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Abstract 

We design and experimentally demonstrate a migration of electrically neutral particles in 

liquids driven by electric current according to the discrepancies of their electrical 

conductivities. A force from electric current to electrically neutral particles has been 

identified to drive the particles toward the lateral surface from the centre of suspension via 

three distinguishable zones, namely pushing, trapping and expelling zones. The driving force 

can overtake gravity in practical cases. The property of the force is found neither similar to 

that of the force in electromagnetophoresis nor similar to that of the electromigration force in 

terms of direction and magnitude. An expression for the force at the pushing zone has been 

developed based on the numerical calculation of the thermodynamics of suspension fluids. 

The excellent agreement between numerical calculations and experimental data demonstrates 

that our calculation provides fundamental and predictive insight into particles separation from 

the liquids. Therefore, it is possible to use the force in many engineering applications such as 

separation of particles according to the differences of their electrical conductivities.  
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Much attention has been paid to the migration of electrically neutral particles from the liquids 

due to the increasing demands for separation technique. Electrically neutral particles can 

migrate in a magnetic field traversed by an electric current. The migration is perpendicular to 

the current and to the homogenous magnetic field that is maintained at right angles to the 

current. It is Lorentz force that causes migration of particles. Normally, this magnetic field-

induced migration of particles in liquids is called electromagnetophoresis.
1-4

 However, if the 

applied external magnetic field is removed, how does the electric current affect the movement 

of the neutral particles? It has been known that the electric current causes electromigration.
5-8

 

The force in the electromigration comes from the momentum transfer from the conducting 

electrons to atoms. The direction of electromigration force is opposite to that of the electric 

field. This force will not contribute to the movement of particles in the direction 

perpendicular to the electric current. Previously it has been established that many inclusions, 

e.g. oxides, sulfides and gas bubbles, have lower electrical conductivities than that of the 

metal matrix. When the dimension of an inclusion is significant to the dimension of the 

matrix, the current distribution is sensitive to the location of the inclusion in the suspension 

system. In general, different current distributions correspond to different system free 

energies.
9
 In this Letter, a possible separation mechanism to use electric current to expel a 

high resistivity object from a low resistivity matrix has been proposed based on experimental 

observations and numerical calculations. This provides a possibility to use electric current to 

manipulate the transport of electrically neutral non-metallic inclusions in a conductive liquid, 

which would be of great interest and of physical importance if this kind of migration was 

beneficial to the separation of particles of nearly equal density but distinctly different 

electrical conductivity. Therefore, the technique is useful to many practical cases such as 

galvanizing, coating, welding and purification, where inclusions in a thin layer of liquid metal 

film need to be calibrated. It is also applicable for the separation of particles such as cells of 

different tissues, algae, bacteria, and possibly viruses.  

 

Here, pulsed electric current,
10-14

 as an instantaneous high energy input method with high 

efficiency and low energy consumption, is applied to the molten steel containing the MnS 

inclusions
15

 to manipulate the transport of electrically neutral non-metallic inclusions in a 

conductive liquid. The steel containing inclusions is selected for study due to the particles’ 
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position driven by electric current can be recorded in the cooled cast steel. However, the 

liquids at room temperature do usually not have such characteristics. To compare the 

distribution of the particles with and without electric current treatment, one set of liquid was 

solidification without electric current treatment but with exactly the same thermal treatment 

history. Another set of sample was treated with the electric current. The pulse is in square 

wave to reduce the skin effect. Each pulse has a loading duration of 60 µs, current density of 

1.610
6
 A/m

2
. The total treatment time is 10 minutes. The frequency of the pulse during the 

treatment was 1 Hz. The sample is in a width of about 22 mm. The consumed electric power 

in electric current pulse processing is 0.0012 Watts, which is much less than the power of 

household fluorescent. In order to confirm the effect from electric current, the above-

mentioned experiments are performed in the same parameters with mould flux. Mould fluxes 

are the powders that are fed onto the top of the molten metal surface to absorb particles from 

the liquid.
16

 Detailed experimental procedures are similar to that reported in reference [10]. 

The cooled samples were longitudinally sectioned and polished for metallographic 

examination. The distribution of the inclusion across the sample was examined by optical 

microscope. Numerical calculations have been used to suggest the separation mechanism for 

the particles from the liquid. 

 

The enumerated data distributions of the MnS inclusions across the samples are as follows. 

