View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Open Research Online

iversity

The Open

Un

Open Research Online

The Open University's repository of research publications
and other research outputs

Basic conceptual structures theory

Conference or Workshop Item

How to cite:

Wermelinger, Michel and Lopes, José Gabriel (1994). Basic conceptual structures theory. In: Conceptual
Structures: Current Practices, Lecture Notes in Computer Science, Springer, pp. 144-159.

For guidance on citations see FAQs!

(© 1994 Springer
Version: Proof

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1007 /3-540-58328-9, 0

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data |policy on reuse of materials please consult the policies

page.

oro.open.ac.uk

https://core.ac.uk/display/82979209?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.1007/3-540-58328-9_10
http://oro.open.ac.uk/policies.html

Basic Conceptual Structures Theory*

Michel Wermelinger José Gabriel Lopes

Departamento de Informatica, Universidade Nova de Lisboa
2825 Monte da Caparica, PORTUGAL
E-mail: {mw,gpl}@fct.unl.pt

Abstract

Although the theory of Conceptual Structures is over 10 years old, basic notions (like
canonical graphs) are far from settled and are subject to constant extensions and refor-
mulations. However, most of these are done in an informal way, which doesn’t help in
clarifying the issues involved. It is our hope that this paper will provide a first step to-
wards the complete and rigorous account of Conceptual Structures (CS) Theory, which is
needed for ongoing standardization and implementation efforts.

Towards that goal, we present formal definitions of some of the central notions of
CS theory (type, referent, concept, relation, conceptual graph, canonical formation rules,
canon, and canonical graph) in its simplest form, i.e. no contexts nor coreference links
are allowed and referents must be individuals. We thereby introduce higher-order types
in order to enable the use of conceptual graphs at the metalevel, the restriction operation
of the canonical formation rules is extended to make use of the relation hierarchy, we
show the relationship between denotation and conformity relation, and we give a rigorous
meaning to the canonical basis, among other things.

Key phrases: formalization of CS theory, higher-order concept and relation types,
type and marker hierarchies, metalevel and instance level

1 Introduction

The “bible” of Conceptual Structures Theory is [16], which appeared over 10 years ago. As
Sowa himself recognizes!, [16] is written in a tutorial style, which means that several concepts
introduced early in the text weren’t updated in later sections. Furthermore, the informal and
incomplete formulation of several definitions has led to many questions about the theory, even
about some of its fundamental aspects, as the CG mailing list testifies.

Also, since its first appearance, the theory has undergone multiple changes and extensions
due to the work of a growing scientific community. Although many of the concepts and
notations introduced are motivated by specific application domains (like the analysis of tense
in a discourse), several recent papers (like [2, 17, 19, 6, 18, 11, 15, 5, 14, 8]) deal with the
abstract theory itself. Finally, the emergence of the ANSI IRDS standard [13], the KIF

*Slightly revised and corrected version of a paper that appeared in the Proceedings of the Second Inter-
national Conference on Conceptual Structures, College Park MD, USA, 16-20 August 1994, Lecture Notes in
Artificial Intelligence 835, Springer-Verlag.

!Unless otherwise stated, all personal opinions and statements were expressed in messages sent to the CG
mailing list — send a message to cg-request@cs.umn.edu to subscribe it.

language [7], and the PEIRCE workbench [4] has made it clearer that it is about time to have
a precise and complete definition of the core theory.

For all these reasons, we have proposed ourselves to give a formal account of the basic
notions of Conceptual Structures Theory. It is our hope that this paper will clarify some
issues, and provide a basis for the future standards’ documentation, as well as serving as a
guideline for implementors.

We use examples from published papers in order to show how the framework we define
incorporates the informal notions presented in those papers. We assume the reader has
been previously exposed to CS theory, e.g. as presented in [16] or [17]. Whenever we write
Assumption (or Theorem or Definition) x.y.z we are referring to [16].

1.1 Overview

The proposed framework, to be detailed in the remaining sections, can be briefly summarized
as follows. There is a set of concept type lattices, one for each order. First-order types denote
sets of individuals, while nth-order types represent sets of (n — 1)th-order types. Furthermore
there are relational concept lattices, one for each possible order. Intuitively, an nth-order
relational concept type represents a set of nth-order relation types, and a nth-order relation
type denotes a set of nth-order relations, which are relations having at least one argument
which is a (n — 1)th-order relation. In particular, first-order relations have as arguments only
concepts.

As we want to use conceptual graphs as the meta-language, we must be able to talk about
types as individuals. Therefore, for each concept type and for each relational concept type
there will be a corresponding individual marker. Of course, there will be also individual
markers that denote the individual objects of the domain of discourse. Adding a generic
marker and an absurd marker, it is possible to obtain marker lattices. Having types and
markers (also called referents), it is possible to define concepts, which are tuples consisting
of a concept type and a referent, and relations, which are tuples consisting of a relation type
and concepts (called the arguments of the relation). As types and referents are organized in
lattices, concepts (and therefore relations) also form lattices.

