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Abstract: The potential effects of climate change on the environment and society

are many. In order to effectively quantify the uncertainty associated with these effects,

highly complex simulation models are run with detailed representations of ecosystem
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processes. These models are computationally expensive and can involve a computer

run of several days. Computationally cheaper models can be obtained from large

ensembles of simulations using statistical emulation. The purpose of this paper is to

construct a cheaper computational model (emulator) from simulations of the Lund-

Potsdam-Jena managed Land (LPJmL), which is a dynamic global vegetation and

crop model. This paper focuses on statistical emulation of potential crop yields from

LPJmL and an emulator is constructed using a combination of ordinary least squares,

principal component analysis and weighted least squares methods. For five climate

models, under cross-validation the percentage of variance explained ranges from 60-

88% for the rainfed crops and 62-93% for the irrigated crops. The emulator can be

used to predict potential crop yield change under any future climate scenarios and

management options.

Key words: Crop yield; CO2 fertilization effect; principal components; distance

weighted regression

1 Introduction

The world population is projected to increase by 35% by the middle of this century

(UNFPA, 2010). This will cause a rise in demand for major food crops that will

require a considerable increase in crop production. Climate change, food insecurity

and how to effectively feed over 9 billion people by mid-century are major problems

threatening humanity (Smith and Gregory, 2013). Rising temperatures and CO2 lev-

els and changing precipitation patterns will affect crop production (Parry et al., 2004).
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The IPCC Fifth Assessment Synthesis Report (Section SPM2.3) notes that “Global

temperature increases of 4◦C or more above late 20-th century levels, combined with

increasing food demand, would pose large risks to food security globally (high confi-

dence).” The problem requires multi-disciplinary approaches. A robust and coherent

assessment of the climatic impact on future crop-yields is essential to inform policy

makers. Quantification of the reduction of climate change impacts in different sectors

by moving from a no-mitigation approach to several alternative mitigation scenarios

was the major focus of Warren et al. (2013) and further evaluation of uncertainty

associated with impact reduction in Arnell et al. (2013). These studies concluded

that urgent global measures can prevent the larger impacts of climate change that

are otherwise projected to occur by mid-century.

The relationships between crop yields, weather and climate have attracted consid-

erable attention. Many authors have applied empirical methods. Simulated and

historical data were explored to assess the global climatic impact on crop yields in

Lobell and Burke (2008, 2010). An earlier study by Kart (1979) examined the re-

lationship between crop and weather using a ridge regression approach. Reddy and

Pachepsky (2000) estimated changes in crop yield from monthly weather projections

of climate variables. Wallach (2011) extended the Kart (1979) approach by estimat-

ing wheat production using multiple regression. Bornn and Zidek (2012) evaluated

wheat yields using a Bayesian method, examining the significance of incorporating

spatial information in crop-yield modelling. Schlenker and Roberts (2006) investi-

gated the effect of change in average weather on crop-yield, focusing especially on

the non-linear effect of temperature on growing season. Matis et al. (1989) applied

a non-parametric Markov chain approach to crop yield prediction while Kim et al.

(2005) derived a Bayesian bootstrap method to derive the posterior distribution of
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the parameters rather than the distribution of a sample statistic. Lobell et al. (2006)

developed a non-linear model to relate crop-yields to weather and climate, finding a

significant non-linear relationship between temperature and yields. These statistical

approaches were all applied at relatively small spatial scales (typically country level

or smaller), greatly simplifying the problem compared to the global scale analysis we

perform here. Bornn and Zidek (2012) note that forecasting wheat yields across the

Canadian prairies is in itself a challenging task due to substantial spatial variability.

The other general approach is the application of process-based models (Bondeau et

al., 2007; Fader et al., 2010) that simulate detailed physical and biological processes.

Leemans and Solomon (1993) implemented a water balance model within a geographic

information system (GIS) that integrates databases, while Fischer et al. (2001) ex-

tended the approach with the Global Agro-Ecological Zones (GAEZ) software. Sim-

ilarly, Rosenzweig et al. (2014) used a process-based approach to evaluate the global

consequences of various climate change scenarios on crop productivity. Recently,

Muller and Robertson (2014) compared the performance of two global crop models -

the LPJmL of Bondeau et al. (2007) and Decision Support System for Agrotechnology

Transfer (DSSAT) of Jones et al. (2003).

Future projections encompass many uncertainties. These include uncertain future

scenarios for greenhouse gases and other emissions, uncertain climate projections

for a given scenario, with different global climate models (GCMs) projecting different

climates for the same scenario, and uncertain crop yields in response to a given climate

change projection. A significant source of crop yield uncertainty results from the

poorly quantified “CO2 fertilization effect”, the observed increase in photosynthesis

rates that arises when ambient CO2 concentrations are increased. Impact studies are
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generally forced to address a subset of these uncertainties. For instance Lobell and

Burke (2010) focussed on just one crop from Sub-Saharan Africa while Osborne and

Wheeler (2013) assessed the impact at a coarse scale of country level. In a broader

study, Osborne et al. (2013) determined projections from fourteen different GCMs

but considered only one emission scenario and one time point. Deryng et al. (2011)

used two GCMs and two adaptation scenarios but concentrated only on rainfed crops

and neglected the CO2 fertilization effect.

Here we integrate the empirical and process-based approaches with the statistical em-

ulation of an ensemble of simulations of the process-based LPJmL model. Computa-

tional speed is highly problematic for coupling complex models together. Emulation

is a tool for simplification of models that leads to reduced-form representations of

complex models that are computationally much faster and hence easier to couple to

other models. Emulation offers a rapid alternative for the projection of crop produc-

tivity under diverse climate scenarios, but at the same time it allows us to capture

important relationships between crop yield and climate, enabling realistic prediction

of responses to climatic change. Emulation would further facilitate other calcula-

tions (e.g. sensitivity analysis) that would not be practical using the LPJmL model

directly.

The approach uses a combination of OLS, PCA and WLS regression to model the

potential crop yields that are simulated by LPJmL. We use a two-stage method.

The first stage applies a least squares regression analysis similar to Holden et al.

(2010) to model change in potential crop yields as a function of climate change and

other relevant covariates. The second-stage uses a novel combination of PCA with

a WLS regression for interpolation of residual variation that is left unexplained by
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the regression equation. This has similarities to work of Higdon et al. (2008), who

combine GP emulation with a basis representation (such as principal components)

for calibration of computer models with high dimensional output. Our approach is

also related to the technique suggested in O’Hagan (2006), which involves combining

a regression with a GP emulation of the regression’s residuals for improving emulator

performance.

The emulators provide high-resolution spatial output fields for five major crop types.

Emulated projections are provided for both irrigated and rainfed crops, and for vari-

able degrees of crop management intensity. They also address the uncertainty due to

the CO2 fertilisation effect.

In Section 2 we describe the models and simulation set up. In Section 3 we describe the

methods and implementation of the emulator algorithm. Section 4 reports the results

of the emulations. Section 5 discusses the results and gives concluding comments.

Supplementary material to accompany this paper is available at http://??? (will link

to an address in the journal’s repository.)

