
Open Research Online
The Open University’s repository of research publications
and other research outputs

Code review for and by scientists: preliminary findings
Conference or Workshop Item

How to cite:

Petre, Marian and Wilson, Greg (2014). Code review for and by scientists: preliminary findings. In: 2nd
Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE2), 16 Nov 2014, New Orleans,
LA, USA.

For guidance on citations see FAQs.

c© 2014 The Authors

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://arxiv.org/pdf/1407.5648v2.pdf

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/82979405?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://arxiv.org/pdf/1407.5648v2.pdf
http://oro.open.ac.uk/policies.html

ar
X

iv
:1

40
7.

56
48

v2
 [

cs
.S

E
]

 7
 S

ep
 2

01
4

Code Review For and By Scientists

Marian Petre

Open University

m.petre@open.ac.uk

Greg Wilson

Mozilla Science Lab

greg@mozillafoundation.org

September 9, 2014

Abstract

We describe two pilot studies of code review by and
for scientists. Our principal findings are that scien-
tists are enthusiastic, but need to be shown code re-
view in action, and that just-in-time review of small
code changes is more likely to succeed than large-scale
end-of-work reviews.

1 Introduction

Since Fagan’s work in the 1970s [1, 2], dozens of stud-
ies have shown that code review is the most effective
way to find bugs [3, 4]. Ironically, given that Fagan
and others were inspired by academic peer review,
code review is still rare in scientific software devel-
opment. This is partly because most authors don’t
publish their code, and hence have little incentive to
improve its quality, but also a case of the blind (not)
leading the blind.
In 2013–14, we ran two pilot studies to explore the

benefits of code review for typical scientist-coders,
and how to transfer the skill to them. Our focus
was not the small minority of scientists who already
use good software engineering practices [5], but on
the large majority who have never encountered them.
This paper describes our methodology and findings,
and makes recommendations for other groups who
wish to help scientists adopt code review.

Acknowledgments

Our thanks to the scientists and programmers who
took part in this study, and to PLOS, the Mozilla
Science Lab, and the Sloan Foundation for their sup-
port.

2 Post-Hoc Reviews

Our first study, done in conjunction with the Pub-
lic Library of Science (PLOS), ran from August to

October 2013. Professional developers working at
Mozilla who routinely use asynchronous code review
in their work reviewed samples of code taken from pa-
pers published in PLOS Computational Biology in the
preceding 18 months. Their reviews were shared with
the scientists; we then conducted semi-structured in-
terviews [6, 7] with 11 developers in late August and
early September, and with 4 authors whose code had
been reviewed in late September and early October,
to determine whether non-scientists could usefully
review typical scientific software, whether those re-
views were intelligible and useful to the scientists,
and whether the participants felt the reviews were
valuable. Four significant findings emerged.

1) Scientists’ starting points varied widely. Sci-
entists’ prior knowledge and practices varied widely.
Some used engineering practices and tools such as
version control some of the time, but documenta-
tion of the form developers expected was rare, and
practices like continuous integration were unknown
or considered “very unusual”.

In particular, most scientists had never taken part
in code review. Some of the code authors we inter-
viewed work in (or lead) teams in which they read
each other’s code, but most participants had never,
or only rarely, discussed their code with others. In-
stead, they discussed the results the code produced.

2) Developers felt limited. Most developers re-
peatedly noted the lack of documentation, comment-
ing, tests, and example data sets, e.g., “Not having
the project build is a big problem; I can’t verify that
the code is correct.” Equally, most reviewers were
frustrated at not being able to run the code as the
first step in review, e.g., “That’s the easiest way to
see if it works at all,” and “It’s a way to validate the
intentions of the author.” Several commented that,
as a result, they had to make some assumptions in
the review.

Few reviewers read in detail the paper with which
the code was associated, usually because they lacked
the domain expertise to do so. They could deduce

1

http://arxiv.org/abs/1407.5648v2

what the code did and assess it in terms of its abil-
ity to perform that operation efficiently, but they
could not tell if the code fulfilled its intended sci-
entific role. That, combined with their isolation from
the scientists, left developers feeling that they were
doing “drive-by” reviews.