This makes the formalism more regular and facilitates the definition of the canonical for-
mation rules, which enable the derivation of new graphs from given ones. The canonical
basis is a set of graphs which state for each relation what are its possible arguments. There-
fore, canonical graphs (those derived from the canonical basis) are guaranteed to obey the
selectional constraints.

1.2 Notation

We assume the reader is familiar with some of the usual mathematical terminology and
symbology, especially regarding ordered sets. For good introductions see [16, Appendix A]
and [3]. Some of the notational conventions used in this paper are:

e IN is the set of natural numbers, which do not include zero;
e ©(S) denotes the powerset (i.e., the set of all subsets) of a set S;

e for any (bounded) lattice L, top(L) designates the top element, bottom(L) its least
element, x Ay the greatest lower bound of elements = and y, and x V y their least upper

bound?;

e for any partially ordered set S, the symbol < designates the partial order, and the
following equivalences apply: t <y y>r, s <y cz<yArz#y z>ys o>

yAz #y;
o t1,...,t,<tl,...,t is a compact notation to state that for each possible combination
ofi=1,...,nand j =1,...,m one has t; < t,.

In order to use few symbols and subscripts, we will overload functions when there is no
possibility of confusion. For example f: A — B and f: C — D means that f(x) returns an
element of B if x € A and that f(x) € D if z € C. We always guarantee that A and C' are
disjoint domains to avoid any misunderstanding. Unless otherwise stated, all functions that
we will define are total.

2 Types and Individuals

In [17], Sowa shows the need for higher-order types, and notes that they can’t be all put
into the same hierarchy in order to avoid paradoxes. We therefore begin by generalizing
the single (first-order) type hierarchy of Assumptions 3.2.3 and 3.2.5 to several hierarchies,
each of a different order. As usual, we also assume the hierarchies to be lattices, which has
computational advantages. Furthermore, as the type hierarchies will have to be specified by
the user, we will assume finiteness.

Assumption 1. There is a finite set 7¢c = {11,...,T,} of finite concept type lattices.

In the following, we will always use the variable n to denote the highest occurring order,
i.e., n =|T¢|. Next we define the usual nomenclature for type hierarchies.

Definition 2. For each i € {1,...,n}
e T; is the hierarchy of ith-order concept types;
e top(T;) is the ith-order universal (concept) type;
e bottom(T;) is the ith-order absurd (concept) type;
and for any s,t,u € T;
e if s <t then s is called a subtype of ¢, and ¢ is called a supertype of s;
e if s <t then s is called a proper subtype of ¢, and ¢ is called a proper supertype of s;
e if s <t and s < u then s is called a common subtype of ¢ and u;
e if s >t and s > wu then s is called a common supertype of ¢ and u;

e if s = (¢t Au) then s is called the maximal common subtype of ¢ and u;

2We also use A for the logical conjunction and V for the disjunction, but the intended use is always clear
from the context.

e if s = (tV u) then s is called the minimal common supertype of ¢ and u.
Ezample 1. According to the above, the examples of [17] are:
e T is the first-order universal type, i.e., T = top(T});

e | is the first-order absurd type, i.e., L = bottom(T1);

TYPE is the second-order universal type, i.e., TYPE = top(T»);

TYPE’ is the third-order universal type, i.e., TYPE’ = top(T3);
e GENUS, KINGDOM, SHAPE < TYPE but GENUS is not a subtype of KINGDOM;

e RANK, CHARACTERISTIC < TYPE’.

Intuitively, an (i41)th-order concept type enables us to talk about ith-order concept types.
However, if we want to make statements about relations, we will have to “conceptualize” them,
getting graphs like

Ezample 2 (adapted from [18]). [RELATION]->(ATTR)->[TRANSITIVITY].

This calls for further type hierarchies.

Assumption 3. There is a finite set Tre = {Ri,..., R} of finite relational concept type
lattices.

Again, in the following we will always use m to denote the highest occurring order of
relational concept types, i.e. m = |Tre|. We will furthermore adapt to relational concept
types the nomenclature used for concept types.

Definition 4. For each i € {1,...,m}
e R; is the hierarchy of ith-order relational (concept) types;
e top(R;) is the ith-order universal relational (concept) type;

e bottom(R;) is the ith-order absurd relational (concept) type.

Example 3. The first-order universal relational type might be called RELATION and R; might
include the following types

e MONADIC, DYADIC < RELATION;
e TRANSITIVE, REFLEXIVE, ANTI-SYM < DYADIC;
e PARTTAL-ORDER < TRANSITIVE, REFLEXIVE, ANTI-SYM;

where TRANSITIVE might be defined by the graph in Example 2. Furthermore, notice that if
we want to talk about second-order dyadic relations, we will have to use another type, say
DYADIC-2, which will be a member of R,.

