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Sparse exploratory factor analysis

Sara Fontanella, Open University, Sara.Fontanella@open.ac.uk
Nickolay Trendafilov, Open University, Nickolay.Trendafilov@open.ac.uk
Kohei Adachi, Osaka University, adachi@hus.osaka-u.ac.jp

Abstract. Sparse principal component analysis is a very active research area in the last decade.
In the same time, there are very few works on sparse factor analysis. We propose a new con-
tribution to the area by exploring a procedure for sparse factor analysis where the unknown
parameters are found simultaneously.

Keywords. ℓ1 penalties, Matrix manifolds, Projected gradients.

1 Introduction

Exploratory factor analysis (EFA) is a model-based multivariate technique that aims to explain
the relationships among p manifest random variables by r (≪ p) latent random variables called
common factors. The EFA model assumes that some portion of the variation of each observed
variable remains unaccounted for by the common factors. Thus, p additional latent variables
called unique factors are introduced, each of which accounts for this portion of variance of the
corresponding manifest variable [12]. In formal terms, the EFA model represents/approximates
a given n× p data matrix Z of p observed (standardized) variables on n observations as a linear
combination of r common and p unique factors

Z ≈ FΛ⊤ + UΨ, (1)

where Λ is a p × r parameter matrix of factor loadings. The choice of r is either subjective or
based on preliminary validation. In both case its value is subject to some limitations [12]. The
r-factor model (1) assumes that all involved random variables (Z,F and U) have zero means and
unit variances, and that both common and unique factors are uncorrelated. Most importantly,
they are also assumed mutually uncorrelated, and the p× p matrix Ψ is assumed diagonal with
non-zero diagonal entries. Following the r-model defined above and the assumptions made, it
can be found that the sample correlation matrix R is presented/approximated by EFA as:

R ≈ RZZ = ΛΛT +Ψ2 . (2)

Thus, the main problem of EFA is to find the pair {Λ,Ψ} which gives the best fit in some
sense to the sample correlation matrix R (for certain r). If the data are assumed normally
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distributed the maximum likelihood principle can be applied [12]. Then, finding {Λ,Ψ} can be
formulated as minimizing the following negative loglikelihood function [9, 12]:

minΛ,Ψ log(det(ΛΛT +Ψ2)) + trace((ΛΛT +Ψ2)−1R) , (3)

which for short is called ML-EFA.
If nothing is assumed about the distribution of the data, the loglikelihood function (3) can

still be used as a measure of the discrepancy between the model and the sample correlation
matrices, RZZ and R. There are a number of other discrepancy measures [9] which are used in
place of (3). A natural choice is the least squares approach for fitting the factor analysis model
(2), which can be formulated as the following general class of weighted least squares problems:

min
Λ,Ψ

∥(R− ΛΛT −Ψ2)V ∥2 , (4)

where V is a matrix of weights, and ∥∥ denotes the Frobenius matrix norm ∥A∥2 = traceATA.
The case of V = Ip is known as the least squares factor analysis, LS-EFA. The second special
case V = R−1, is known as the generalized least squares problem, GLS-EFA.

The minimization problems ML, LS and GLS listed above are not unconstrained. The
unknowns Λ and Ψ are sought subject to the following constraints [9]: for ML and GLS,

ΛTΨ−2Λ to be diagonal , (5)

and for LS,

ΛTΛ to be diagonal . (6)

The constraint (5) explains why Ψ is required by EFA to have non-zero diagonal entries.
This assumption is equivalent to the assertion that no observable random variable can ever be
explained entirely by a common factor. This assumption and several other features, e.g. factor
scores indeterminacy [12], make the EFA model highly controversial, which probably explains
why EFA is far less popular dimension reduction technique than principal components (PCA).