3) Standards and expectations were very dif-
ferent. Many reviewers were struck by how scien-
tists’ code differed from theirs, particularly in lack-
ing commenting and explanation in the code. Sev-
eral suggested that scientists appear to have “less
concern for maintainability and readability” and that
the code was “not written for others to use”. Some
also pointed out naive lack of complexity or abstrac-
tion, redundancy in the code, inconsistencies in or
ignorance of standards in formatting, and unhelpful
naming.

On their side, the scientists all aspired to create
readable and re-usable code, but many noted that
their code doesn’t respect the common etiquette of
open source: for example, they often don’t make an
effort to package their code for re-use by others. One
scientist commented that: “[It’s] not important to
have something that’s exact—only when we publish”
and reiterated the low status of code in their science:
“In the business of science, all that matters is the
figures. The quality of the code is just not on the
critical path.” This echoes findings from other em-
pirical research [8, 9].

4) Both sides wanted more contact. All but one
of the reviewers remarked that they miss the social
context they normally associate with code reviews:
working relationships, understanding goals and pri-
orities, and trust. They would have preferred some
form of dialog, not least to provide them with the
code context, and to establish appropriate expecta-
tions for both reviewers and authors (e.g., “knowing
what kind of feedback the author wants”). A typical
remark was, “It would have been easier if we were
allowed to contact the scientist just to get a feel for
his mindset.” Most referred to dialogs that are nor-
mally part of their code review experience, whether
spoken or on-line: “Discussion catches details that
get lost otherwise” such as “tiny changes in numeri-
cal interpretation that are important”. The reviewers
also pointed out that the dialog has value for the re-
viewer, as well as for the author: “When there is a
dialog, you end up learning a lot yourself.”

3 Transferring the Skill

Despite these frustrations, participants in this study
were positive about it. We therefore set up a second

study that paired experienced scientific programmers
with small groups of less-experienced ones to explore
ways of transferring the practice itself. This second
study also aimed to address the fact that scientists
and developers alike wanted reviews during develop-
ment, when they could act on the feedback, rather
than a “drive-by” review after submission.

Ten groups ranging in size from a couple of people
to half a dozen initially signed up to take part in this
study. In interviews and early discussions, they iden-
tified four main reasons why they think they ought
to do code review:

1) Rigor: Scientists want to get the right answer
and be able to reproduce their work later. (Most
recognized that correctness and reproducibility aren’t
the same thing.)

2) Reusability: Scientists are very aware that their
understanding of code dissipates over time and that
this is a large hidden cost. Equally, they suspect that
they spend a lot of time reinventing wheels. They
may not know how code review will help with that,
but they hope that it will.

3) Collaboration: Many scientists hoped that they
could use code review as an excuse for conversations
about code with their colleagues—conversations that
simply don’t happen right now. Some believed that
review would foster better testing, encourage scien-
tists to produce code that is easier to understand and
share, and make team members more aware of each
other’s research.

4) Knowledge transfer: All participants felt that
there must be a better way to build programs than
what they’re doing right now. Taking part in this
study was, for them, a way to get mentoring about
programming in general from someone who could an-
swer questions they didn’t know to ask.

One thing we didn’t hear was people saying that
they wanted to learn about the science embodied in
the code being reviewed. Rightly or wrongly, scien-
tists seem to feel that “what it does” can be learned
in other ways.

Each team was paired with a mentor: another
scientist-developer with experience of code review,
from a different institution but usually in the same or
a cognate discipline, who would introduce the team
to code review processes and good practices. Teams
and mentors collaborated during March–June 2014.
Each mentor decided how to introduce and conduct
reviews with the team, informed by the mentor’s own
experience and discussion with the team. The scien-
tists identified which of their code to review, in con-
sultation with the mentor. We followed teams’ inter-
actions on email (via shared mailing lists) and within
their repositories, attended meetings when possible

2

(using video or telephone conferencing), and inter-
viewed participants periodically through the study
about their goals, experiences, and impressions.