2 Models used for the analysis

We built the crop-yield emulators using simulation output from the following mod-

els: LPJmL, Model for the Assessment of Greenhouse Gas Induced Climate Change

(MAGICC) and Spatial Climate Generator (ClimGen). MAGICC is a simple carbon

cycle climate model that simulates greenhouse gas (GHG) cycles, radiative forcing,

and ice melt. The gas cycle uses standard formulae to convert surface emissions of

gases to atmospheric concentrations and these, in turn, are then converted to radia-
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tive forcing. The generated radiative forcing is then used to drive a diffusive energy

balancing model to estimate global climate change. MAGICC6 is a new version of

MAGICC (Meinshausen et al., 2011) and is able to simulate global mean temperature

(GMT) trajectories based on the emulation of the 18 Atmospheric Ocean General Cir-

culation Models (AOGCMs) used in Solomon (2007) for the Fourth Intergovernmental

Panel on Climate Change (IPCC) assessment report.

ClimGen is a spatial climate scenario generator. Emulated global mean temperature

trajectories of a particular GCM from MAGICC6 are used to drive the ClimGen

model. ClimGen uses a pattern-scaling method and produces spatial climate change

information for a given global-mean temperature change. The method is based on the

assumption that the pattern of climate change simulated by the coupled AOGCMs is

relatively constant but the amplitude changes. These normalised patterns of climate

change usually show considerable variation between different AOGCMs, and it is this

variation that ClimGen is designed to explore (Osborn, 2009).

The LPJmL model of Bondeau et al. (2007) is a dynamic global vegetation model

(Sitch et al., 2003) enhanced to represent global agriculture in addition to natural

vegetation. It uses eco-physiological relations and plant trait parameters for the esti-

mation of photosynthesis, plant growth, maintenance and regeneration loss, fire dis-

turbance, soil moisture, runoff, evapo-transpiration, irrigation and vegetation struc-

ture. Agricultural productivity is simulated through varieties of crop functional types

(CFTs), both rainfed and irrigated. The LPJmL model takes as inputs climate vari-

ables such as precipitation, temperature and insolation, which are then disaggregated

to quasi-daily values by a weather generator. The monthly input and output data are

spatially explicit time series of about 60 000 global 0.5◦ resolution grid cells. Each
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grid cell can contain a variety of natural or agricultural vegetation types, whose daily

growth and productivity is simulated. Bondeau et al. (2007) described further the

performance of the LPJmL simulation in term of crop yields, crop phenology and

carbon fluxes.

In summary, MAGICC6 generates and provides future trajectories of global mean

temperature that are used by ClimGen. ClimGen emulates the spatial response pat-

terns by disaggregating the temperature trajectories to 0.5◦ spatial resolution of cli-

mate change patterns for temperature, precipitation and cloud cover. The generated

climate scenarios are supplied as inputs to run the LPJmL simulation for the assess-

ment of climate impacts on variables such as potential crop yield.

2.1 LPJmL simulation

LPJmL was run on seven climate change patterns, namely, Canadian Centre for Cli-

mate Modelling and Analysis Coupled Global Climate Model (CCCMA-CGCM31),

Center for Climate System Research and Model for Interdisciplinary Research on Cli-

mate (CCSR-MIROC32HI), CCSR-MIROC32MED and Hadley Centre Global Envi-

ronmental Model, Met Office United Kingdom (UKMO-HADGEM1), Goddard In-

stitute for Space Studies (GISS-MODELEH), GISS-MODELER, and Institut Pierre

Simon Laplace (IPSL-CM4) generated using ClimGen, which used trajectories of

global mean temperature constructed by MAGICC6. In the MAGICC6 model, the

forcing pathways of all four Representative Concentration Pathways (RCPs) were

used. These RCPs are widely used in climate research. They describe alternative

possible future emission scenarios and are designed to standardise climate model sim-

ulations for inter-comparison. The pathways are characterised by either long-term
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stabilisation within the period 2100−2150 (RCPs 4.5 and 6.0), progressively increas-

ing forcing by 2100 (RCP 8.5), or decreasing forcing by 2100 and beyond (RCP2.6,

also named RCP-3PD) (Moss et al., 2010).

The simulations involve a spin-up stage that was used to equilibrate the long-term

carbon stores (in natural and agricultural ecosystems) by repeating the observed

climate (1901 − 1930 period) 33 times, immediately followed by an additional 13

repetitions in order to incorporate landuse change for reconstruction of historical soil

carbon pools (Fader et al., 2010). Then simulations followed for the period 1931 −

2000, with transient climate and land use change data. The scenario period (2001−

2100) for the different RCPs and GCM patterns started from year 2001. Land use

change pattern and irrigation were held constant at their year 2000 values. Changes

in the potential crop yields were simulated for each of five crop types under both

rainfed and irrigated conditions. Results were calculated on a global 0.5◦ × 0.5◦

degrees resolution.

3 Methods

3.1 A procedure for statistical emulation

In addition to the simulations described in 2.1, we also examined seven different crop

management levels for each scenario, and performed simulations with and without

the CO2 fertilization effect. The CO2 fertilization effect is the rise in crop yield

as a result of elevated CO2 in the atmosphere. In calibrating crop management,

the Leaf Area Index (LAI) is a key parameter. LAI is the ratio of total upper leaf
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surface of vegetation divided by the surface area of the land on which it grows.

Crop management levels are represented by maximum leaf area index LAImax, which

in LPJmL represents a proxy for vegetation density (thus reflecting the vegetation

response to the overall management intensity). Together with other synchronously

varied parameters it is used to calibrate the modelled yields with respect to observed

yields that are a function of local management practice, as in Fader et al. (2010).

Here we use seven simulations with fixed parameters for each grid cell and crop type

so as to derive the yield levels that would be achieved if those management levels

were in place.

The LPJmL crop-yield data were based on simulations for 59199 grid cells on 0.5◦

by 0.5◦, but here we only consider those cells where crops are actually simulated to

grow (the other cells are coded zero). We built separate emulators for the rainfed

and irrigated crops. The following five CFTs were selected for emulation: temperate

cereal, rice, maize, groundnut and an oil crop, which is the maximum yield among

soybean, sunflower and rapeseed. The five crops are chosen because they are widely

grown across the globe. Cereal, rice and maize are very prominent staple food crops

and provide over 50% of all calories consumed by the world. Oil is used domestically

as a vegetable oil and also forms ingredients used in manufacturing products.

The average decadal yield given by LPJmL from 2005-2095 was computed for each

crop in each grid cell. We then obtained the change in yields relative to the baseline

decadal average in 2005-2014. We calculated the change in seasonal climate variables

for the 37 input variables listed in Table 1. The emulators were constructed in two

stages. The first stage uses an OLS regression method to fit a linear model that

explains much of the variation between the response and input variables. The second
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Table 1: The emulator’s input variables.