Finally we need relation type hierarchies. The basic idea is to classify relation types
according to their arity and order. A relation of arity ¢ (also called an i-adic relation) is
a relation with exactly ¢ arguments. Similar to higher-order functions, an (i 4+ 1)th-order
relation is a relation that has at least one argument which is an ith-order relational concept.
This means that there must be m+1 relation type orders, since there are m relational concept
type orders.

According to Assumptions 3.2.7 and 3.6.13 all (first-order) relations are in a single hier-
archy whose top element is the dyadic relation LINK. However, in the rest of [16] the relation
hierarchy is never put to use. Moreover, the exact meaning of something like BETW < LINK,
where BETW is triadic while LINK is dyadic, remains unclear. This explains that (to our
knowledge) no one has ever precisely defined the concept of “relation restriction” — even [14]
doesn’t deal with the arity issue — although it is often said that LINK may be restricted to
any other relation type.

For these reasons we don’t put all relations of the same order into the same hierarchy.
Instead, each hierarchy contains all relations with the same signature (i.e. order, arity, and
arguments’ orders). Therefore, relation r can be a subrelation of relation 7/ (written r < r’)
only if » and r’ have the same signature.

Assumption 5. There is a finite set T of finite relation type lattices R, . ., such that
for each lattice d > 1 and the signature (z1,...,x4) is unique, where z; € T¢ U Trc for each
i€ {l,...,d}. Inversely, each element of T¢ U Tre must occur in the signature of at least one
relation type lattice.

The last restriction ensures that every imaginable (relational) concept can be linked to at
least one relation in a conceptual graph (see Section 3). Next we define the order of a relation
as the successor of the maximal order of its relational arguments.

Definition 6. The function order : | R, ... 5, — IN that returns for each relation type its
order is defined as

order(r) =1+ max({j|3i € {1,...,d} such that z; = R;})

with the understanding that maxz({}) = 0. The set of all relation types of order k will be
written as RF.

Due to the last requirement of Assumption 5, it is possible to write the set of all rela-
tion types as UZZ’II RF, since the existence of mth-order relational concept types implies the
existence of (m + 1)th-order relations.

Notice that R® and R; mean different things. The former is the set of all ith-order relation
types, while the latter is the lattice of all ith-order relational concept types. As expected,

there is a relationship between them (see Assumption 10).

Definition 7. The function degree : | Ry, ...z, — IN that returns for each relation type its
degree (also called arity) is defined as

degree(r) =d <= 1€ Ry, . 20

If a relation has arity d, it is said to be d-adic. 1-adic, 2-adic, and 3-adic relations are
respectively called monadic, dyadic, and triadic.

The formal notation may seem rather confusing, but is in fact quite intuitive. Let us see
some examples.

Ezample 4. Of all elements of Tg, the lattice R, 1) is probably the largest one, as it includes
the relation types that most frequently occur in Conceptual Graphs papers, namely those
of first-order dyadic relations between first-order concept types. For example, most of the
relations of the Conceptual Catalog in [16, Appendix B.3], like AGNT, LOC, 0BJ, and PART,
belong to that hierarchy and LINK is its top element.

Ezample 5. The lattice Ry, 1) of all relations whose first argument is a first-order concept
and whose second argument is a second-order concept includes both KIND and CHRC as used
n [17]. Notice that although CHRC is defined in terms of KIND, one has KIND < CHRC because
KIND denotes a special characteristic of an individual: its type.

Ezample 6. A typical member of R (g, g,y is INVERSE-OF, a second-order relation between two
first-order relations.

Ezxzample 7. The relation ATTR that appeared in Example 2 should not be confused with the
one that appears in [BALL]->(ATTR)->[RED]! The latter relates two first-order concepts while
the former involves a relation (more precisely, a relational concept). Therefore, the latter is
an element of R(p 7,y while the relation of Example 2 belongs to R(g, 7). To distinguish
such cases, we will use labels like ATTR-T1-T1 and ATTR-R1-T1.

It is obvious that no type can be of two different orders, nor can it be simultaneously of
two different kinds (e.g. a concept type and a relation type).

Assumption8. VL, L' € Te UTpr UTre L# L' = LNL =1.

Now that we have all types we need, we can give them a semantics. For that purpose, a
domain is needed.

Assumption 9. The universe of discourse (also called domain)isUd =TUT 1 U...UT,_1 U
Um, R¥, where I is the set of individuals.

The interpretation of types will be a generalization of the first-order case presented in
Definition 3.2.2 and Assumption 3.2.4. Following the informal guideline presented in [17],
the denotation of an (i + 1)th-order concept type is a subset of the ith-order concept types,
whereas the denotation of a relation type is a subset of the tuples formed by the denotation
of their arguments. In both cases the hierarchical relations must be preserved. Moreover, the
denotation of absurd types is the empty set, and universal types represent all elements of the
next lower order.