The number of inclusion is distributed almost uniformly in the sample without electric 

current treatment, but is in a vertical double well shape in the sample treated by electric 

current (Fig.1). The inclusions in the middle area of the sample are almost pushed away by 

the electric current. In the area close to the surface, the number of inclusions achieves local 

maximum. When mould flux is are fed onto the top of the molten metal surface to absorb 

particles from the liquid, separation of inclusions induced by electric current becomes more 

significant (Fig.1). The number of inclusions (～25 per unit area) on the surface is three-

quarters smaller with respect to that of the sample without mould flux (～100 per unit area). 

More interestingly, the length of the region that an inclusion being pushed away is widened 

from 7.9 mm to 16.9 mm in comparison to that of the sample without mould flux. But the 

distribution of inclusion number keeps unchanged although the mould flux is applied to the 

molten steel without electric current treatment. This indeed indicates that the electric current 
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drives inclusions in liquid metal to move toward the surface. Once the inclusions reach to the 

interface between molten steel and mould flux under the driving of the electric current, they 

will be trapped by the mould flux, accordingly only a few amounts of inclusions present in 

the electric-current treated steel.  

 

FIG.1. Number distribution of inclusions in liquid metal without and with electric current 

treatment. The symbols of open circle and hollow triangle represent the MnS inclusions 

distribution with and without electric current treatment, respectively. It indicates that the 

inclusions disappear from the inner part of the steel matrix, and instead are dispersed on the 

surface (e.g. double well shape). The particles are distributed almost uniformly in the sample 

without electric current treatment. When mould flux is applied, the distribution in the sample 

without electric current (indicated by solid triangle) still keeps random. The distribution of 

electric-treated sample with mould flux (indicated by solid circle) exhibits the similar double 

well, but a smaller number of inclusions. 
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We have also examined the size distribution of inclusions on further statistical analysis by 

means of histograms and peaks fitting using Lorentzian. Individual MnS particle with 

equivalent circular diameter are recorded. The particle under various test conditions has a 

wide variation in size (4μm<particle size<28μm), but its size distribution mainly concentrates 

in approximately 8 μm according to Lorentzian fitting (Fig.2). Meanwhile, it is clear that the 

inclusions smaller than 30 μm can be extracted from molten metals by the electric current. 

The efficiency for the impurity removal and power consumption (0.0012 Watts) with electric 

current treatment are far superior to the conventional methods has been reported.
17-20

 As 

mentioned in Fig.1, the inclusions disappear from the inner part of the steel matrix (Figs 2c 

and 2f), and instead are dispersed at the surface of the steel (Figs 2b and 2e). The uniform 

distribution of inclusions in the steels without electric current treatment does not suffer 

dramatic effect regardless of whether the mould flux is used (Figs 2a and 2d).  

 

FIG.2. Size distributions of inclusions in liquid metal without and with electric current 

treatment. Individual MnS particle with equivalent circular diameter are recorded. The peaks 

are fitted using Lorentzian. (a) Inclusion size in the sample without electric current treatment 

is in the range of 4 to 28 μm. (b) and (c), After treated by electric current, the inclusions are 

dispersed at the surface with the varied size of 4 to 28 μm. But they disappear from the inner 

part of the matrix. (d)  The size and number of the particles exhibits the similar trend as in the 

untreated sample although the mould flux is applied to the steel. (e) and (f), After treated by 



 

 

6 

 

electric current with mould flux, the size does not show a large fluctuation, but only a few 

amount of inclusions can be observed in the sample.  

 

 

FIG.3. Schematic diagram of the suspension containing a spherical inclusion subjected to an 

electric potential difference. A spherical inclusion with electrical conductivity 
i  and radius 

ir  submerged in a rectangular liquid matrix with electrical conductivity 
m  and 

dimensions whl 222  . 

 

Numerical calculations have been used to suggest the separation mechanism for the particle 

from the liquid. For simplicity, one considers a spherical particle with electrical conductivity 

i  and radius ir  submerged in a rectangular liquid matrix with electrical conductivity m  

and dimensions whl 222  . The suspension is subject to an electrical potential difference.  