Variables Full names

scld/weld/spcld/acld Change in mean cloud cover in summer/winter/spring/autumn

spre/wpre/sppre/apre Change in mean precipitation in summer/winter/spring/autumn

stmp/wtmp/sptmp/atmp Change in mean temperature in summer/winter/spring/autumn

swet/wwet/spwet/awet Mean change in wet day frequency in summer/winter/spring/autumn

iscld/iweld/ispcld/iacld Initial (baseline) mean cloud cover in summer/winter/spring/autumn

ispre/iwpre/isppre/iapre Initial mean precipitation in summer/winter/spring/autumn

istmp/iwtmp/isptmp/iatmp Initial mean temperature in summer/winter/spring/autumn

iswet/iwwet/ispwet/iawet Initial wet day frequency in summer/winter/spring/autumn

co2 and cco2 Baseline mean CO2 and change in mean CO2

soil, lat and LAI Soil and latitude parameters, and maximum leaf area index

In the northern hemisphere, summer = {June July August}, winter = {December January Febru-

ary}, spring = {March April May} and autumn = {September October November}; obvious changes

are made for the southern hemisphere.

stage combines PCA with a WLS regression to explain some of the residual variation

that is left unexplained by the first stage. We built a single emulator for the two CO2

fertilization levels (“on” and “off”), but treat irrigated and rainfed crops separately.

This allows the emulator to be flexible in predicting yield changes for any level of

CO2. Figure 1 shows the average yields of cereal (upper plots) and rice (lower plots)

in the baseline period (2005-2014) given by LPJmL. The plots are for a moderate

pathway (RCP6), the climate model CCSR-MIROC32HI, with CO2 fertilization ‘on’

and management level 6. The crop is not grown in areas in white, such as most of

America, Africa and Australia for irrigated rice. Corresponding plots for maize, oil

and groundnut are given in Supplementary material S1.

The emulators were built from two GCMs, CCCMA-CGCM31 and CCSR-MIROC32HI,
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Figure 1: LPJmL average annual yield of cereal (upper two plots) and rice (lower

two plots) in 2005-2014 for RCP6, CCSR-MIROC32HI, with CO2 fertilization and

management level 5. Left-hand plots: rainfed crops; irrigated crops. Areas in white

over land correspond to grid cells with observations of zero.
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four RCPs, and two simulation categories (with and without CO2 fertilization effect),

giving 16 (2 × 4 × 2) different scenarios. Each scenario has seven crop management

levels and eight time-slices, with each time-slice consisting of 59199 observations. Af-

ter removing the zero observations from the data, there are 16649, 6913, 19139, 7100

and 8427 valid grid points per scenario for rainfed temperate cereal, rice, maize,

groundnut and oil, respectively, and 8963, 7325, 9146, 2386 and 2731 for irrigated

crops. In order to evaluate the performance of the LPJmL emulators another five

GCMs, UKMO-HADGEM1, GISS-MODELER, GISS-MODELEH, IPSL-CM4 and

CCSR-MIROC32MED were used for cross-validation purposes.

We used all valid grid points for irrigated oil and groundnut emulators because each

of these crops has less than 5000 non-zero observations in each scenario. For other

crops, in the first stage we used observations from a random sample of 5000 valid

grid points because the stepwise algorithm could not fit the whole dataset. The 5000

grid points are fixed across the time-slice, RCP, GCM and management levels as

well as simulation categories. We sampled about 4.5 million observations on each

input variable. We then fitted a single model to the sampled data for each crop-yield

when crops are rainfed. This procedure was carried out for each of the five crops and

repeated for the case where crops are irrigated. For the second stage, all valid grid

points were used.

Two climate models were used in the construction of the emulators so as to better

span the possible climate input space. We should note though, that using more

climate models only help spans ‘climate model space’, not necessarily ‘true climate

input space’.

However, we also used several RCPs, which incorporates information on a broad range
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of emission pathways, and a minimum of 2386 grid points for each emulator. Hence,

the climate values that occur across grid points in our training data cover a very wide

range. This helps our emulators predict the change in crop yield given by LPJmL for

a range of climate forcing scenarios that are not restricted to the RCPs and climate

models (GCMs) used to construct them: the climate states that arise within each

grid point should resemble the climate that has arisen somewhere in the training

data. In section 4.1 we use cross-validation to examine emulator performance, testing

the emulators on five climate models that played no part in their construction.

3.1.1 Stage 1

An emulator is constructed in two stages. In stage 1 stepwise regression is used to

obtain a parsimonious model for predicting crop yield change (relative to baseline)

from climate and other explanatory variables. The response variable is the change in

yield given by LPJmL and is denoted by y. As noted earlier, each combination of RCP,

GCM and CO2 fertilization level is referred to as a scenario, giving 16 scenarios. Let n

denote the number of grid cells being used for the combination of crop and irrigation

regime of current interest. (So n equals 2386 or 2731 when emulating irrigated oil

or groundnut, respectively, and 5000 for other emulators.) For each scenario we have

7× 8×n data as LPJmL gave values for seven management levels and eight different

time slices. Hence y has 16 × 7 × 8 × n data values. The explanatory variables are

listed in Table 1.

An integer with values between 1 and 7 was used to represent the LAImax parameter

and this formed a factor variable in the regression analysis. The other explanatory

variables can enter the regression as linear or quadratic terms. All two-way interac-
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tions were also considered for inclusion. Thus spre, spre2 and spre.wwet are examples

of the potential terms in the regression model.

The emulators were built using the Revolution R Enterprise, which has a mechanism

for scaling data to handle big computations. We used a bi-directional stepwise re-

gression that performs variable selection by combining both forward selection and

backward elimination. In the forward stepwise mode, a linear model is fitted that

starts from a null model and variables are included step by step until the Akaike

Information Criterion (AIC) judges that the algorithm has converged. This process

is followed by backward elimination where non-significant variables are removed step

by step until the Bayesian Information Criterion (BIC) determines that no further

variables should be removed. AIC is a more lenient criterion than BIC so a long

model is built and then simplified.

3.1.2 Stage 2

In contrast to stage 1, here we formed a separate emulator for each combination

of management level and time slice. Also, all grid-points with non-zero observa-

tions are used, whereas in stage 1 we generally took a sample so as to cap their

number at 5000. Rather than having multiple subscripts to indicate crop, irrigation

regime, management level and time slice, we will consider just a single crop/irrigation

regime/management level/time slice combination and let yj be the vector of changes

in yield given by LPJmL for that combination in the jth scenario (j = 1, . . . , 16). We

let ỹj be the corresponding predictions given by the stage 1 emulator and εj = yj−ỹj

is the error in prediction. Each ỹj and εj is an N × 1 vector, where N denotes the

number of grid cells with non-zero observations for that crop/irrigation regime. As
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ỹ1, . . . , ỹ16 are predictions on training data, the values of ε1, . . . , ε16 are known.

Given a new vector of predictions, ỹ�, from a fresh scenario where the LPJmL values

are unknown, the aim is to estimate the error of ỹ� from E = (ε1, . . . , ε16) and

Ỹ = (ỹ1, . . . , ỹ16). We apply a PC decomposition to the 16 × N matrix ỸT and

select just the first four principal components.

The resulting 16× 4 matrix X0 of PC scores given by these four components is then

used as explanatory variables for the WLS regression of our residual patterns E.

Details are given in Appendix 1.

