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Abstract 
 
The introduction of multi-material additive manufacturing makes 
it possible to fabricate objects with varying material properties, 
leading to new types of designs that exhibit interesting and 
complicated behaviours. But, computational design methods 
typically focus on the structure and geometry of designed objects, 
and do not incorporate material properties or behaviour. This 
paper explores how material properties can be included in 
computational design, by formally modelling them as weights in 
shape computations. Shape computations, such as shape 
grammars, formalise the description and manipulations of 
pictorial representation in creative design processes. The paper 
explores different ways that material properties can be formally 
modelled as weights, and presents examples in which multi-
material surfaces are modelled as weighted planes, giving rise to 
flexible behaviours. 
 
CR Categories: I.3.5 [Computational Geometry and Object 
Modeling]: Curve, surface, solid, and object representations; J.6 
[Computer-Aided Engineering]: Computer-aided design (CAD) 
 
Keywords: additive manufacturing, shape computation, design* 
 
1. Introduction 
 
Additive manufacturing is rapidly becoming an essential and 
ubiquitous process in creative design, and has introduced new 
possibilities with respect to the types of shapes that can be 
realised. The technology continues to evolve, and over recent 
years has introduced variability in material properties alongside 
variability in form. This is achieved either by colouring material 
as it is extruded or by combining different materials within one 
fabricated object. The result is a greater range in the types of 
objects that can be fabricated, but these advances are not reflected 
in computational methods used in design. As discussed by Oxman 
and Rosenberg (2007), computational methods are typically 
restricted to defining and exploring the structure and geometry of 
a design models, and do not incorporate material properties or 
behaviour. This research explores how these can be incorporated 
into shape computations, which have been shown to formalise 
creative design processes (Prats et al., 2008; Paterson and Earl, 
2010), and support generative design (Stiny, 2006). In this paper, 
the focus is on identifying how the material properties of a surface 
can be formally modelled. The paper explores mechanisms 
necessary to support computation with weighted shapes, building 
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on theoretical developments presented Stiny (1992). Ultimately, 
the aim of the research is to enable the generation of design 
models, with reference to material properties and expected 
behaviour. 
 
2. Multi-Material Additive Manufacturing 
 
In additive manufacturing, multi-material fabrication is made 
possible via technologies such as the Objet Connex 1 , which 
combine different materials in a single fabricated object. Materials 
with various transparencies, colours and material properties, are 
combined in layers, or are mixed as composites that simulate the 
properties of common materials such as plastic or rubber. For 
example, using the Objet Connex a hard white plastic material 
called VeroWhitePlus, can be mixed in different proportions with 
a soft rubber-like black material called TangoBlackPlus to 
produce a range of composite materials, as illustrated in Figure 1. 
These composite materials vary in colour, from opaque white 
through to opaque black. They also vary in material properties2: as 
the proportion of TangoBlackPlus increases the shore rating (a 
measure of resistance to permanent indentation) decreases, the 
tensile strength decreases, and the elongation at break increases. 
Consequently, composite materials become softer and more 
flexible as the proportion of TangoBlackPlus increases. 
 

 
Figure 1. Sample .material for the Objet Connex 

 
Fabrication processes that combine materials in layers or mix 
them in composite materials make it possible to produce objects 
that have variable material properties. The result is objects which 
exhibit different physical behaviours. For example, Figure 2 
illustrates a flat surface composed of composite materials that are 
a mix VeroWhitePlus and TangoBlackPlus. In the surface the 
composite materials are arranged in stripes, where the darkness of 
a stripe reflects the amount of TangoBlackPlus included in the 
mix: the darker the stripe, the higher the proportion of 
TangoBlackPlus and the higher the flexibility of that segment of 
the surface. The result is a flat surface that has stripes of varying 
flexibility that are arranged to give a gradient of flexibility, 
starting from a very flexible stripe and ending with a very stiff 
stripe. This gives rise to a natural curvature so that the flat surface 
can be deformed into a curved surface, as illustrated.  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 http://www.sys-uk.com/Connex 
2 http://www.stratasys.com/materials/polyjet/rubber-like 