Assumption 10. The denotation (or interpretation) function ¢ assigns to each (relational)
concept type a subset of the universe of discourse and to each relation type a set of tuples of
domain elements, subject to the following conditions:

05:T1—>p([)

e 0:T;, — p(T;—1) fori=2,...,n

§: R — p(R) fori=1,...,m
I p(0(top(x1)) X ... x d(top(xq)))
for each lattice L € T¢ U Tr U Tre

— d(bottom(L)) =0
— if § : L — p(5) then d(top(L)) = S
— if x <y in L, then 6(x) C §(y)

Example 8. Using Examples 1, 3, 4, 5, and 6 one gets:

§(T)=Tand §(L) =0

§(TYPE) = T1 = {T, L, PERSON, CAT, ...}

§(TYPE’) = T, = {TYPE, GENUS, KINGDOM, SHAPE, ...}

KINGDOM € 0(RANK), SHAPE € 0(CHARACTERISTIC)

RANK < TYPE’ implies §(RANK) = {KINGDOM,GENUS,SPECIES,. ..} C §(TYPE’)

KIND € Ry, 1, implies that §(KIND) € @(6(top(11)) x d(top(12))) or, more simply,
d(KIND) C §(T)xd(TYPE) = I x T

5(DYADIC) = | Ry, oy = {LINK,KIND, ...} C R

x1,22€7¢

INVERSE-OF € §(DYADIC-2)

One might be tempted to include the following seemingly intuitive restriction in Assump-
tion 10: for any (relational) concept types z, y, and z, if x € §(2) and y < x then y € 6(2).
However, [17] presents a counter-example: FELIS € §(GENUS) and FELIS-CATUS < FELIS but
FELIS-CATUS ¢ §(GENUS) since FELIS-CATUS is a species.

The following theorem generalizes Theorem 3.2.6 for all type hierarchies.

Theorem 11. For any L € Tc UTr U Tre and any x,y € L the following holds:

d(xz ANy) Co(z)Nd(y)
d(z)Ud(y) € d(zVy)

Proof. Using Assumption 10 and some well-known lattice properties, one gets

(xANy)<z=dxzAy) Co(x)and (xAy) <y=d(xAy) Ci(y)

r<(zVy)=6d) CozVy)andy < (zVy)=0d(y) Sz Vy)

which imply the theorem’s statements. O

2.1 Individuals

The denotation of some type is a set of other types treated as individuals. To be able to
use Conceptual Graphs as a meta-language, we must provide for individual markers that
correspond to the individuals in the universe of discourse. Therefore, we must extend the
single set of individual markers of Assumption 3.3.1 to multiple sets, one for each different
order. Furthermore, the individual markers should reflect the ordering of the types they
correspond to. For this purpose we will refine the 7 and p operators that were presented
informally in [18] to map the meta-level to the instance level.

Assumption 12. There is a set Ic = {IC},...,IC,} of individual concept marker sets such
that IC is finite, there is an injective function 7 : IC7 — I, and for each i € {2,...,n} there
is an isomorphism 7 : IC; — T;_4.

Notice that due to the isomorphism and to Assumption 1, IC; is a finite lattice for
1 # 1. Moreover, any set can be viewed as a partially ordered set with the antichain order
(r <y < x =y). This means that all members of I~ are finite posets, a necessary condition
for the order-embedding of Assumption 15. Furthermore, an isomorphism is an injective
function. This implies that all 7 mappings are one-to-one, which is equivalent to the commonly
used Unique Name Assumption (i.e., different markers represent different individuals of the
domain).

Ezxample 9. Assumption 3.3.1 states that the elements of ICy are #1, #2, However, since
we provide several marker sets, and according to general usage, we will use more readable
labels, like #John, #Moby-Dick, etc.

Ezample 10. In an actual implementation, there may be a default mapping #x — X to spare
the user from tedious typing. For example 7(#person) = PERSON, where #person € ICo
because PERSON € T;.

Since the domain includes relations, we must also provide individual markers for them.
They will be used in the referent field of relational concepts, which implies that there can
only be m sets of such markers, not m + 1.

Assumption 13. Thereisaset Ir = {IRy,...,IR;,} of individual relation marker sets such
that for each i € {1,...,m} there is an isomorphism p : IR; — R’.

Notice that each I R; is a finite poset whose top elements are the markers that correspond
to the top elements of the ith-order relation type hierarchies.

Ezxample 11. According to Examples 4 and 5 one has in IRy both #agnt < #link and #kind
< #chrc, but #kind is unrelated to #1link, which is one of the top elements of I R;.