Our method in this stage is similar to a pattern scaling approach that is commonly

used in climate scenario generation. Pattern scaling assumes that, given any particu-

lar point in space and time, there exists a linear relationship between climate change

pattern and global mean temperature with a constant spatial pattern. Here, we allow

for a more general multilinear relationship in the residual (Holden et al., 2014). The

residual patterns from the OLS results in stage 1 indicated that the residual patterns

are relatively similar across RCP and GCM (see Supplementary Materials S2). Hence,

for example, if a grid cell has a negative residual in one scenario, then that grid cell is

likely to have a negative residual for other scenarios. Stage 2 exploits the similarity

between the error patterns across scenarios.

Having obtained the residuals E by calculating the differences between the emula-

tor predictions and the actual LPJmL values for each scenario, we then interpolate

these residual patterns using distance-weighted regression. More weight is assigned

to known scenarios that are similar in pattern to the unknown scenario, with simi-

larity determined by the distances from the known scenario points ỹi, . . . , ỹ16 to the
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unknown scenario ỹ�; closer scenarios are more similar and receive greater weight.

Several distance metrics were tried: linear, square, cubic, spherical, power exponen-

tial, Gaussian and three forms of Matern metric. Details of these metrics are given in

Appendix 2 where a variogram is also given that illustrates the need to take account

of the distance between scenario points when modelling stage 1 prediction error. Per-

formances of the metrics under validation data were compared. We chose a squared

distance method scaled by their eigenvalues because it is amongst the best metrics in

terms of the proportion of variance it explained and it is the simplest of the better

methods. The weights are chosen to be inversely proportional to the squared distance

and the same weighting scheme is applied across all grid points. The weights form

the non-zero elements of a 16× 16 diagonal matrix, W.

A separate weighted regression is performed for each grid cell. For the ith cell, the

dependent variable is the ith row of E, (i = 1, . . . , N) but the data matrix for the

explanatory variables (X0) and the weight matrix (W) are the same for each grid

cell. Thus most of the calculations for estimating regression coefficients need only be

performed once, rather than once for each grid cell. From the stage 1 predictions for

the new scenario, ỹ�, we calculate its PC score (x̃�) and use the regression equation

for the ith grid cell to estimate the error in prediction for that cell. If ε̂�i is the resulting

estimate then we revise the prediction for the cell by adding ε̂�i to it.

The following is a summary of the calculations in Stage 2 (see Appendix 1 for details).

(i) Perform a principal components analysis of ỸTỸ. The non-zero eigenvalues are

λ1 ≥ λ2 ≥ · · · ≥ λ16 and the corresponding eigenvectors are γ1, . . . ,γ16. Put

x̃� = (γ1, . . . ,γ16)
Tỹ� and x̃j = (γ1, . . . ,γ16)

Tỹj for j = 1, . . . , 16.
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(ii) Denote the kth components of x̃� and x̃j by x�
k and xjk, respectively. Then

w1, . . . , w16 are the non-zero elements of the diagonal matrix W, where wj =

(1/d2j)/{
�16

1 (1/d2j)}, with d2j =
�16

k=1 λk(x�
k − xjk)2.

(iii) The explanatory variables for the WLS regression are constructed from the first

four eigenvectors of Γ. We put Γ̂ = (γ1,γ2,γ3,γ4) and X0 = ỸTΓ̂.

(iv) Weighted least squares gives β̂i = (XT
0WX0)−1XT

0Wε̃i as the vector of regres-

sion coefficients for the ith grid cell, where ε̃Ti is the ith row of E.

(v) The estimated error for the ith grid cell is ε̂�i = β̂
T

i x
�
0, where x�

0 = Γ̂Tỹ�.

(vi) In order to avoid unusual values and prevent too much extrapolation from known

residuals, we compare ε̂�i , with each component of ε̃i. Let (εmin
i , εmax

i ) denote

the range of these components. If ε̂�i is outside this range, we set it equal to the

range’s nearer endpoint. Thus the revised estimate of y for the ith grid point is

ỹ�i + ε̂
#
i , where ỹ�i is the ith component of ỹ� and

ε̂
#
i =






εmin
i if ε̂�i < εmin

i

ε�i if εmin
i ≤ ε̂�i ≤ εmax

i

εmax
i if ε̂�i > εmax

i .

(3.1)

Our methods described above are simple and flexible to apply. Diagnostic plots of

the residuals from WLS regressions are reported in Supplementary Materials S3.

A Gaussian process model could not be applied directly to our data because of the

computational difficulty from the large sample size coupled with the large number

of parameters to be estimated. GP scales cubically with the number of observations

O(N3), which is not appropriate for our present data – even after averaging decadally
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and sampling from each scenario, the data matrix contains approximates 4.5 million

values. It might be possible to use GP for residual interpolation, rather than WLS,

but this would still have a high computational cost and it would be necessary to

reduce the resolution and aggregate data to a country level in order to reduce the

computational load.

3.2 Model performance

We assessed the performance of the emulator using five climate models that had not

been used to construct the emulator, taking the proportion of variance (ρ) that the

emulator explained as a measure of emulator efficiency. This proportion was calcu-

lated separately for each combination of climate model/crop/irrigation regime. For

one combination, let ȳ denote the average value given by LPJmL and let ỹ�
ijk�t be the

emulator final predictions for the ith grid cell, CO2 fertilization level j, management

level k, RCP � and time slice t. Also, let yijk�t denote the actual LPJmL value to

which the latter corresponds.

We compute the squared differences between the actual LPJmL values and ȳ and

also compute the squared differences between the LPJmL values and the emulator

predictions. The proportion of the variance in the LPJmL values that is explained

by the emulator is

ρ = 1−





8�
t=1

4�
�=1

7�
k=1

2�
j=1

N�
i=1

(yijk�t − ỹ�
ijk�t)

2

8�
t=1

4�
�=1

7�
k=1

2�
j=1

N�
i=1

(yijk�t − ȳ)2




(3.2)

where, as before, N is the number of grid cells with non-zero observations for the
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crop/irrigation regime of current interest. The overall cross-validation root mean

squared error (RMSECV ) is

RMSECV =

�
8�

t=1

4�

�=1

7�

k=1

2�

j=1

N�

i=1

(yijk�t − ỹ�
ijk�t)

2

(8× 4× 7× 2×N)

�1/2

. (3.3)

3.3 Sensitivity analysis

Calculating the total effects of each explanatory variable helps identify the relative

importance of variables in a model, that is, the contribution of each variable to the

total variance. We use the Sobol global sensitivity method. This computes indices by

decomposing the variance up to a specified order. The method we used computes the

first order and total indices. Suppose our model is represented by y = f(x1, . . . , xp).

The indices are given respectively as

Sj =
V ar[E(y|xj)]

V ar(y)
(3.4)

STj =
V ar(y)− V ar[E(y|x1, . . . , xj−1, xj+1, . . . , xp)]

V ar(y)
(3.5)

where V ar[E(y|xj)] is the first order or main effect of variable xj, and V ar(y) is the

total variance of the response y. STj is the result of the main effect of xj and all its

interaction with other parameters up to order p (Saltelli, 2002).