 
The curved surface in Figure 2 was generated using the Kangaroo 
Physics tools for Grasshopper3 by modelling the stripes as springs, 
in a method similar to that described in Oxman and Rosenberg 
(2007). A bending resistance force is applied to each stripe, which 
corresponds to the weight applied to the stripe; as the proportion 
of TangoBlackPlus increases the resistance force decreases and 
the stripe allows a greater flexibility. Each corner point is 
modelled as an ‘anchor’ point, initially ‘anchored’ to the xy plane. 
Kangaroo allows anchor points to be moved in real time during 
the simulation, allowing the user to interact and explore the 
kinetic properties of a spring system, and so the potential 
flexibility of a weighted surface. The images shown are snapshots 
of this process, which provides a simulation of the flexible 
behaviour of the multi-material plane, and is determined based on 
the weights applied to the plane in combination with the geometry 
of the plane. This presents an interactive approach to designing 
material properties and behaviour: material properties are 
incorporated in representations used in shape computation, so that 
they, and the resulting behaviour, can be defined and explored 
during design generation. 
 

 
Figure 2. The behaviour of a multi-material surface 

 
3. Shape Computation and Weighted Shapes 
 
In shape computation (Stiny, 2006), design representations are 
formalised as shapes composed of finite numbers of geometric 
elements (points, lines, planes, etc.) of finite extent. Shapes are 
described according to their parts and these are ordered by a part 
relation, are combined by shape operations of sum, product and 
difference, and manipulated according to Euclidean trans-
formations. Shapes have no inherent parts and do not have a 
unique decomposition. Instead, decompositions arise through use, 
through processes of enquiry and description, such as analysis or 
communication. Shapes present a more design-orientated 
approach to design representation and generation than the point-
set formalism commonly used in computer-aided design (Earl, 
1997). This is because they can be freely interpreted, even 
according to parts which are not be apparent in the initial 
construction of a shape.  
 
The ordering of the parts of a shape by the part relation gives rise 
to a formal structure corresponding to a Boolean algebra (Stiny, 
2006). This algebra is partially ordered by the part relation, closed 
over operations of sum and product, with the complete shape as 
unit, the empty shape as zero, and complements defined 
accordingly. The algebra enumerates all potential decompositions 
of a given shape according to all possible parts. For example, 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
3 http://www.grasshopper3d.com/group/kangaroo 

Figure 3 presents a lattice that is equivalent to a sub-algebra of a 
shape, defined according to triangular parts. In the lattice, the sum 
of parts is given by the supemum (join) and the product by the 
infimum (meet). The grey lines represent missing lines, and are 
included for legibility. 
 

 
Figure 3. A lattice of triangular parts. 

 
Similarly, shapes in general define generalised Boolean algebras 
ordered by the part relation, closed over operations of sum and 
product, with the empty shape as zero, but lacking a unit, because 
an infinite shape is not defined. These are equivalent to Boolean 
rings (Stiny, 2006), and denoted Uij, where i is the dimension of 
the geometric element, and j is the dimension of the embedding 
space. For example, designs represented in 2D sketches are in the 
algebra U12, 3D wire frame models are in U13, and solid models 
are in U33. More interesting design representations, composed of 
combinations of different types of shapes give rise to composite 
algebras defined by the Cartesian products of these shape algebras. 
Shape computations formally define manipulations and trans-
formations of shapes within shape algebras. Shape grammars 
exemplify such computations, and formalise creative design 
processes (Prats et al., 2008; Paterson and Earl, 2010). 
  
In addition to the spatial information captured in shapes, shape 
computation takes into account non-spatial information, such as 
colour and function, and these are formalised in algebras of 
labelled shapes, Vij and weighted shapes, Wij (Stiny, 1992). In a 
shape computation, labels are defined according to a given 
vocabulary and serve to distinguish shapes from each other:  
overlapping geometric elements with different labels are distinct, 
and cannot be merged, as illustrated in Figure 4.  
 

 
Figure 4. The union of labelled shapes in V12 (Stiny, 1992). 

 
Weights represent properties of a shape, e.g. in W12 weights may 
represent thickness of line elements, in W23 weights may represent 
the texture of plane elements, and in W33 weights may represent 
physical properties of a solid. Weights also change the way that 
geometric elements interact, but this is not as straight-forward as 
with labels. This is because weights, like shapes, can be 
embedded as parts of each other, whereas labels are always 
distinct. In weighted shapes, overlapping geometric elements may 
or may not merge; it depends how a weight is defined. 