Ezample 12 (adapted from [17]). An implemented system may provide a default mapping
which can be overruled by the user. For instance, p(#greater-than) = GREATER-THAN unless
the user explicitly states that p(#greater-than) = >.

Now that the whole domain is covered, we introduce as in [11] an absurd marker which
together with the usual generic marker enables us to classify the markers into lattices, as
proposed in [15].

Assumption 14. There are two special markers called the generic marker (written *) and
the absurd marker (written ¥).

Assumption 15. There is a set of markers M =CM,U...UCM, URM;U...URM,, such
that for each ¢ € {1,...,n} and each j € {1,...,m}

o CM; =IC;U{*,*} and RM; = IR; U {,*} are lattices;
o top(CM;) = top(RM;) = * and bottom(CM;) = bottom(RM;) = ¥,
e [(; is embedded in C'M; and IR; is embedded in RM;.

Notice that M = (i, IC; UUjL, IR;U {*, ¥}. Furthermore, since each IC; is a finite
lattice for ¢ > 1, it is bounded and therefore has a top and a bottom element. This means
that the only marker directly beneath the generic marker in C'M; is top(IC;) and conversely
bottom(IC;) is the only marker above the absurd marker.

The conformity relation presented in Assumption 3.3.3 states which markers may be com-
bined with which concept types. However, Assumption 3.3.3 is self-contradictory if taken
literally. It states that (1) no individual marker may conform to the absurd type, and (2) if a
marker conforms to two different types, it must conform to their maximal common subtype.
We get a contradiction when the maximal common subtype is the absurd type. An obvious
solution is to require as in [2] that no individual marker may conform to incompatible types.
Our approach will be not to assume (2).

In our formalization, we make it clear that the conformity relation is just the explicitation
of the denotation function. In fact, the assertion “#John conforms to PERSON” is equivalent
to “John is a person” which formally means that the individual corresponding to the name
John is a member of the denotation of the type PERSON. Having this relationship enables us
to define the conformity relation in a much more compact, elegant, and general way than
Assumption 3.3.3.

Assumption 16. The conformity relation :: between (relational) concept types and markers
is such that

Vit € UTZ-UURi VmeM ti:me m=xVr(m)ed(t)Vp(m)eit)
i=1 i=1

Assumption 3.3.3 states that if a marker conforms to some type t, it must conform to all
of t’s supertypes. With the new definition, this becomes a theorem.

n m
Theorem 17. Vx,y € UTiUURi YmeM z:mAy>x=1y:m.
i=1 i=1

Proof. If m is the generic marker, the theorem is trivially true. Otherwise, x :: m means
that 7(m) € d(x) V p(m) € 6(x) by Assumption 16. Together with = < y = §(z) C i(y)
(Assumption 10) this implies 7(m) € 6(y) V p(m) € 6(y) which is equivalent to y :: m, as
pretended. O

Assumption 3.3.3 also requires that no individual marker may conform to the absurd type.
Again, our formulation implies and extends that constraint.

Theorem 18. The absurd marker does not conform to any (relational) concept type, and an
individual marker doesn’t conform to any absurd (relational) concept type.

Proof. The theorem states that ¢ :: m is false if m is the absurd marker or if ¢ is an absurd
type and m is an individual marker. In the first case, m # % and 7(m) and p(m) aren’t
defined (Assumptions 12 and 13). In the second case, m # x and the denotation of ¢ is empty
(Assumption 10). So in both cases the conditions of Assumption 16 are false, which proves
the theorem. O

However, the most important difference between our Assumption 16 and Assumption
3.3.3 is that we don’t require ¢ :: m and ¢ :: m to imply (¢t A t') :: m. The reason is that
it would amount to say that o(t A t') = §(t) N do(¢'). This is what is called the lattice-
theoretic interpretation of a type hierarchy [1]. Intuitively, it means that for every pair of
compatible types their intersection must be represented by an explicit type, even if it is not
conceptually relevant. Therefore, the order-theoretic interpretation given by Theorem 11 is
more appropriate for Al applications, as the next example shows.

Ezample 18 (adapted from [1]). Assume that historic landmarks are the maximal common
subtype of churches and old buildings:

HISTORIC-LANDMARK = CHURCH A OLD-BUILDING

This does not mean that every old church is necessarily an historic landmark. So it
is possible to have 0(CHURCH) = {St. Peter, St. Mary, St. Paul}, 6(0LD-BUILDING)
= {St. Peter, St. Mary, Town Hall}, but just 6(HISTORIC-LANDMARK) = {St. Peter}.
In other words, although CHURCH::#st-mary and OLD-BUILDING::#st-mary, we don’t have
HISTORIC-LANDMARK::#st-mary.

3 Concepts, Relations, and Conceptual Graphs

Having defined types and individuals, it is possible to have concepts and relations. Basically, a
(relational) concept is a combination of an ith-order (relational) concept type with a (relation)
marker denoting an (i — 1)th-order individual.