The system and the Cartesian coordinates are demonstrated in Fig.3. An electric current is 

generated in the system due to the electrical potential. As mentioned, the direction of 

electromigration force induced by electric current is opposite to that of the electric field. In 

the present work, the force in the perpendicular direction to that of the electromigration is 



 

 

7 

 

considered. This means that the force discussed in the present work has nothing to do with 

the conventional electromigration. According to Ohm’s law, the electric current density at 

spatial position r, )(rj


, is determined by the local electrical conductivity  r  and the local 

electric field )(rE


 via   )()( rErrj


 . )(rE


 is determined by the local electric potential 

gradient via )()( rrE 


, where )(r  is the local electrical potential. The distribution of 

the electric current density is subsequently calculated using   kmkmkmkmkm llj /ˆ  


, where 

kml  and kml̂  are the length and the unit vector of the element linking lattices k and m, 

respectively. The current distribution is substituted to following equation to calculate the 

electric current free energy jG 9
 

    ref
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8
,              (1) 

where µ the magnetic permeability, V the volume of material, and ref

jG  the electric current 

free energy at the reference state. It should be emphasised that Eq. (1) is the electric current 

free energy compared to a reference state. The change of the electric current free energy from 

one set of current distribution to another can be obtained directly using Eq. (1), which is the 

format appeared in many literatures.
9, 10

 The reason to use free energy rather than the free 

energy change is for the convenience of calculating driving forces in various characteristic 

lengths (d). The total system free energy consists of chemical free energy, interface free 

energy and electric current free energy. When the inclusion moves from one position d  to 

another position dd  , the chemical free energy and interface free energy do not change. 

The total change of the system free energy equals to the change of the electric current free 

energy. The equivalent driving force from the electric current to the inclusion in this case is 

obtained by 
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jj

d

j

0
lim)(


.        (2) 

Numerical calculations have been performed to a suspension containing a spherical 

electrically neutral inclusion. The suspension is subjected to 20 volts electric potential 

differences. It is also defined that ml 1.0 , md 02.0 , mw 002.0 , 
117100.1   mm  
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and mi   . Different values of   correspond to different type of inclusions. The value of 

m  is chosen after reference of the electrical conductivity of pure iron at room temperature. 

The dimensions of the system are chosen after consideration of the sizes of samples used in 

electric current pulse experiments.
12,14

 The distribution of electric current density is then 

calculated and substituted into Eq. (1) to calculate  dG j . For convenience,  0jG  is defined 

as the reference, where 0d  implies that the inclusion is located at the centre of the matrix. 

Fig.4a presents the change of the electric current free energy when the inclusion moves from 

the centre of matrix toward the lateral surface at mri

4100.8   and =0.001, 0.01, 0.1, 0.3, 

0.5 and 0.7 respectively. It is found that  dG j  decreases monotonically from d=0 to d=P. P 

is a position close to the surface of the matrix. Beyond this point,  dG j  increases with d 

until irhEd  , where the surface of the inclusion touches the surface of the matrix. 

Beyond the position E,  dG j  decreases sharply as the increasing of d until the inclusion left 

the matrix completely. It should be emphasized that  0jG  is always the largest value. The 

change of  dG j  as the increasing of d is more severe when   is smaller. However, the 

differences are not significant when 01.0 .  

 

The calculated free energy change has been substituted into Eq. (2) to calculate the equivalent 

driving force from the electric current to the electrically neutral inclusion. The numerical 

results are demonstrated in Fig.4b. The force is positive at 0<d<P, which means the electric 

current pushes inclusion toward the lateral surface. The area with 0<d<P is therefore named 

pushing zone. The force turns to negative at P<d<E. This implies that the inclusion will be 

trapped in the area around position P. The free energy achieves a local minimum at P. The 

area with P<d<E is hence called the trapping zone. The force becomes positive at d>E until 

the inclusion moving out of matrix completely. This area is hence named expelling zone. 

Electric current helps to remove inclusion from the matrix and also prevent inclusions to 

enter the metal matrix. To know the strength of the force from electric current to the 

electrically neutral inclusion, the force-induced acceleration to an inclusion whose mass 

density is 331099.3  mkg has been calculated. The results are demonstrated in Fig.4c. The 
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mass density is similar to that of MnS at room temperature. It has been found that the 

accelerations generated by electric current force can exceed the gravitational acceleration in 

many cases.  
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FIG.4. Numerical calculations on the changes of free energy, force and acceleration. (a) Free 

energy change when the inclusion is located at different places. The changes with distance d 

are in the three forms, namely monotonically decreasing (0<d<P), monotonically increasing 

(P<d<E) and monotonically decreasing (d>E). (b) The force for inclusions at various 

locations. Three zones are divided according to the nature of the force, namely pushing zone 

(positive, 0<d<P), trapping zone (negative, P<d<E) and expelling zone (positive, d>E). (c) 

The acceleration caused by the force to a MnS inclusion particle. The driving force can 

overtake gravity in many cases. 