 
In order to include a weight in a shape computation, such as a 
shape grammar, it is necessary to define a relation between 
different weight-values, i.e. an order over the weights, which 
specifies how they are embedded in each other as parts. It is also 
necessary to define operations of sum, product and difference, 
which specify how weights combine in shape computations. The 
relation and operations should complement the equivalent shape 
relation and operations, and should reflect the properties being 
modelled. For example, in Stiny (1992), a weight in W12 is defined 
which models line thickness and reflects the use of lines in 
drawing. In this example, a part relation is defined where thin 
lines are embedded in, and subsumed, by thick lines; the sum of 
two weights is defined to be the maximum of the two; the product 
of two weights is defined to be the minimum of the two; and the 
difference between two weights is the arithmetic difference of the 
two, with a minimum value of zero. Note that geometric elements 
with zero weights are not defined, so when a weight of zero is 
applied to a geometric element, the result is its removal from the 
shape. This is illustrated in Figure 5, where examples of sum, 
product and difference of two weighted lines are presented. 
Details of shape computations with weighted shapes in algebras 
Wij are presented in Stiny (1992). As illustrated in Figure 5, these 
incorporate both shape and weight operations, with weights 
interacting only on overlapping geometric elements. The relation 
between weights informs the part relation over weighted shapes, 
and the operations over weights inform the shape operations on 
weighted shapes.  
 

 
Figure 5. Shape operations on weighted lines in W12 (Stiny, 1992). 
 
4. Modelling Material Properties with Weights 
 
Weights can be defined in many ways, e.g. as values, vectors or 
matrices, and can be used to model any properties of a shape, e.g. 
physical properties such as mass, or intentional properties such as 
function. In this research, the aim is to model the material 
properties of multi-material objects, which are fabricated from 
composite materials. How weights can be used to do this will be 
illustrated by considering the combination of materials in the 
Objet Connex. VeroWhitePlus and TangoBlackPlus are combined 
in composite materials which vary in shade, hardness and 
flexibility: as the proportion of TangoBlackPlus increases the 
composite materials become darker, softer and more flexible. In 
practice, the composite materials that are produced by combining 
VeroWhitePlus and TangoBlackPlus are limited to the fourteen 
discrete examples illustrated in Figure 1. But, in this paper a more 
theoretical approach is followed, where any proportion of the base 

materials can be used. It is anticipated that this approach can be 
generalised to model other material properties defined according 
to combinations of materials. 
 
The proportion of VeroWhitePlus and TangoBlackPlus included 
in a composite material can be modelled with weights in different 
ways, and three different definitions of a weight w have been 
identified, with an aim to illustrate the possibilities. These are 
subtly different, modelling the same composite materials but with 
emphasis on different properties of the materials. 
 
1. {w ∈ ℕ : 0 < w ≤ 100} 

w models the flexibility of a composite material. Here, w is 
assigned a value from 1 to 100 to reflect the percentage of 
TangoBlackPlus in the composite.  
e.g.  
w = 100, the material is black, very soft and very flexible 
w = 50, the material is grey, semi-soft and semi-flexible 
w = 1, the material is near-white, very hard and very rigid 
 

2. {w ∈ ℕ : 0 < w ≤ 100} 
w models the hardness of a composite material. Here, w is 
assigned a value from 1 to 100 to reflect the percentage of 
VeroWhitePlus in the composite.  
e.g.  
w = 100,  the material is white, very hard and very rigid 
w = 50, the material is grey, semi-soft and semi-flexible 
w = 1, the material is near-black, very soft and very flexible 
  

3. {w = (w1, w2) : w1, w2  ∈  ℕ0} 
w models the mixture of VeroWhitePlus and TangoBlackPlus 
in a composite material. Here, w is a vector (w1, w2) with w1 
and w2, representing independent values for VeroWhitePlus 
and TangoBlackPlus, respectively. The proportion of these is 
given by the ratio w1 : w2.  
e.g. 
w = (x, 0), the material is white, very hard and very rigid 
w = (x, x), the material is grey, semi-soft and semi-flexible 
w = (0, x), the material is black, very soft and very flexible 

 
For each of these three weights, it is necessary to define a relation 
between different weight-values (<), as well as operations of sum 
(+), product (�), and difference (−). There is currently little 
guidance on how these should be defined, nor any limitations on 
what is acceptable. But, definitions should reflect the material 
properties that are being modelled, and intuition about the 
context-specific meaning of a relation and operations. Generally, 
the operations of sum, product and difference can be defined 
similarly to the Boolean operations of union, intersection and 
complementation, as illustrated in Figure 6. 
 