4 Results

4.1 Emulator predictions

Figure 2 gives density plots over grid cells for the percentage change in crop yield

(2084-2095) relative to the baseline yield for both CCSR-MIROC32HI and CCMA-
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CGCM31 GCMs. We consider all management levels and a moderate emission sce-

nario, RCP 6. The right-hand plots show the change in crop yield when there is no

CO2 fertilization while the left-hand plots show change in yield with CO2 fertilization.

In the right-hand plots, most crops show a preponderance of negative values, indicat-

ing a general reduction in yield. The exception is oil, which mainly shows positive

values. The distributions each have a single major peak but vary as to whether they

have a further minor peak (or even several minor peaks). The skewness of the density

function also varies markedly with crop.

Now considering the left-hand plots (with CO2 fertilization), the density plots show

a preponderance of positive values and are more diverse in pattern, which could be

a result of non-linear interactions between climate and CO2. Comparison of the left-

and right-hand plots shows that CO2 fertilization has a marked effect on all crops

except maize, for which the two plots are strikingly similar. (Maize is less affected

by CO2 fertilization because it is a C4 plant and has a mechanism to efficiently

transport CO2 to the photosynthetic parts, limiting photorespiration rate thereby

reducing water losses). Overall, the varying patterns in Figure 2 clearly show the

diversity of the effects we are emulating. The changes in crop yields are characterized

with high variability and there are varying patterns across different scenarios.

Figure 3 gives time series plots showing the percentage change in global crop yield

over each decade relative to the baseline period under the CCSR-MIROC32HI, either

without CO2 fertilization (right-hand plots) or with CO2 fertilization (left-hand plots).

It shows temporal variability of the rainfed crops under the RCP6 scenario with a

separate line for each management level. The sensitivity of change in yield to the CO2

fertilization effect is apparent, with CO2 fertilization greatly improving the change in



22 Oluwole K. Oyebamiji et al.

0 10 20 30 40 50 60

0.
00

0.
01

0.
02

0.
03

Cereal
D
en
si
ty

−100 −80 −60 −40 −20 0 20 400.
00
0

0.
01
0

0.
02
0

0.
03
0

Cereal

D
en
si
ty

−20 −10 0 10 20 30 40

0.
00

0.
02

0.
04

0.
06

Rice

D
en
si
ty

−80 −60 −40 −20 0 20

0.
00

0.
02

0.
04

Rice

D
en
si
ty

−100 −50 0 50 1000.
00
0

0.
01
0

0.
02
0

0.
03
0

Maize

D
en
si
ty

−100 −50 0 50 1000.
00
0

0.
01
0

0.
02
0

0.
03
0

Maize

D
en
si
ty

0 50 100 150 2000.
00
0

0.
01
0

0.
02
0

0.
03
0

Oil

D
en
si
ty

−10 0 10 20 30

0.
00

0.
04

0.
08

Oil

D
en
si
ty

0 20 40 60 80 100

0.
00

0.
02

0.
04

0.
06

Groundnut

Yield change  (%)  With CO2

D
en

si
ty

−10 0 10 20 30

0.
00

0.
04

0.
08

Groundnut

Yield change  (%)  Without CO2

D
en

si
ty

CCSR_MIROC32HI                                                 CCCMA_CGCM31

Figure 2: Probability distribution for the percentage decadal change between (2085-

2094) and (2005-2014) for rainfed cereal, rice, maize, groundnut and oil respectively,

RCP 6 and all management levels. Left-hand plots: with CO2 fertilization; right-hand

plots: without CO2 fertilization.
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Figure 3: Time series plot showing the temporal pattern for the percentage decadal

change relative to baseline period for rainfed temperate cereal, rice, maize, ground-

nut and oil respectively, for all time-slices, RCP 6 and all management levels for the

CCSR-MIROC32HI average over all grid cells. Left-hand plots: with CO2 fertiliza-

tion; right-hand plots: without CO2 fertilization.
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Table 2: Cross-validated proportion of variance ρ and root mean squared error

RMSECV showing the overall performance of the emulators for rainfed and irrigated

crops, with all management levels, RCPs, and time slices, but with CO2 fertilization

only, for UKMO-HADGEM1.

Crop 1st stage ρ 2nd stage ρ RMSECV (gC/m2)

rainfed irrigated rainfed irrigated rainfed irrigated

Cereal 0.41 0.41 0.60 0.64 16.72 14.94

Rice 0.39 0.37 0.62 0.78 14.71 24.02

Maize 0.35 0.45 0.74 0.80 17.79 20.45

Oil1 0.51 0.49 0.73 0.81 12.34 7.65

Groundnut 0.24 0.40 0.62 0.79 12.04 17.72

1 Oil=yieldmax[soyabean, rapeseed, sunflower].

yield of most crops. Taking management level 4 and the last decade (2085-2094) as

an example, for cereal a decline in yield of 6% becomes a growth of 18%; rice and oil

show improvements of 37% and 25%, respectively, while groundnut has an increase

of 32%. Maize exhibits a weak sensitivity to CO2, with the globally averaged yield

increasing by 11%.

When there is no CO2 fertilization, with all management levels there is a fairly steady

reduction in yield for cereal, rice, maize and groundnut while oil shows an increase in

yield. When there is CO2 fertilization, maize and groundnut yield still change com-

paratively little over the decades and the effect of random variation is more apparent

in their time series plots.
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Table 2 summarises the cross-validated performance of the emulators for stage 1

and stage 2 using equation 3.2, for both rainfed and irrigated crops under UKMO-

HADGEM1. Maize and oil cross-validated noticeably better than other crops with

74%/73% variance explained when rainfed and 80%/81% explained when irrigated.

Generally, the emulator of the irrigated crops performed better than the emulator of

the rainfed crops. This could be attributed to the water stress in rainfed locations,

difficult to model, that could complicate the predictions. Stage 1 explained less than

50% of the variance except for rainfed oil. However, the second stage of the algorithm

improved results for both the rainfed and irrigated crop systems. For the rainfed

crops, the values of variance explained increased from (24-51%) to (60-74%) for all

the crops. For the irrigated crops, the first stage explained variance was between

37-49% for all the crops and this increased to 64-81%, as shown in Table 2.

The last two columns of Table 2 show the computed RMSECV for all scenarios, time

slices and management levels, which further examines the accuracy of the emulators.

RMSECV is the difference between the LPJmL and emulator predictions and provides

a measure of uncertainty associated with the emulator. Irrigated oil and rice have

the lowest and highest values with 7.65 and 24.02 gC/m2 respectively; a low value

indicates more accurate predictions.

The cross validation of stage 2 predictions for four additional GCMs are shown in

Table 3. We can see that the emulators again performed well, with results that

are typically a little better than in Table 2. The results for CCSR-MIROCMED are

better than for other GCMs; this was to be expected because a very similar GCM,

CCSR-MIROC32HI, gave part of the training data. Results for irrigated crops are

generally better than for rainfed crops, which was also the case in Table 2, though
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Table 3: Cross-validated proportion of variance ρ for four GCMs, with CO2 fertiliza-

tion, management level 5, RCPs 4.5 and 8.5, and all time slices

Crop CCSR- GISS- GISS- IPSL-

MIROCMED MODELER MODELEH CM4

rainfed irrigated rainfed irrigated rainfed irrigated rainfed irrigated

Cereal 0.79 0.82 0.67 0.62 0.72 0.80 0.74 0.83

Rice 0.79 0.91 0.75 0.77 0.68 0.85 0.75 0.88

Maize 0.86 0.85 0.72 0.66 0.75 0.76 0.83 0.87

Oil 0.88 0.93 0.69 0.78 0.72 0.84 0.81 0.82

Groundnut 0.78 0.89 0.70 0.69 0.70 0.82 0.71 0.84

1 Oil=yieldmax[soyabean, rapeseed, sunflower].

the results with GISS-MODELER for cereal, maize and groundnut are an exception.