Definition 19. The set of all conceptsisC = C1U...UC, URCyU...U RC,, where C; =
T; x CM; for each i € {1,...,n} and RC; = R; x RM; for each j € {1,...,m}.

Relations are also tuples, such that a relation’s arguments are concepts whose types con-
form to the signature given by the relation’s type.

Definition 20. The set of all relationsis R = {(l,a1,...,aq)|l € Rz, . . Vi €{1,...,d} (z;
Tj = a; € CJ) VAN (ZL‘z = Rj = a; € ROJ)}

Now it is possible to define the type and referent functions of Assumptions 3.2.1, 3.2.7
and 3.3.1.

Definition 21. The function type returns for each concept or relation its type:

o type:C — Ui, T; UUL, R; is defined as type(c) =t < ¢ = (t,m);

10

e type : R — Uzzrll RF is defined as type(r) =t < r = (t,a1,...,aq).

Definition 22. The function referent : C — M returns for each concept its marker:
referent(c) = m < ¢ = (t,m).

Notice that we could have defined first the type function just for concepts and then R as
ar,...;aq)|ll € Ry, . 2, Vi €{1,...,d} a; € C A type(a;) € x;}. The next definition will
be useful for the rest of the paper.

Definition 23. The partial function arg : R x IN — C returns for a given relation and a given
natural number 7 the ith argument of the relation:

arg(r,i) =c<r={_(t,a1,...,a;,...,aq) N\c = a;
The function args : R — ©(C) assigns to each relation its arguments:
degree(type(r))

args(r) = U arg(r, 1)
i=1

The ordering of types and referents induces an ordering over concepts, and therefore over
relations.

Definition 24. A concept ¢ is a restriction (or specialization) of concept ¢’ and conversely
d is a generalization of ¢ (written ¢ <) if and only if type(c) < type(c’) and referent(c) <
referent(c’).

Definition 25. A relation r is a restriction (or specialization) of relation 7’ and conversely 7’ is
a generalization of r (written r < r') if and only if type(r) < type(r’) and arg(r,i) < arg(r’,i)
for every i € {1,...,degree(type(r))}.

Proposition 26. Both C and R are partitions of lattices.

Proof. Each C; and each RCj is a product of lattices, hence a lattice (whose partial order
is the specialization relation among concepts). Furthermore those lattices are disjoint by
construction. A similar reasoning applies to R. O

A simple conceptual graph (i.e. without contexts or coreference links) is defined as in
Assumption 3.1.2.

Assumption 27. A simple conceptual graph is a finite, bipartite, connected graph (V¢ Vg, E)
such that V¢ is a non-empty bag of concepts, Vg is a bag of relations, and F is a subset of
Vo x Vg satisfying

Vee Vo Vr € Vg (¢,r) € E < Ji € Narg(r,i) =c¢

Notice that if Vg is empty, then Vo contains a single concept; otherwise the graph wouldn’t
be connected.

11

4 Canonical Graphs

A conceptual graph only imposes a minimum of meaningfulness. It is always well-formed
in the sense that the concepts linked to a relation must conform to the relation’s signature,
but there are no other conditions. In order to restrict the possible combinations of concepts
and relations, canonical graphs will be defined as being graphs that obey certain selectional
constraints. Towards that goal, we start with the definition of canonical formation rules, which
are identical to Assumption 3.4.3 except that it is now possible to restrict relation types. For a
more detailed study of the canonical formation rules, especially the join operation, the reader
is referred to [2].

Assumption 28. The canonical formation rules allow the transformation of the not neces-
sarily different conceptual graphs v and v into a conceptual graph w:

copy w is an exact copy of u;
simplify if two relations are equal, then one of them may be removed from the graph;

restrict a concept ¢ may be replaced by a concept ¢ if ¢ < ¢ and type(c) :: referent(c),
and a relation r may be replaced by relation ' if type(r’) < type(r) and Vi €

{1,...,degree(type(r))} arg(r,i) = arg(r',i);

join if concept ¢ of graph u is equal to concept ¢’ in graph v, then w is obtained by taking
the union of all vertices and edges of u and v and replacing all occurrences of ¢’ by c.

Using these rules compositionally, it is possible to derive a conceptual graph u from a set
of conceptual graphs S. However, for the definition of canonical graph (Assumption 36) it is
important to guarantee that every graph of .S is used in the derivation of w. For that purpose,
we adopt the notion of derivation from [11] but we call it “canonical derivation”, a term that
is used in [11] to denote the derivation from a specific set (the canonical basis). We feel that
our nomenclature is more in accordance with [16] and the common usage in the Conceptual
Graphs community.

Definition 29. A canonical derivation of a conceptual graph G is a directed acyclic graph
whose nodes are conceptual graphs such that

e (5 is the only sink;
e any node is either a source or it has exactly one or two predecessors;
e if node v has exactly one predecessor v’ then v is a simplification or a restriction of v’;

e if node v has exactly two predecessors v’ and v” then v is a join of v’ and v”.