 
Figure 6. Weight operations as Boolean operations. 

 



The result of a sum operation, A + B is something that subsumes 
both A and B; the result of a product operation A � B is what A 
and B have in common; and the result of a difference operation A 
– B is what remains of A after B is removed. Here, a variety of 
shape operations have been defined to illustrate the scope of what 
is possible.  
 
Weight 1 
w models the flexibility of a composite material, and the relation 
and operations defined over the weight should reflect this. Figure 
7 illustrates definitions for these, with the relation and operations 
applied to weighted planes in a W22 algebra.  
  

 
Figure 7. Shape operations on weighted planes in W22 (Weight 1). 

 
The relation is defined as a linear total order, so that stiffer 
materials are embedded in, and subsumed by, flexible materials. 
Given two weights w and u,  
 
w < u if |w| < |u| 
 
Applying the sum operation should give a material that is of a 
flexibility that subsumes w and u, and the result is the more 
flexible of the two  
 
w + u = max(w, u) 
 
For product and difference, intuition gives little guidance, but the 
Boolean operations illustrated in Figure 6 suggest how these 
operations could be defined. The product operation should give a 
material that has a flexibility that is common in both w and u, and 
the result is the more rigid of the two  
 
w � u = min(w, u) 
 
The difference operation should give a material that has the 
flexibility in w after u is removed, so the result is a material more 
rigid than both w and u, given by their arithmetic difference with a 
minimum value of zero 
 
w – u = max(|w| – |u|, 0)  
 
Weight 2 
w models the hardness of a composite material, and the relation 
and operations defined over the weight should reflect this. The 
weight is essentially an inverse of Weight 1, and the relation and 
operations could be defined in a similar manner. But this is not 
necessary, and alternative definitions for the sum and product 
operations have been chosen. Figure 8 illustrates the relation and 
operations applied to weighted planes in a W22 algebra. 
 

 
 
The relation is defined as a linear total order, so that soft materials 
are embedded in, and subsumed by, hard materials. Given two 
weights w and u,  
 
w < u if |w| < |u| 
 
Applying the sum operation should give a material of hardness 
greater than w and u, and the result is their arithmetic sum, with a 
maximum value of 100  
 
w + u = min(|w| + |u|, 100) 
 
The product operation results in a material that has a hardness that 
is between both w and u, and is defined as the arithmetic mean of 
the two 
 
w � u = ½ (|w| + |u|) 
 
The difference operation should give a material that has the 
hardness of w after u is removed, and the result is a material softer 
than both w and u, given by their arithmetic difference with a 
minimum value of zero 
 
w – u = max(|w| – |u|, 0)  
 

  
Figure 8. Shape operations on weighted planes in W22 (Weight 2). 

 
Weight 3 
w models the mixture of VeroWhitePlus and TangoBlackPlus in a 
composite material, and the relation and operations defined over 
the weight should reflect this. This third weight is different from 
the previous two, because it is defined as a vector instead of a 
single value. Specifically it is defined as (w1, w2), where w1 and w2, 
represent the amount of VeroWhitePlus and TangoBlackPlus in 
the mixture, respectively. A consequence of this is that the 
proportions of base material in a composite are not uniquely 
defined. For example, the vectors (10, 10), (30, 30) and (60, 60) 
all correspond to mixtures where the proportion of VeroWhitePlus 
to TangoBlackPlus is the same, so the three weights correspond to 
composite materials with the same properties. The relation and 
operations are defined by considering both co-ordinates of the 
vectors, and Figure 9 illustrates definitions for these, with the 
relation and operations applied to weighted planes in a W22 
algebra.  
 