We now consider the spatial comparison between LPJmL and the emulators of UKMO-

HADGEM1 for temperate cereal. Figure 4 displays the change in yield between the

baseline period (2005-2014) and the decade 2085-2094. The left-hand and right-hand

plots show results for LPJmL and the emulator, respectively, with results for rainfed

temperate cereal in the upper two plots and those for the irrigated crop in the lower

two plots. The emulator under-predicts yield change across the United States for

rainfed cereal and over-predicts yield of the irrigated crop in some regions, especially

in Eastern Asia and Europe. Overall, the emulator reproduces the global patterns

well, especially for the irrigated crop (ρ = 0.69 for rainfed cereal and 0.74 for irrigated

cereal).

Figure 5 shows results for the rice emulator. The emulator for the rainfed crop under-
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Figure 4: Plots corresponding to mean decadal change in yield for rainfed (top) and

irrigated (bottom) cereal for management level 5, RCP6 with CO2 fertilization and

UKMO-HADGEM1. The left-hand plots are the values given by LPJmL and the

right-hand plots are the estimates given by our new emulator under cross-validation

(c.f. section 4). Areas in white over land correspond to grid cells with observations

of zero.

predicts the rice almost everywhere except in Eastern Asia where it reproduces the

pattern quite well. On the other hand, the emulator for the irrigated rice reproduces

the yield better than the rainfed (ρ = 0.74, 0.90 rainfed and irrigated respectively).

There is a potential for higher irrigated rice yield in Europe and Asia as shown by both

the LPJmL and irrigated emulator plots. Higher yield changes are more prominent

with irrigated rice than for rainfed. More irrigated rice is grown than rainfed rice

especially in latitude ≥ 30◦, an area that is also characterized with a high change in

yield.

Figures for other crops are presented in Supplementary Material S4. Overall, rainfed
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Figure 5: Comparison of LPJmL and the emulator for rainfed and irrigated rice. The

plots show the mean decadal change in yield between (2085-2094) and (2005-2014)

for management level 5, RCP6, with CO2 fertilization, for UKMO-HADGEM1.

crop patterns are quite different from the irrigated, as expected, because irrigation

allows some crops to be grown where they would not have grown naturally (e.g. rice

is grown in Europe with irrigation). Also, more negative changes are prominent in

both the LPJmL and emulator predictions for rainfed rice than for other crops. We

can clearly see that the emulators cross-validated well as indicated by their ρ values

(Tables 2 and 3) and thus captured relatively well the spatial patterns of LPJmL. The

maps show visually that the emulator produces patterns that are quite similar to the

LPJmL patterns, although in some instances there are over- and under-predictions.

4.2 Sensitivity results

Here, we investigate how the uncertainty in the crop-yield can be partitioned to

the various uncertainties in the input variables. We sampled 20 000 observations
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directly from the simulation with the CO2 effect for each of the 37 input variables

in Table 1. We computed both the first order (results are not shown) and total

sensitivity indices, as described in section 3.3. Bootstrapping was used to compute

95% confidence intervals on the estimated indices. This procedure was applied to all

the five crops for both rainfed and irrigated crops. The “sensitivity” package in R

(2013) was used for this analysis. Total sensitivity results are shown in Figure 6 for

rainfed crops. Results for irrigated crops are given in Supplementary Material S5.
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Figure 6: Barplots showing the sensitivity indices for the five rainfed crops over all

time-slices, RCPs and GCMs (negative indices are set to 0).

The six most relevant parameters for prediction of temperate cereal yields are ini-

tial winter cloud cover, CO2 change, initial spring wetday frequency, initial spring

temperature (‘initial’ represents baseline value), latitude and LAI, with indices of

0.43, 0.32, 0.30, 0.27, 0.23 and 0.23, respectively. The parameter with the second

highest rank is CO2 change, reflecting the sensitivity of yield to the CO2 fertilization

effect. Atmospheric CO2 improves crop productivity by stimulating photosynthesis,
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thus increasing the number of fruits, seeds etc. The fourth most sensitive parameter

is temperature, which generally has a considerable effect on plant growth.

Initial summer temperature, latitude, CO2 change, LAI and initial spring precipita-

tion are the five most important variables for rice. Their indices are 0.86, 0.42, 0.23,

0.18 and 0.18, making it very clear that summer temperature is the most important

parameter for rice. It is twice as influential as latitude (although temperature and

latitude are obviously correlated) and four times more influential than CO2 change.

Rice is a C3 plant that utilizes direct carbon fixation of CO2, so CO2 change is

expected to be an important parameter.

The most relevant variables for maize are initial spring, autumn and summer temper-

ature, as well as initial winter cloud cover and LAI. Their indices are 1.1, 0.25, 0.22,

0.19 and 0.14, respectively. It is unsurprising that, as these results show, seasonal

temperatures play a key role in the growth and development of maize plants. Maize

is less affected by CO2 fertilization because it is a C4 plant which has a more efficient

mechanism to transport CO2 to photosynthetic paths. Oil has the following impor-

tant variables: initial winter temperature, autumn and summer temperature change,

LAI and latitude with indices of 0.85, 0.78, 0.40, 0.26 and 0.20, respectively.

Overall, we can see from Figure 6 that baseline seasonal temperature, spring precipi-

tation and wetday frequency, LAI, latitude, CO2 change and cloud cover are the most

important variables across the five crops. Although CO2 change has a negligible effect

on maize, groundnut and oil, our results further support the joint interactive effect

of elevated CO2 and temperature on crop-yield. Some variables are less important

(examples are change in seasonal precipitation and cloud cover) and some are unim-
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portant (such as summer precipitation and soil) because their calculated sensitivity

indices are very low. Baseline CO2 is of limited importance in this analysis because

its level is represented by a single global value and does not vary with time-slice, RCP,

or GCM. Similarly, soil is represented in this analysis by discrete values that range

from 1-8 across the globe and these are constant across RCP and GCM scenarios.

In general, the sensitivity analysis clearly indicates that temperature is the most im-

portant parameter in crop yield projection. This high sensitivity of (growing season)

temperature was earlier observed as the major determinant of crop yield change under

future climate by Lobell and Burke (2008) and Osborne et al. (2013).