Our biggest finding is how much perspective mat-

ters to collaboration. Over time, professional software
developers (and scientists whose primary role has be-
come programming) integrate skills and knowledge,
building up a standard vocabulary of terms, tools,
and conventions, as well as a practical repertoire that
it’s easy to take for granted.

Most scientists don’t (yet) have such an overview:
they are focused almost entirely on the purpose the
code serves rather than the code itself. They of-
ten lack the integrated understanding and skill that
comes with experience, which meant it was often very
useful for mentors to “state the obvious”.

How to make the transition from the first perspec-
tive to the second is usually not clear to working sci-
entists. “Stuff that seemed like overkill makes sense
now... A lightbulb finally went off: I understand
how other people look at my code and how to make
it work.” And what basics to articulate—where to
look and how to look—is often not clear to experi-
enced developers. If the two are going to collaborate,
then at some point the different perspectives must
be acknowledged and bridged. Social mechanisms
like courtesy, deference, and avoiding embarrassment
tend to obscure this, so it’s crucial to articulate col-
laborators’ perspectives explicitly for both sides, and
equally to help establish appropriate expectations ex-
plicitly.

This observation isn’t new: as Segal discussed in
her study of industrial software engineers collaborat-
ing with scientists [8], “[Programmers] demand an up-
front articulation of requirements, whereas the scien-
tists had experience, and hence expectations, of emer-
gent requirements. The project documentation does
not suffice to construct a shared understanding.”

For every mentor who says, “I wish I knew more
clearly what the scientists are expecting,” there’s a
scientist who says, “I wish I knew what it’s reasonable
to expect.” One concrete step we could take is to
show scientists what it actually looks like to do a
code review: not just the end result, but the process
itself.

The most successful groups—those that completed
the pilot study, made code review part of their daily
practice, and considered it beneficial—both saw code
review done and did it themselves. Their mentors
walked through an initial code review; articulated
what they look for in the code, what they see, and
how they interpret it; and made concrete sugges-
tions about first steps that clarified scientists’ expec-
tations. But participants (both scientists and men-

tors) from all of the successul teams perceived the
real benefits only after they undertook the process
themselves, engaging in code review for each other,
and discussing those reviews with others.

Another observation was that there are several

models of peer review, each with its own emphasis. In
asynchronous review, which is the predominant model
in open-source development, comments and revisions
are mediated by the version control system. Offline

review with synchronous presentation uses the tools
available in the version control system to present the
code and supporting material for review, and to cap-
ture the reviewer’s comments, but the reviewer and
development team meet (usually virtually) to talk
through the code and the review in order to facili-
tate a freer interaction, especially in terms of ques-
tions and clarifications. And finally, synchronous re-

view involves walking and talking through the code
together, whether one-to-one, as a group, or with one
person leading.

There are other axes of variation: is review one-to-
one, one-to-many, or done in a group? Does it use
advance preparation or is done on the day? Is there
a leader? These choices should depend on whether
the goal is fixing code, learning from code, or learning
from other developers: while offline preparation helps
developers form independent opinions, synchronous
activity helps develop rapport and trust.

The groups that were most successful in the second
study took the time for a synchronous conversation
to introduce themselves and to discuss their goals
and expectations (often in addition to introductory
emails). Their mentors set out a review process and
timetable at the outset, based on their experience.
This usually involved a synchronous conversation of
fixed length at regular intervals (3-4 weeks) with in-
terim goals and tasks agreed during each of those
conversations.

Finally, do not underestimate returns from small

investments. None of the mentors expected scientists
to overhaul complete code bases. The advice from
one mentor was cogent: if you check the docstring
and write a test every time you touch a method, the
code improvements will accumulate over time with
minimal effort. This insight was echoed in different
ways throughout the study. Adopting good practices
and applying them incrementally, doing one thing at
a time as it is needed, will achieve changes faster than
you might think.