For any orthogonal r × r matrix Q we have:

RZZ = ΛΛT +Ψ2 = ΛQQTΛT +Ψ2 = ΛQ(ΛQ)T +Ψ2 , (7)

which is known as the rotation indeterminacy in EFA. Indeed, the constraint (5) eliminates the
indeterminacy (7), however such solutions are usually difficult for interpretation. Instead, the
common practice is to make use of (7): rotate the initially found factor loadings Λ by some kind
of “simple structure” rotation [12] to make them more interpretable. By “interpretable” it is
meant that each factor has only few large loadings. The rule is to ignore, effectively make zero,
the remaining rather small ones. In fact, the factor loadings interpretation relies on artificially
constructed sparse loadings Λ, many of which are neglected, and thus considered zeros.

We propose to modify the EFA fitting problems (3) and (4) by introducing sparse-inducing
constraints. Then, the resulting factor loadings Λ will be sparse in an optimal way. This strategy
is not new. The same interpretation problem occurs in PCA. Its solution led in the last decade
to developing a great number of new procedures directly producing sparse component loadings,
which considerably simplifies their interpretation. In contrast, there are very few works on sparse
EFA, e.g.[3, 13]. The proposed work will be a further contribution to this new research area.
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2 New EFA parameters

It has been argued in [15], that, in fact, the constraints (5) and (6) facilitate the algorithms for
numerical solution of the different EFA definitions (3) and (4), see for details e.g. [9, 12]. As we
mentioned, occasionally (5) and (6) may facilitate the interpretation of Λ, but in general this
is not the case. The alternative traditional approach to rotate the initial factor loadings Λ to
“simple structure” gives, in turn, rotated factor loading violating (5) and (6).

In this work we adopt the new formulation of the EFA estimation problems (3) and (4)
proposed in [15]. The constraints (5) and (6) will not be needed any more. The only natural
constraints inferred from the r-factor analysis model (2) are that the p×r matrix Λ should have
full column rank, and that the p×p diagonal matrix Ψ2 should be positive definite. Additionally,
we relax the second condition and assume positive semi -definite diagonal Ψ2. There are two
reasons for this. From EFA model point of view this constraint seems too restrictive. From
numerical point of view the algorithms developed in [15] do not relay on Ψ2 > 0. Moreover,
maintaining Ψ2 > 0 may contradict to achieving high level of sparseness (Section 5).

Consider the eigenvalue decomposition of the positive semi definite ΛΛT of rank at most r
in (2), i.e. let ΛΛT = QD2QT , where D2 is an r × r diagonal matrix composed by the largest
(nonnegative) r eigenvalues of ΛΛT arranged in descending order and Q is a p× r orthonormal
matrix containing the corresponding eigenvectors. Note that for this reparameterization ΛTΛ is
diagonal, i.e. the condition (6) is fulfilled automatically. Then (2) can be rewritten as:

RZZ = QD2QT +Ψ2 . (8)

Thus, instead of the pair {Λ,Ψ}, a triple {Q,D,Ψ} is sought in [15]. Note, that the model
(8) does not permit rotations, only permutations are possible. Thus, the new factor loadings
Λ are given by QD. Clearly, when Q is sparse, Λ will have the same sparseness. In order to
maintain the factor analysis constraints, the triple {Q,D,Ψ} should be sought such that Q be an
p× r orthonormal matrix, and D and Ψ – diagonal. Note, that we do not insist for non-singular
Ψ, however the singularity of D implies failing of the r-factor analysis model.

The new formulation of the factor analysis estimation problems is straightforward. Indeed,
for a given sample correlation matrix R, the ML-EFA is reformulated as follows:

min
Q,D,Ψ

log(det(QD2QT +Ψ2)) + trace((QD2QT +Ψ2)−1R) , (9)

and the LS- and the GLS-EFA estimation problems are rewritten as:

min
Q,D,Ψ

∥(R−QD2QT −Ψ2)V ∥2 . (10)