The relation is defined as a partial order, so that both light and 
dark materials may be subsumed by grey materials. Given two 
weights w and u 
 



w < u if |w1| < |u1| and |w2| < |u2| 
 
Applying the sum operation is analogous to mixing paint of 
different shades of grey, giving a material with a shade that is a 
mixture of the w and u. The result is defined by adding the co-
ordinates of the vectors, to a maximum value of 100 
 
w + u = (min(w1 + u2, 100), min(w2 + u2, 100)) 
 
The product operation results in a material that has a shade that is 
common to both w and u, and is defined by the minimum co-
ordinates of the two 
 
w � u = (min(w1, u1), min(w2, u2)) 
 
The difference operation is analogous to removing paint of a 
given shade from a mixture, and the result is defined by the 
difference of the coordinates, with a minimum value of 0 
 
w – u = (max(w1 – u2, 0), max(w1 – u2, 0))  
 

 
Figure 9. Shape operations on weighted planes in W22 (Weight 3). 
 
5. Computing with Flexible Surfaces 
 
Three different weights have been specified, and for each of these, 
the relation between weights, and operations on weights have 
been defined differently. These weights provide different models 
for the material properties that result from mixing the materials 
VeroWhitePlus and TangoBlackPlus, and each has different 
strengths and limitations. For example, Weight 1 intuitively 
models the flexibility of a composite material but cannot model 
material that is 100% VeroWhitePlus. Similarly, Weight 2 
intuitively models the hardness of a composite material but cannot 
model material that is 100% TangoBlackPlus. Weight 3 
intuitively models the mixture of materials and can model all 
variations, but does not provide a unique description of these.  
 
Choosing which weight to use, and which definitions of relations 
and operations to use depends on what is appropriate for the task 
at hand. Experimentation with different shape computations will 
give some insight into how the different weights, relations and 
operations behave, and how they reflect different contexts. The 
examples presented in the previous section illustrated the relations 
and shape operations on plane segments with single weight values 
associated with them in a W22 algebra. In this section, more 
complicated arrangements of weights on surfaces are explored 
resulting in curved surfaces in a W23 algebra, such as the surfaces 
in Figure 2 and Figure 10. The width and height of the two planes 
are equal, so that they can be arranged with the weighted stripes 
running orthogonally. 

 

 
Figure 10. Multi-material surface, modelled as a weighted shape. 
 
The properties of the materials in the planes are modelled 
according to Weight 1 (illustrated in Figure 7), and examples of 
shape computations with the surfaces are presented in Figure 11. 
In Figure 11a) the sum operation is applied, and the result is a 
more complicated arrangement of weights, with the more flexible 
stripes dominating the rigid stripes. In Figure 11b) the product 
operation is applied, and the result is a more complicated 
arrangement of weights, with the more rigid stripes dominating 
the flexible stripes. In Figure 11c) the difference operation is 
applied, and the result is a checkerboard of weights, but with 
segments missing where the result of arithmetic subtraction is 
zero or less. If the planes were modelled according to Weight 2 
then the hard stripes would dominate the soft stripes, and if they 
were modelled according to Weight 3 the results would reflect the 
mixing of these properties. 
 

 
a) sum 

 
b) product 

 
c) difference 

Figure 11. Shape computations with multi-material planes 
 
Working from these shape computations the flexible behaviours 
of the resulting surfaces can be simulated, as described in Section 
3. For example, Figure 12 presents a simulation of the result of 
the sum operation. The resulting W23 surface is doubly curved, 
combining the orthogonal curving of the two original surfaces in 
an interesting way. 
 



 
Figure 12. Multi-material surface; result of the sum operation. 

 
Similarly, Figure 13 presents a simulation of the result of the 
product operation. The resulting W23 surface is again doubly 
curved, but it combines the curving of the two original surfaces in 
a very different way. These two surfaces are simple examples that 
illustrate the explorative potential of shape computation, with 
respect to material properties and resulting behaviour. 
 

 
Figure 13. Multi-material surface; result of the product operation. 
 
6. Discussion 
 
In this paper, weights have been used to model the material 
properties of multi-material surfaces. The research has focussed 
on composite materials that are defined as combinations of two 
base materials, VeroWhitePlus and TangoBlackPlus. The surfaces 
are composed of stripes of different composites which are 
mixtures of the base materials. In different proportions, these 
mixtures give rise to different properties, in terms of shade, 
flexibility and hardness, and when combined in layers in multi-
material surfaces in a W23 algebra, they result in flexible 
behaviours. Even for such a simple example, there is wide 

variability in how to model the materials, as exhibited by the three 
different definitions for weights and the range of definitions for 
the relations and operations over the weights. Currently, there is 
little theoretical guidance to suggest what makes a good definition 
of a weight, and other material properties may be defined in 
different ways, in different Wij algebras. For example, 
combinations of three or more base materials might be used, such 
as weights that model colour which may be defined according to 
combinations of materials following specific colour-models, e.g. 
RGB or CMYK. Introducing more materials may increase the 
variability and complexity of the modelling process, but the same 
steps of defining a weight, and defining the relation between 
weight-values and the operations on weights, should be followed. 
 