 

Fig.5a demonstrates the change of /F  as a function of d for various , 

where          212 imim . It is found that lines are close to each other 

in pushing zone (0<d<P), although the discrepancies are significant in trapping zone and 

expelling zone. In approximation, one can say that the force is proportional to the factor   in 

pushing zone. Fig.5b demonstrates the change of iVF /  as a function of d for 01.0  

and mri

4100.4  , m4100.6   and m4100.8   respectively. It can be concluded that the 

force is proportional to the volume of inclusion in the pushing zone. Fig.5c shows the change  
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FIG.5. The property of the force from electric current to electrically neutral inclusion. (a) 

The force for different electrical conductivities of inclusion. The force is proportional to the 

factor   in pushing zone. (b) The force for different volumes of inclusion. The force is 

proportional to the volume of inclusion in the pushing zone. (c) The force for different widths 

of matrix. The force is proportional to distance for a given width but the slope of the line is 

dependent on width. 

 

of force as a function of d when 01.0h m, 016.0 m, 02.0 m and 04.0 m respectively. It can 

be approximated that F is proportional to d for a given h  but the slope of the line is 

dependent on h . The smaller width of the sample has the steeper slope of the line in Fig.5c. In 

summary, one has an approximated expression for the force from electric current to the 

electrically neutral inclusion at pushing zone as  

    ii

im

im V
df

d
jV

df

d
jF





















2

1

2

2

0

2

0 ,      (3) 
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where )(df  increases monotonically but nonlinearly as d increases. The width of the sample 

is usually much larger than that of the size of inclusion. The pushing zone is, therefore, the 

dominant area across the matrix in most cases.  

 

The force identified in the present work is different from that in electromagnetophoresis and 

as followings.
1-4

 (a) The direction of the force in electromagnetophoresis is in a fixed 

direction perpendicular to both the magnetic field and the electric current for 1 . While the 

force in the present work is not in a fixed direction but is from the centre of the matrix to the 

lateral surface when 1 . The latter is axial symmetrical. (b) The amplitude of the force in 

electromagnetophoresis is not location dependent. While the force revealed in the present 

work is location dependent. (c) There are three different zones for the force revealed in the 

present work, namely the pushing zone, the trapping zone and the expelling zone. There are 

no such zones reported for the force in electromagnetophoresis. (d) The force revealed in the 

present work does not require any external magnetic force, while the force in 

electromagnetophoresis requires an external magnetic field in addition of the electric current.  

 

The force is different from that in electromigration with following aspects: (1) The direction 

of the electromigration force is parallel to the direction of electric current. While the direction 

of the force identified in this work is perpendicular to that of the electric current. (2) The 

magnitude of electromigration force to an object is negligible in comparison to its gravitation 

force. However, the force identified in the present work is significant. (3) The 

electromigration force to a particle in a matrix can be affected by its surrounding dislocations 

but will not be affected by its location in the matrix. The force identified in the present work 

is dependent on the distance from the particle to the surface.     

The mechanism proposed, demonstrated and validated here does explain the experimental 

observation in the study. The disappearance of MnS inclusions from the inner part of the steel 

matrix and its movement toward the surface is driven by the force from electric current to 

electrically neutral non-metallic particle. In the area close to the surface, the number of 

inclusions achieves local maximum (Fig. 1). This shows the trapping effect of electric current 
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to the inclusion at the zone. Further toward the surface, the number of inclusions is reduced. 

This shows the effect of expelling from the current to the inclusions. Due to absorption of 

inclusions from mould flux, only a few amounts of inclusions present in the electric-current 

treated steel than that of without mould flux. The experiments have been repeated for a 

number of times and the similar results are confirmed. 

 

Electrically neutral particles in liquids may be separated according to the discrepancies of 

their electrical conductivities. The processing usually requires at least an external magnetic 

field. This work has identified the existence of a driving force that is caused only by the 

passing electric current in a finite sample without the application of an external magnetic 

field. The force drives the electrically neutral inclusions toward the surface. The driving force 

can overtake gravity in practical cases. The property of the force is found not to be similar to 

that in electromagnetophoresis and electromigration. Three zones namely the pushing zone, 

trapping zone and exiling zone are notable for the electric-current-driven phase separation. 

An expression for the force at the pushing zone has been developed. The theory has been 

validated by experimental observations on the current-driven separatoin of MnS inclusions 

from liquid steel. The inclusions (<30 μm) can be extracted from molten metals by the 

electric current. Therefore, it is possible to use the force in many engineering applications 

such as separation of particles according to the differences of their electrical conductivities.  
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