3 Sparse factor loadings

Let qi denote the ith column of Q, i.e. Q = (q1, q2, ..., qr), and τ = (τ1, τ2, ..., τr) be a vector of
tuning parameters, one for each column of Q. We consider a penalized version of EFA, where the
ℓ1 norm of each of the columns of Q is penalized, i.e. ∥qi∥1 ≤ τi for all i = 1, 2, ..., r. Introduce
the following discrepancy vector qτ = (∥q1∥1, ∥q2∥1, ..., ∥qr∥1) − τ , which can also be expressed
as qτ = 1⊤p [Q⊙ sign(Q)]− τ , where sign(Q) is a matrix containing the signs of the elements of
Q, and 1p is a vector with p unit elements. We adapt the scalar penalty function max{x, 0}
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used by [16] to introduce the following vector penalty function Pτ (Q) = [qτ ⊙ (1p + sign(qτ )]/2.
Then, the penalized versions of (9) and (10) can be defined, for the ML-EFA as:

min
Q,D,Ψ

log(det(QD2QT +Ψ2)) + trace((QD2QT +Ψ2)−1R) + Pτ (Q)⊤Pτ (Q) , (11)

and for the LS- and the GLS-EFA as:

min
Q,D,Ψ

∥(R−QD2QT −Ψ2)V ∥2 + Pτ (Q)⊤Pτ (Q) . (12)

Note, that Pτ (Q)⊤Pτ (Q) penalizes the sum of squares of ∥qi∥1 − τi for all i = 1, 2, ..., r, i.e.
precise fit of ∥qi∥1 to each tuning parameter τi cannot be achieved.

4 Gradients and Stiefel gradients

The gradients of the ML-, LS- and GLS-EFA objective functions with respect to the unknowns
{Q,D,Ψ} are given in [15] as the following block-matrix: (−Y QD2,−QTY Q ⊙ D,−Y ⊙ Ψ).
For ML-EFA, one has Y = 2R−1

ZZ(R − RZZ)R
−1
ZZ , and for LS- and GLS-EFA it changes to

Y = 4V (R − RZZ)V . Now we need to find the gradient ∇Q of the penalty term Pτ (Q)⊤Pτ (Q)
with respect to Q, which should be added to −Y QD2.

Making use of the identity trace(A⊙B)C = traceA(B⊤ ⊙ C), we find that:

∇Q =
1

2
W ⊙ [1p(w ⊙ Pτ )] , (13)

where 1p is a p× 1 vector and 1p×r is a p× r matrix with unit entries, and

w = 1p + th(γqτ ) + (γqτ )⊙ [1p − th2(γqτ )] , (14)

and

W = th(γQ) + (γQ)⊙ [1p×r − th2(γQ)] . (15)

The dynamical system approach employed in [15] can be readily applied for solving (11)
and (12). It involves numerical integration of matrix ordinary differential equations (ODE) for
{Q,D,Ψ} defined by their projected gradients. Particularly, it involves projected gradient dy-
namical system for Q on the Stiefel manifold of all p × r orthonormal matrices. There exist a
number of specialized numerical methods for solving such problem, e.g. [4] and others listed
in [15]. In contrast to the standard EFA alternating approaches [9, 12], the dynamical system
approach gives matrix algorithms which produce simultaneous solution for {Q,D,Ψ} exploit-
ing the geometry of their specific matrix structures. Moreover, such algorithms are globally
convergent, i.e. the convergence is reached independently of the starting (initial) point.

The numerical ODE solvers currently available in MATLAB [11] are not suitable for solving
large optimization problems. They track the whole trajectory defined by the ODE which is
time-consuming and undesirable when the asymptotic state is of interest only. This limits the
application of the proposed approach to solving (11) and (12) for rather small data sets.

An alternative way is to employ iterative algorithms directly working on matrix manifolds
[1, 5, 17]. The listed above gradients can be readily used for solving (11) and (12) by employing
MANOPT, a free MATLAB-based software for optimization on matrix manifolds [2].
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Figure 1. Number of zeros obtained in 100 runs of sparse ML-EFA (11) for different τ .

.

5 Numerical examples

In this Section we first explore the behavior of the proposed sparse EFA on simulated data
considered in [3]. Then, in contrast to [3, 13], we consider two examples from the classic EFA.