When weights are fully defined they can be applied to shapes and 
incorporated in shape computations. Simple examples of such 
computations were illustrated according to weighted planes in a 
W23 algebra. The results of the computations were also planes, but 
with more complicated structures, as defined by the weights. The 
structure imposed on a shape by applying weights is more 
restrictive than the visual structure associated with un-weighted 
shapes in a U23 algebra, which is defined according to embedded 
parts, as illustrated in Figure 3. Weights force a decomposition of 
geometric elements into segments with different weights, as 
illustrated in Figure 5. This is analogous to the use of labels in 
Figure 4 where co-linear lines cannot be merged because their 
assigned labels keep them distinct. A consequence of this is that 
visually recognised parts may not be embedded in a given 
weighted shape. For example, the shape in Figure 14a) is 
weighted according to line thickness (as illustrated in Figure 5). It 
has a different structure to the un-weighted shape in Figure 3 and, 
because of this structure, the weighted triangle illustrated in 
Figure 14b) is not a part of the shape. The weighted triangle 
illustrated in Figure 14c) is part of the shape, but recognising the 
triangular parts does not decompose the shape according to the 
lattice in Figure 3. Applying the weights has fundamentally 
changed the shape according to its parts and its structure. This 
raises questions about the types of shape structures in Wij algebras 
concerning different definitions of weights, and different 
definitions of the relation and operations. For example, the 
relation over Weights 1 and 2 define a linear order, whereas 
Weight 3 defines a partial order. As a consequence the algebraic 
structures defined by shapes assigned these different weights will 
be different.  In Stiny (1992), it is suggested that weights can be 
freely chosen to meet the situation being modelled. But, there may 
be more formal constraints that need to be considered when 
selecting the definition of a weight.  
 

 
  

a) b) c) 
Figure 14. Three weighted shapes in a W13 algebra. 

 
Operations in weighted shapes computations, in Wij algebras, 
work within and retain the structure defined by weights. Indeed, 
often they impose more structure, because different weights 
interact to further decompose a shape into different-weighted 
segments, as illustrated in Figures 11. It is this structure, in 
combination with the material properties modelled by the weights 
that gives rise to the behaviours of the surfaces. And, potentially it 
is this structure that can inform the design of material properties 



and behaviour in more complicated computations, for example 
using shape grammars, as described in Stiny (1992).  
 
Building on this research, it is possible to define a shape grammar 
that supports the generative design of weighted surfaces, based on 
an exploration of shape and material properties. Weighted shape 
computations could be directed so that they decompose shapes 
into weighted parts with material properties that give rise to 
desired behaviours, and that recognise and explore emergent 
behaviours. The surfaces explored in this paper, are geometrically 
simple, but the complicated arrangements of weights give rise to 
complicated flexible behaviours. The computational nature of 
systems of weights allows them to be easily applied in physical 
simulation packages, as the initial examples in the paper have 
demonstrated. Weighted surfaces could be subjected to relevant 
forces according to the intended design objectives, such as 
pressure forces or draping, informing the design process.  These 
have potentially interesting applications in design. For example, 
flat surfaces are cheaper to manufacture than curved surfaces but 
the introduction of flexible behaviours through multi-material 
fabrication makes it possible to manufacture flat surfaces that 
deform into desirable curved shapes. Also, it is possible to to 
fabricate one-piece objects which have rigid structural elements, 
embedded in flexible, malleable materials. These could be applied 
in a range of innovative contexts, for example they could be used 
to develop adjustable canopies, sporting clothing, or safety 
equipment. Fundamentally, weighted shapes allow computational 
methods to extend beyond the spatial aspects of designs, so that 
designers can also creatively explore and develop material 
properties and behaviour. This paper has explored the 
mechanisms to make such exploration possible, but further 
research is needed to investigate how these can be employed in 
computational methods for creative design. 
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