5 Concluding comments

This paper has addressed the joint emulation of the impact of climate change, CO2

fertilization effect and crop management levels on global crop yields. We have de-

scribed a procedure for constructing an emulator for LPJmL simulations of potential

crop yield for cereal, rice, maize, groundnut and oil crop functional types. Two em-

ulators were built for each crop, one for the rainfed crop and the other for its yield

under irrigation. Each emulator was constructed using a two-stage process. The

first stage used OLS to fit crop-yield as a smooth function of climate variables un-

der the assumption that each spatial point is an independent sample. The second

stage involves interpolation of the spatial residuals of unknown scenarios from known

scenarios (an approach similar to pattern scaling) using a combination of WLS and

PCA. We made similar assumptions to those of GP emulators (O’Hagan, 2006). In

particular, it is assumed that the emulator is a smooth and continuous function of its
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input variables. The second stage indeed improves the overall predictions.

We used cross-validation to test the accuracy of the emulator and performed sensi-

tivity analysis for each crop response. LPJmL uses daily time-steps as crop-yields

respond to daily variability. Here, we have chosen to use only seasonal mean cli-

matic variables as input, as these are readily available input data. With these inputs,

under cross-validation the emulators explained 62-93% of the variance for irrigated

crops and 60-88% of the variance for rainfed crops. Sensitivity analysis indicated

that the predicted yield of rainfed crops depends most heavily on baseline seasonal

temperature, CO2 change, latitude and LAI. Irrigated crops are dominantly sensi-

tive to temperature and less dependent on precipitation, as expected. We provided

spatial plots to visually compare the performance of the emulators with the LPJmL

simulations.

LPJmL crop data are characterized by a large proportion of zero observations. Grid

points where particular crops are not currently grown are represented as zeros in the

simulation. A censored regression approach (Moore et al., 2000) was also used to

model these data by treating the zero observations as censored observations (results

not shown). However, this method was not helpful because of the large dataset we

have, coupled with the fact that the censoring algorithm takes a longer computation

time, even after reducing the data size from 0.5◦ × 0.5◦ to 2◦ × 2◦ resolution.

Nevertheless, for the first stage we analysed a small sample of this data with censored

regression but the results were not better than OLS. Using either non-linear regression

or a Gaussian process emulator would be challenging because of the large number

of parameters to be estimated with samples from many scenarios (time-slice, RCP,

GCM, management levels, irrigation regime).
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We might also have used a dynamic emulation by emulating each grid-cell individually

as a function of time. Rather, our choice of OLS is driven by its simplicity.

Our emulation approach extends the work of Lobell and Burke (2010, 2008), which

models temporal and spatial variation to predict future crop yields from climate vari-

ables and performs sensitivity analyses to examine the importance of temperature

and precipitation on future yields. However, unlike Lobell and Burke (2010, 2008),

our predictions were not based solely on climate variables but also incorporated soil,

latitude, crop management levels and other covariates. Our analyses and aims are

also broader; Lobell and Burke (2010) work with just 94 crop-region combinations

and only examine temperature and precipitation while Lobell and Burke (2008) work

solely with the yield of maize in 200 sites in Sub-Saharan Africa. Our emulators

provide estimates of projected change in crop yields at any level of CO2 emission on

high spatial gridded resolutions for five different crops. We also performed rigorous

and extensive cross validation for several climate models and RCPs, and our global

sensitivity analysis measures the individual contribution of a number of different vari-

ables to overall uncertainty. In agreement with Lobell and Burke (2008), the clearest

result from our sensitivity results is that temperature is the dominant source of un-

certainty in future impacts assessment. The sensitivity analysis used a variance based

decomposition technique that handles correlated variables, and the contributions of

other variables that it quantifies have not previously been reported.

The emulators reduced the LPJmL model down to a two-stage process that is capa-

ble of predicting global crop-yields of different crop functional types, and the spatial

distribution and temporal dynamics of these yields in response to a changing climate.

These emulators are much faster to run compared to the LPJmL model. LPJmL is
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computationally expensive to run, while these emulators give results almost instanta-

neously. It takes about 8−10 minutes to simulate eight decadal changes of crop-yield

data (on 0.5◦ × 0.5◦ resolutions) with a 24G ram, 4-cores Window machine. This

approximately 60-fold increase in computational efficiency is particularly useful when

the model is coupled to one or more models for the integrated assessment of climate

impact.
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Appendix 1: Calculations in stage 2

Predictions given by stage 1 for the 16 training scenarios form the N × 16 matrix

Ỹ = (ỹ1, . . . , ỹ16). Usually a principal component (PC) analysis would be applied

to Ỹ: in the standard data analysis problem, each column of Ỹ would relate to a

different variable and the aim would be to condense the different variables into a few

components. Here, each column of Ỹ corresponds to a different scenario and these

different scenarios must retain their identities. However, we want to condense the

information given by the N grid points into a few summary statistics. Thus, we want

to reduce the number of rows (rather than the number of columns) so a principal

component analysis is applied to ỸT. The spectral decomposition theorem gives

ỸỸT = ΓΛΓT (A.1)



Emulating global climate change impacts on crop yields 35

where Λ = diag(λ1, . . . ,λN) is a diagonal matrix of eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λN ,

and Γ = (γ1, . . . ,γN) is an N × N orthogonal matrix, where γk is the eigenvector

corresponding to λk. The rank of ỸỸT is 16 (or possibly less), so λ17, λ18 . . . and λN

each equal 0.

The PC transformation from ỹ to x̃ is given by

ỹ → ΓTỹ = x̃. (A.2)

Put x̃j = ΓTỹj for j = 1, . . . , 16 and put x̃� = ΓTỹ�, where ỹ� are the stage 1

predictions for the new scenario. Then (ỹ� − ỹj)T(ỹ� − ỹj) = (x̃� − x̃j)T(x̃� −

x̃j). We wish to give more importance to the eigenvectors that corresponds to large

eigenvalues, so we define the distance between ỹ� and ỹj as

dj =

�
N�

k=1

λk(x
�
k − xjk)

2

�1/2

=

�
16�

k=1

λk(x
�
k − xjk)

2

�1/2

, (A.3)

where x�
k and xjk are the kth components of x̃� and x̃j, respectively.

In forming regression equations, we use only the first four principal components;

for every crop/irrigation regime/management level/time slice combination, these ex-

plained at least 95% of the variation in Ỹ.

Let Γ̂ be the first four columns of Γ, so Γ̂ = (γ1,γ2,γ3,γ4). We put X0 = ỸTΓ̂.

Let yj be the N × 1 vector of observation given by LPJmL for the jth scenario of the

training set (j = 1, . . . , 16); ỹj is the corresponding vector of prediction given by stage

1, and εj = yj− ỹj gives the error in the stage 1 predictions. A weighted least squares

(WLS) regression is used to estimate ε�, the corresponding error in ỹ�. A separate

regression equation is determined for each component of ε�. We put E = (ε1, . . . , ε16)

so for the ith regression (the ith grid cell) the values of the dependent variable are ε̃Ti ,
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where ε̃Ti is the ith row of E.

If any distance dj is 0, then weighted regression is unnecessary as the scenario with

the zero-distance gets a weight of infinity, and the errors for that scenario are taken

as the errors in ỹ�. Sometimes the distance equals 0 for more than one scenario and

then the error for those scenarios are averaged. Specifically, if Q denotes the set of

integers such that dj = 0 for j ∈ Q, then the vector of estimate error for the new

scenario is ε̂� =
�

j∈Q εj.