Simulated data [3]

We examine the performance of the proposed approach by employing the simulated data con-
structed in [3]. They take a hypothetical 12×4 sparse loadings matrix Λ with the following non-
zero entries: λ11 = λ21 = λ31 = 1.8, λ42 = λ52 = λ62 = 1.7, λ73 = λ83 = λ93 = 1.6 and λ10,4 =
λ11,4 = λ12,4 = 1.5, and Ψ2 = Diag(1.27, .61, .74, .88, .65, .81, .74, 1.3, 1.35, .74, .92, 1.32).
The ”population” covariance matrix is created by (2), and then we normalize it to obtain a
correlation matrix used to generate normally distributed zero mean independent samples.

We generate 100 data matrices each of which is analyzed by sparse ML-EFA. For this reason
we solve (11) for six decreasing values of τ(=

√
12, 3.0534, 2.6427, 2.2321, 1.8214, 1.4107). The

solution for any particular τ is used as a starting value for the next run with the consecutive τ .
The starting values for the first τ(=

√
12 = 3.4641) are chosen randomly. The number of the

zero loadings among all 12× 4 = 48 for each τ are depicted in Figure 1. For τ =
√
12, nearly all

factor loadings matrices are dense, only 4 of them contain a single zero entry. For τ = 2.6427,
there are 22 factor loadings matrices with no zero entry, 49 – with a single zero entry, 22 –
with two zero entries, and the rest seven have three zero loadings. For τ = 1.4107, there are 93
factor loadings matrices with 36 zero entries, 6 – with a 35 zeros, and only one – with 34 zero
entries. In other words, with τ = 1.4107 the sparse ML-EFA achieves 93% exact recovery of
the underlying sparseness. The case τ = 1 is not depicted, as it produces excessive sparseness.
Clearly, the correct tuning parameter for this problem is around τ = 1.4107. After the correct
sparseness is localized, one can perform further runs to achieve the best corresponding fit.

@ COMPSTAT 2014
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Harman’s Five Socio-Economic Variables [8, p.14]

First, we illustrate the proposed procedures for sparse EFA on a well known data set from
classic EFA, namely the Harman’s Five Socio-Economic Variables [8, p.14]. This small data
set is interesting because the two- and the three-factor solutions from LS- and ML-EFA are
‘Heywood cases’ [8, 12], i.e. Ψ2 contains zero diagonal entries, or Ψ2 ≥ 0. One-factor solution is
not considered interesting as it explains only 57.47% of the total variance.

Table 1 contains several sparse LS-EFA solutions of (12) starting with τ =
√
5 = 2.2361,

which is equivalent to the standard (non sparse) LS-EFA solution. For all of them we have
Ψ2 ≥ 0. Clearly, POP, EMPLOY and HOUSE tend to be explained by the common factors
only, which is already suggested by the non sparse solution (τ =

√
5). Increasing the sparseness

of the factor loadings results in variables entirely explained by either a common or unique factor.
The presence of loadings with magnitudes over 1 demonstrates the well known weakness of LS-
EFA in fitting the unit diagonal of a correlation matrix. It is well known that ML-EFA does not
exhibit this problem which is illustrated by the next example.

VARS τ =
√
5 τ = 1.824 τ = 1.412 τ = 1

QD Ψ2 QD Ψ2 QD Ψ2 QD Ψ2

POP -.62 -.78 .00 .07 1.0 .00 -.00 1.0 .00 .00 -.99 .00
SCHOOL -.70 .52 .23 .94 -.20 .07 .85 -.00 .27 -.28 -.00 .92
EMPLOY -.70 -.68 .04 .19 .87 .21 -.00 1.0 .00 -.00 -.99 .00
SERVICES -.88 .15 .20 .78 .23 .34 .58 .13 .65 -.18 -.00 .97
HOUSE -.78 .60 .03 1.0 -.22 .00 1.1 -.07 .00 -1.2 .00 .00

Table 1. LS-EFA solutions for Five Socio-Economic Variables, [8, p.14].

Holzinger-Harman’s Twenty-Four Psychological Tests [8, p.123]

Finally, we illustrate the proposed procedures for sparse EFA on another well known data set
from classic EFA, namely the Holzinger-Harman’ Twenty-Four Psychological Tests [8, p.123]. It
is widely used to illustrate different aspects of classic EFA [8, 12].