3

4 Conclusions

All of the mentors who engaged in the pilot study did
so because, in their experience, the benefits of code
review to science are profound in terms of improving
reproducibility, promoting re-usability, disseminating
best practices, and thereby improving efficiency and
avoiding error. In other words, they believe code re-
view improves their science as well as the code itself.
Moreover, they believe that the cost of introducing
code review is quickly recovered, and that good prac-
tices can be introduced incrementally in ways that
are not disruptive or expensive.
The scientists engaged in the pilot study because

they wanted to write more accurate, efficient, and re-
usable code, and wanted support in learning how to
do so. They too perceived that improvements to code
development pay off in terms of their science, and
code review provides an otherwise scarce opportunity
to “talk code” and learn better practices. Many of
the scientists reported benefits even during the study:
code improvements, better use of facilities provided in
development tools, and better documentation prac-
tices spreading in the lab.
Nevertheless, many teams found it difficult to re-

serve the time to work with the mentor, given lab pri-
orities such as bidding for further funding and meet-
ing publication deadlines. And priorities were not
the only obstacles: identifying specific code for re-
view (from a larger code base) was not always obvi-
ous, the code was not always well-modularized and
was rarely well-documented, and teams often had to
put code into a repository for the very first to make
it available for review. Some groups also needed to
negotiate issues of confidentiality (for datasets as well
as code).
Based on our study, we believe the following should

be priorities when scientists start doing code review:

1. Have a goal, a benefit in mind.
2. Start with a conversation: articulate your goals

and expectations, build rapport.
3. Choose the right pieces of code for the first re-

views. A good starting point is 3–4 pages long,
fairly self-contained, and under active develop-
ment, so that small patches are coming in regu-
larly.

4. Make your code available in a repository with a
typical data set and an overview of how the code
works.

5. Set up a schedule and commit a little time on a
regular basis.

6. Understand that it’s the code that’s being re-
viewed (not you). Tailor your comments to oth-
ers on the same terms.

7. Make the process reciprocal: be prepared to
make as well as receive comments.

We have learned a lot from these two studies, but
they are only the beginning. As our work progresses,
we hope to:

1. articulate a curriculum for scientists who would
like to adopt code review,

2. provide examples of people doing review and
talking about their reasoning (most likely in the
form of short screencasts of reviews being done),

3. develop heuristics to help people decide which
scientific software needs specialist scientific
knowledge and which doesn’t, and

4. track what happens to code in the months after
review.

If you would like to help with this work, we would
enjoy hearing from you.

References

[1] M. Fagan. Design and code inspections to reduce er-
rors in program development. IBM Systems Journal,
15(3):182–211, 1976.

[2] M. Fagan. Advances in software inspections. IEEE
Trans. Software Engineering, 12(7):744–751, July
1986.

[3] J. Cohen. Modern code review. In A. Oram and
G. Wilson, editors, Making Software. O’Reilly, 2010.

[4] Alberto Bacchelli and Christian Bird. Expectations,
outcomes, and challenges of modern code review. In
Proc. International Conference on Software Engineer-
ing, May 2013.

[5] Jo Erskine Hannay, Hans Petter Langtangen, Carolyn
MacLeod, Dietmar Pfahl, Janice Singer, and Greg
Wilson. How do scientists develop and use scientific
software? In Second International Workshop on Soft-
ware Engineering for Computational Science and En-
gineering (SECSE09), 2009.

[6] R. Rosenthal and R.I. Rosnow. Essentials of Be-
havioural Research: Methods and Data Analysis.
McGraw-Hill, 3 edition, 2007.

[7] A. Bryman. Social Research Methods. Oxford Univer-
sity Press, 3 edition, 2008.

[8] Judith Segal. When software engineers met research
scientists: A case study. Empirical Software Engineer-
ing, 10(4):517–536, 2005.

[9] Judith Segal. Some problems of professional end user
developers. In IEEE Symposium on Visual Languages
and Human-Centric Computing, pages 111–118, 2007.

4

	1 Introduction
	2 Post-Hoc Reviews
	3 Transferring the Skill
	4 Conclusions

