11], and the relative
magnitudes of the quadratic and linear coefficients of the fits to the photon transfer curve being
similar to the data shown in [6].

3it should be noted that z0 also varies with temperature[10], along with D, which we have not attempted to address
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