Definition 30. A conceptual graph u is canonically derivable from a set S of conceptual
graphs if there is a canonical derivation of u whose sources are elements of S.

The canonical formation rules induce a further structuring mechanism, this time between
conceptual graphs. Notice that Theorem 3.5.2 states that the relation between graphs is anti-
symmetric, which is not true. In fact it is possible for two different graphs to be related to
each other as Gerard Ellis and others [2] pointed out. Thus the notion of “equivalent graph”
is necessary.

12

Definition 31. A conceptual graph u is a specialization of a conceptual graph v and con-
versely v is a generalization of u (written v < v) if and only if there is a derivation of u
containing v.

Definition 32. Two graphs are equivalent if each one is a specialization of the other.

Definition 33. The generalization hierarchy is the poset of equivalence classes of conceptual
graphs induced by the generalization relation.

Definition 34. Two graphs are comparable if one of them is a specialization of the other.

In [16] the canonical basis is defined as the initial set of conceptual graphs to which the
canonical formation rules may be applied. All graphs thus obtained are called canonical
graphs. Furthermore, in the Conceptual Catalog [16, Appendix B| a canonical graph is
assigned to each concept and relation type, but this is not part of the formal definition of a
canonical basis (Assumption 3.4.5). This led the Conceptual Structures community to use
the term “canonical graph” in two different senses: (1) a graph that is derivable from the
canonical basis, and (2) the graph that is associated to some type in the canonical basis. Of
course, these two senses are not incompatible, since (2) implies (1). However, to make the
distinction clear we will use the term “base graph” for sense (2).3

There is another dual view as Mark Willems pointed out. On one hand base graphs
represent selectional constraints on the links between relations and concepts. On the other
hand they state the mandatory “arguments” of each type (e.g. the concept type GIVE should
involve two PERSONs and an OBJECT). We feel that this latter view is more appropriate of a
lexicon.

We therefore use base graphs only for selectional restrictions. As concepts may be linked to
many different relations, we take an approach similar to [2, 11] and only impose constraints on
the relations. In other words, for each relation type there is at most one base graph associated
with it, stating the maximal concepts that may be attached to it. Furthermore, if a relation r
is a subrelation of 7/, then their base graphs must be related, as r can’t be attached to more
general concepts than r’.

Also, if an individual marker m conforms to type ¢, it makes no sense to say that the
graph consisting only of concept (t,m) is non-canonical. By the canonical formation rules,
(t,m) is derivable from (t,x) where t' is the top element of the type hierarchy to which ¢
belongs. Therefore, all concept types of the same hierarchy will be associated to the same
base graph.

Assumption 35. A canon is a tuple (7¢, Tre, TR, M, 7, p, 1, B,7y) such that the first seven
elements satisfy all the assumptions given before, the canonical basis B is a finite set of
conceptual graphs (formed from the types and individuals given by the canon), and the
surjective function v : UL, T; U UL, Ry U U’,;”:Jrll RF — B associates to each type its base
graph. Furthermore, the following conditions must be met:

e any concept occurring in the graphs of B satisfies ::;

e cach graph of B has at most one relation, and each relation type occurs at most once
in the graphs of B;

3The “star graphs” of [11] are a special case of our base graphs, namely those associated to relation types.

13

e for any relation type ¢, the graph «(¢) has a relation r such that type(r) > t;
o VL €TcUTre Vt € L y(t) = ({{top(L), %)}, 0,0);

o v € Ui BY r <o’ = () <4(r).

Finally, we can define a canonical graph g as a graph that has been derived from all the
base graphs of the concepts and relations that appear in g.

Assumption 36. A conceptual graph u is canonical with respect to a given canon
(Te, Tre, TR, M, 7, p, ::, B, ~y) if there is a derivation for u whose sources S are members of
B satisfying the following conditions:

o for each relation r of u, y(t) € S for every ¢t > type(r);
e for each concept ¢ of u, y(type(c)) € S;

e 1o other graph belongs to S.

It should be obvious that

Proposition 37. Given a canon C with canonical basis B, every graph of B is canonical with
respect to C.

5 Conclusions

In our opinion, there are several strong reasons for having a formal specification of Con-
ceptual Structures Theory, and therefore this paper presented a precise account of its basic
notions, especially regarding higher-order types, as they enable conceptual graphs to be used
as the meta-language. The proposed formalization, which incorporates some of the recently
published (informal) ideas, is highly structured: types, referents, and therefore concepts and
relations, are all organized into lattices. This makes the theory simpler, more regular, and
more elegant. It also allowed us to extend the restriction operation to relation types. Fur-
thermore, our formalization clarifies several relationships, as between referents and types,
and between the denotation function and the conformity relation. Finally, the meaning of
canonical graph as a selectional constraint has been precisely defined.