The correlation matrix [8, p.124] of these data is non-singular and we apply ML-EFA (11).
The first five columns of Table 2 contain the solution (factor loadings QD and unique variances
Ψ2) of (11) with τ =

√
24 = 4.899, i.e. the standard ML-EFA solution, which is nearly identical

to the ML solution obtained in [8, p.215]. Then, we rotate (with normalization) the factor
loadings QD from the first four columns by VARIMAX from MATLAB [11], and the result is given
in the next four columns of Table 2. The loadings in bold correspond to non-zero loadings of
the sparse ML-EFA solution of (11) obtained with τ = 2.2997 and depicted in the last columns
of Table 2. Further decrease of τ results in sparser loadings, but regarded as too simplified.
Note, that to interpret the VARIMAX solution, one must subjectively ignore the loadings with
small absolute values. The sparse factor loadings are easily interpreted only by focusing on the
nonzero loadings.

COMPSTAT 2014 Proceedings
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VARS τ =
√
24 = 4.899 Varimax τ = 2.2997

QD Ψ2 Rotated QD QD Ψ2

1 .60 .39 -.22 .02 .44 .69 .16 .16 .19 .88 .32
2 .37 .25 -.13 -.03 .78 .44 .12 .10 .08 .28 .85
3 .41 .39 -.14 -.12 .64 .57 .14 .11 -.02 .54 .70
4 .49 .25 -.19 -.10 .65 .53 .23 .08 .10 .55 .69
5 .69 -.28 -.03 -.30 .35 .19 .74 .15 .21 .82 .35
6 .69 -.20 .08 -.41 .31 .20 .77 .23 .07 .84 .32
7 .68 -.29 -.08 -.41 .28 .20 .81 .07 .15 .86 .29
8 .67 -.10 -.12 -.19 .49 .34 .57 .13 .24 .64 .54
9 .70 -.21 .08 -.45 .26 .20 .81 .23 .04 .87 .27
10 .48 -.49 -.09 .54 .24 -.12 .17 .17 .83 -.18 .91 .28
11 .56 -.14 .09 .33 .55 .12 .18 .37 .51 .63 .59
12 .47 -.14 -.26 .51 .44 .21 .02 .09 .72 .72 .50
13 .60 .03 -.30 .24 .49 .44 .19 .08 .53 .30 .47 .51
14 .42 .02 .41 .06 .65 .05 .20 .55 .08 -.47 .74
15 .39 .10 .36 .09 .70 .12 .12 .52 .07 -.53 .70
16 .51 .35 .25 .09 .55 .41 .07 .53 .06 -.57 .68
17 .47 -.00 .38 .20 .60 .06 .14 .57 .22 -.72 .54
18 .52 .15 .15 .31 .59 .29 .03 .46 .34 -.65 .61
19 .44 .11 .15 .09 .76 .24 .15 .37 .16 -.35 .82
20 .61 .12 .04 -.12 .59 .40 .38 .30 .12 .34 .76
21 .59 .06 -.12 .23 .58 .38 .17 .22 .44 .51 .69
22 .61 .13 .04 -.11 .60 .40 .37 .30 .12 .30 .79
23 .69 .14 -.10 -.04 .50 .50 .37 .24 .24 .58 .04 .63
24 .65 -.21 .02 .18 .50 .16 .37 .30 .50 .63 .58

Table 2. ML-EFA solutions for Twenty-Four Psychological Tests [8, p.123].

6 Conclusion

We propose a new method to construct sparse factor loadings for the classic EFA. This is, in
fact, a new approach to EFA, which readily produces interpretable EFA results. Unfortunately,
this can be achieved on the expense of loosing some portion of the fit of the sparse EFA model
(2) to the sample correlation matrix R. Further research is needed to quantify this loss, and
possibly relate it to the sparseness of the factor loadings in new sparse EFA algorithms.

There are few methods for sparse PCA, e.g. [6, 14, 16], able to produce either orthonormal
component loadings or uncorrelated components. In contrast to PCA, the factor loadings Λ(=
QD), both original and sparse, are not orthonormal. However, how the sparse factor loadings
affect the correlations among the estimated factors remains to be studied.
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