For non-zero dj, the weights wj (j = 1, . . . , 16) and weight matrix W are defined as

wj =
(1/d2j)�16
1 (1/d2j)

and W =





w1 0 . . . 0

0 w2
. . .

...

...
. . . . . . 0

0 . . . 0 w16





.

We take one grid point at a time and form a separate regression equation for that

grid point. The data for one of these regressions is the (16 × 1) vector of responses

ε̃i (the errors at that grid point) and the (16× 4) matrix X0, which holds the values

taken by the explanatory variables.

The weighted linear regression uses W as the weight-matrix.

For the ith grid point, the regression model is E(εi |x0) = βT
i x0 where εi is a random

variable whose observed value is the jth component of ε̃i when xT
0 is the jth row of

X0. The WLS estimate of βi is

β̂i = (XT
0WX0)

−1XT
0Wε̃i. (A.4)

For the new scenario, put x�
0 = Γ̂Tỹ�. Then the estimate of the prediction error in

ỹ� at the ith grid point is
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ε�i = β̂
T

i x
�
0,

which (using (A.4)) can be written as

ε̂
�
i = ε̃Ti WX0(X

T
0WX0)

−1x�
0. (A.5)

Equation (A.5) estimates the prediction error separately for each grid cell. To combine

the calculations for all grid cells into a single step, let ε̂� = (ε̂�1, . . . , ε̂
�
N)

T. Then the

equation for estimating all the residuals in ỹ� is given as

ε̂� = EWX0(X
T
0WX0)

−1x�
0. (A.6)

The similarity of our method to pattern scaling stems from this equation. The vector

ε̂� is the estimated error pattern for the new scenario and εj is the (known) error

pattern for the jth training scenario. If we put WX0(XT
0WX0)−1x�

0 = (α1, . . . ,α16)T,

then (A.6) may be written as

ε̂� =
16�

j=1

αjεj,

so the estimated error pattern for the new scenario is simply a linear combination of

the error patterns of the training scenarios.

To avoid extrapolation, we bound the ith component of ε̂� to be within the range of

ε̃i. Let ε̂# denote the resulting vector when a component of ε̂� is set equal to any

bound it exceeds, as detailed in equation (3.1). We take ŷ� = ỹ�+ ε̂# as the emulated

value of y for the new scenario.

Appendix 2: Variograms and distance metrics

Distance weighted regression is used to estimate the residual pattern of an unknown

scenario from the scenarios with known residual patterns (Section 3.1.2). More weight
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is assigned to known scenarios that are similar in pattern to the unknown scenario.

The distance, dj, between the unknown jth (known) scenario is defined in equation

(A.3) and is taken as the measure of pattern similarity.

Three simple metrics for converting the dj distances to weights were considered:

linear (wj ∝ d
−1
j ), quadratic (wj ∝ d

−2
j ), and cubic (wj ∝ d

−3
j ), where the weights

(wj) are scaled so that
�

wj = 1. The use of covariance functions to determine

weights was also explored using variograms. For each crop/irrigation regime/time

slice/ management level there are sixteen different training scenarios that predict the

yield in a grid cell. Generalising equation (A.3), let djk =
��16

m=1 λm(xjm − xkm)2
�1/2

denote the distance between the jth and kth scenarios, and let zijk denote the difference

between their predictions in grid cell i.

To obtain the empirical variogram, we split the range of djk into sections (bins) of

equal length. The empirical variogram, η̂(d) is defined as (Cressie, 1993)

η̂(d�) =
1

M�N

�

(j,k)∈Ω�

N�

i=1

|zijk|

where d� is the middle of bin �, (j, k) ∈ Ω� if djk is in bin �, and M� is the number

of items in Ω�. In Figure 7 the small circles are the values of η̂(d�) at the midpoint

of each bin. The lines in the figure show the theoretical variograms for the following

covariance models.

Spherical covariance model: η(d) =






σ2
�

3d
2φ − d3

2φ3

�
if d ≤ φ

σ2 if d > φ

Power exponential covariance: η(d) = σ
2{1− exp(−3d/φ)κ}, 0 < κ ≤ 2.

Gaussian covariance model: η(d) = σ
2{1− exp(−3d2/φ2)}

Matern covariance model: η(d) = σ
2

�
1− (φd)κBκ(φd)

2κ−1Γ(κ)

�
.
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Figure 7: Empirical and theoretical variogram for rainfed cereal. The points are the

estimated variogram bins using the residual data, while the curves are the theoretical

models fitted using various covariance models.

The parameters σ and φ are estimated from the empirical variogram. For the Matern

model, κ must be specified and we consider two values, κ = 0.5 and κ = 2; Bκ is the

modified Bessel function of the second kind of order κ.

The plotted points in Figure 7 show that η̂(d�) increases rapidly as d� increases from 0

(and then levels off), so it is clear that errors for the different scenarios are correlated

and the correlation increases as distance reduces. Variogram plots for different crops

and some randomly chosen grid cells are given in Supplementary Material S6. These

show the same trend. For all crops the theoretical covariance models follow the

empirical points reasonably closely with no model being clearly the best.

A covariance model assigns weights to scenarios so that wj ∝ {η(dj)}−1 where, as

with the other metrics, weights are scaled so that
�

wj = 1. The emulator was fitted

using different weight functions, enabling the covariance models and other metrics to
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Table 4: Cross-validated proportion of variance ρ for various covariance functions

used as a weight in WLS fitting compared to quadratic metric with management

level 5, RCP 6 between (2085-2094) and (2005-2014).

Function Cereal Rice Maize Oil1 Groundnut

rainfed irrig2 rainfed irrig rainfed irrig rain irrig rainfed irrig

Quadratic 0.69 0.74 0.74 0.90 0.81 0.86 0.80 0.88 0.68 0.79

Matern κ = 0.5 0.78 0.82 0.78 0.84 0.84 0.87 0.79 0.88 0.67 0.79

Spherical 0.76 0.82 0.78 0.84 0.83 0.73 0.75 0.84 0.68 0.79

Matern κ = 2 0.78 0.82 0.80 0.85 0.85 0.88 0.79 0.88 0.68 0.81

Matern κ = 0.1 0.79 0.82 0.78 0.83 0.83 0.88 0.79 0.88 0.67 0.79

Power expo3 0.76 0.81 0.65 0.89 0.79 0.86 0.45 0.82 0.59 0.85

Gaussian 0.76 0.80 0.76 0.68 0.77 0.56 0.70 0.79 0.66 0.75

1 Oil=yieldmax[soyabean, rapeseed, sunflower], 2 “irrig” denotes irrigated crop.

3 “Power expo” denotes Power exponential.
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be further compared using cross-validation. Results are presented in Table 4. The

power exponential covariance model led to poor predictions for rainfed oil and rainfed

groundnut, but otherwise all the methods of choosing weights led to reasonably good

predictions. The quadratic distance metric is much simpler than the other metrics in

Table 4 and it explained 68-90% of the variation in the LPJmL predictions, compared

with 45-89% for the covariance models. Because of its simplicity and comparable

performance, we chose it as the means of determining weights for the WLS regression

in stage 2 of the emulator algorithm.
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