The basic notions presented in this paper will be implemented in the second version of
the Conceptual Graph Tools [21]. Furthermore, they can be combined with a mechanism to
structure knowledge bases as presented in [20].

Acknowledgements

We would like to thank Luis Caires, Margarida Mamede, and an anonymous referee for several
useful comments and suggestions.

14

References

1]

2]

[13]

[14]

C. Beierle, U. Hedstiick, U. Pletat, P. H. Schmitt, and J. Siekmann. An order-sorted
logic for knowledge representation systems. Technical Report 113, IWBS, April 1990.

Michel Chein and Marie-Laure Mugnier. Conceptual graphs: fundamental notions. Révue
d’Intelligence Artificielle, 6(4):365-406, 1992.

B. A. Davey and H. A. Priestley. Introduction to Order and Lattices. Cambridge Uni-
versity Press, 1990.

Gerard Ellis and Robert A. Levinson, editors. Proceedings of the First International
Workshop on PEIRCE: A Conceptual Graphs Workbench, Las Cruces, New Mexico, 10
July 1992. University of Queensland Technical Report 241.

John W. Esch. Contexts as white box concepts. In Mineau et al. [10], pages 17-29.

David A. Gardiner, Bosco S. Tjan, and James R. Slagle. Extending conceptual structures:
Representation issues and reasoning operations. In Nagle et al. [12], pages 67-85.

Michael R. Genesereth and Richard E. Fikes. Knowledge interchange format version 3.0
reference manual. Technical Report Logic-92-1, Computer Science Department, Stanford
University, June 1992. “Living document” of the Interlingua Working Group of the
DARPA Knowledge Sharing Effort.

Bikash Chandra Ghosh and Vilas Wuwongse. Declarative semantics of conceptual graph
semantics. In Robert Levinson and Gerard Ellis, editors, Proceedings of the Second In-
ternational Workshop on PEIRCE: A Conceptual Graphs Workbench, Quebec, Canada,
7 August 1993. Laval University.

Guy W. Mineau, Bernard Moulin, and John F. Sowa, editors. Conceptual Graphs for
Knowledge Representation, number 699 in Lecture Notes in Artificial Intelligence, Québec
City, Canada, 4-7 August 1993. Springer-Verlag. Proceedings of the First International
Conference on Conceptual Structures.

Guy W. Mineau, Bernard Moulin, and John F. Sowa, editors. International Conference
on Conceptual Structures: Theory and Applications, Québec City, Canada, 4-7 August
1993. Complementary proceedings.

M.L. Mugnier and M. Chein. Characterization and algorithmic recognition of canonical
conceptual graphs. In Mineau et al. [9], pages 294-311.

Timothy E. Nagle, Janice A. Nagle, Laurie L. Gerholz, and Peter W. Eklund, editors.
Conceptual Structures: Current Research and Practice. Ellis Horwood Series in Work-
shops. Ellis Horwood, 1992.

S. Perez and A. Sarris, editors. Information resource dictionary system conceptual
schema. Technical Report X3H4/92-003 and ISO/IEC JTC1/SC21 N7486, American
National Standards Institute and International Organisation for Standardization, 1993.

Gérard Sabah and Anne Vilnat. Hierarchy of relational types in conceptual graphs to
handle natural language parsing. In Mineau et al. [10], pages 198-215.

15

[15]

[16]

[17]
[18]
[19]

[20]

[21]

Jan Schmidt and Pavel Kocura. Generalized referents: a neat interface for the scruffy
work. In Mineau et al. [10], pages 1-16.

John F. Sowa. Conceptual Structures: Information Processing in Mind and Machine.
The System Programming Series. Addison-Wesley Publishing Company, 1984.

John F. Sowa. Conceptual graph summary. In Nagle et al. [12], pages 3-51.
John F. Sowa. Relating diagrams to logic. In Mineau et al. [9], pages 1-35.

Bosco S. Tjan, David A. Gardiner, and James R. Slagle. Representing and reasoning
with set referents and numerical quantifiers. In Nagle et al. [12], pages 53-66.

Michel Wermelinger and Alex Bejan. Conceptual structures for modeling in CIM. In
Mineau et al. [9], pages 345-360.

Michel Wermelinger and José Gabriel Lopes. An X-Windows toolkit for knowledge ac-
quisition and representation based on Conceptual Structures. In Heather D. Pfeiffer and
Timothy E. Nagle, editors, Conceptual Structures: Theory and Implementation, num-
ber 754 in Lecture Notes in Artificial Intelligence, pages 262-271. Springer Verlag, 1993.
Proceedings of the Seventh Annual Workshop on Conceptual Graphs, Las Cruces, New
Mexico, USA, 8-10 July 1992.

16

