
Open Research Online
The Open University’s repository of research publications
and other research outputs

Towards a software evolution benchmark
Conference or Workshop Item
How to cite:

Demeyer, Serge; Mens, Tom and Wermelinger, Michel (2001). Towards a software evolution benchmark. In:
IWPSE ’01 Proceedings of the 4th International Workshop on Principles of Software Evolution, ACM, pp. 174–177.

For guidance on citations see FAQs.

c© 2001 ACM

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1145/602461.602502

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/82979153?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.1145/602461.602502
http://oro.open.ac.uk/policies.html

Towards a Software Evolution Benchmark
Serge Demeyer

Universiteit Antwerpen
Universiteitsplein 1
B-2610 WILRIJK

serge.demeyer@uia.ua.ac.be

Tom Mens(*)

Vrije Universiteit Brussel
Pleinlaan 2

B-1050 BRUSSEL

tom.mens@vub.ac.be

Michel Wermelinger
Departamento de Informática
Universidade Nova de Lisboa

P-2829-516 CAPARICA

mw@di.fct.unl.pt

ABSTRACT

Case-studies are extremely popular in rapidly evolving
research disciplines such as software engineering because they
allow for a quick but fair assessment of new techniques.
Unfortunately, a proper experimental set-up is rarely the case:
all too often case-studies are based on a single small toy-
example chosen to favour the technique under study. Such
lack of scientific rigor prevents fair evaluation and has serious
consequences for the credibility of our field. In this paper, we
propose to use a representative set of cases as a benchmark for
comparing various techniques dealing with software
evolution. We hope that this proposal will launch a consensus
building process that eventually must lead to a scientifically
sound validation method for researchers investigating reverse-
and re-engineering techniques.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.7 [Software
Engineering]: Distribution, Maintenance, and Enhancement.

General Terms
Measurement, Experimentation, Standardization.

Keywords
software evolution, empirical survey, case studies, benchmark.

1. INTRODUCTION
Software engineering is in a constant state of flux. On top of
the rapid escalation of hardware we keep on enlarging our
repertoire of techniques to build (and maintain) software. As a
consequence, developers that want to improve their software
production process must choose from a wide range of
techniques and accompanying tools. However, adopting a new
technique or tool always involves a cost, hence before
launching into "yet another solution" rational decision
makers demand evidence for the claimed benefits.

Empirical surveys are the traditional scientific means to
provide such evidence [1]. Indeed, if the experiment is
continued for a long enough time, reliable claims can be made
about the cost/benefit trade-off of a certain technique [3].
Unfortunately, such experiments take a lot of time and effort,
hence can only be applied for techniques that have proven to
be mature.

Case-studies represent a more lightweight opportunity for
providing scientific evidence [2]. Not only does a case-study

 (*) Tom Mens is a postdoctoral fellow of the Fund for

Scientific Research - Flanders (Belgium)

illustrate applicability on a concrete project, it also provides
the opportunity to learn about new techniques and —most
importantly— it can be performed in a reasonable amount of
time. Therefore, case-studies are ideally suited for
investigating novel techniques which yet have to prove their
value. However, to serve as a basis for rational decision
making, a case-study should satisfy two criteria: (a) be
representative, i.e., the results obtained from the study can be
generalised to other projects in a well-defined category; and
(b) be replicable, i.e., all artefacts necessary to perform the
study are accessible so that the results can be confirmed or
falsified by others.

With the appearance of the world-wide web and the trend
towards open-source projects, a wide range of realistic cases
satisfying both criteria is now available. This has the
unpleasant side-effect that the interpretation of case-study
results is hard because it is difficult to compare the wide
variety of results. One way to circumvent this problem is to
agree within a scientific community on a representative set of
cases that together may serve as a benchmark for the problems
being investigated. Building consensus on such a benchmark
is a process which requires several iterations and revisions
within the scientific communities however. This paper makes a
first step in that direction and as such we hope to launch a
consensus building process that eventually must lead to a
scientifically sound validation method.

The paper proposes a benchmark for comparing techniques to
deal with software evolution. More precisely, we specify the
design space of evolving software systems by listing the
characteristic attributes of these systems (section 3).
Afterwards, we present 4 cases as representatives for part of the
design space (sections 4-5). Complementary to the cases, we
propose a list of attributes to classify the merits of the
techniques and tools themselves (section 6). We conclude the
paper with an explicit position statement phrased as a number
of questions regarding the potential value of the benchmark
(section 7).

2. CONTEXT
In January 2001, we started an international research network,
which has the ultimate goal "to develop a consistent set of
formal techniques and accompanying tools that will support
software-developers with typical evolution problems of large
and complex software systems"1. This goal was chosen
because numerous studies have shown that more than half of
the global budget of software development is spent during
maintenance. Hence the need for better methods, techniques
and tools.

1 See http://prog.vub.ac.be/FFSE/network.html

The network consists of a wide range of international research
groups investigating techniques that are somehow related to
evolving software. To give an idea of the diversity within the
group, here is the list of expertise areas from the various
partners: (a) declarative reasoning (mostly logic-based); (b)
(graph-) rewriting systems; (c) software metrics; (d) software
visualisation techniques; (e) analysis and design methods; (f)
migration to component-based and web-based systems; (g)
meta modelling approaches; (h) reverse engineering; (i) code
generation.

Facing this diversity, the group concluded that there was a
definite need for a benchmark that would allow them to
compare the various techniques. Since all of the groups were
particularly concerned with the object-oriented paradigm, we
agreed that this should be the common theme driving the
benchmark.

3. EVOLUTION CHARACTERISTICS
In order to specify the design space of evolving software
systems, we define a list of characteristic attributes. With such
a list, we can later assess whether the cases may serve as
representatives for the complete design space.

Life-cycle characteristics determine whether the case
comprises artefacts that correspond to all phases in the
software life-cycle.

• Analysis (requirements specification, domain models, user
interviews, mock-ups, CRC cards, use cases, …)

• Design (architecture, detailed design, formal specifications)

• Implementation (source code)

• Testing (test plans, test code, test results)

• Maintenance (bug reports, feature requests, version control,
configuration management)

Evolution characteristics assess the evolution process of the
case, i.e., the various iterations and increments that one can
identify in the development process.

• Number of iterations

• Total time of the evolution process

• Scale (size of each iteration in lines of code, number of
classes, number of use cases)

• Type of iteration (refactoring, extension, correction,
adaptation)

• Granularity of increments in terms of time (days, weeks,
months), size (lines of code, pages of documentation) or
components (methods, classes, modules)

• Staff (how many persons were involved, personnel turnover
between iterations, level of experience of the developers, …)

Domain characteristics qualify the domains of the case.

• Application domain (e.g., telecommunication, e-commerce,
desktop systems)

• Problem domain (e.g., graphical user interfaces, distributed
systems, web-based systems, embedded systems, real-time
systems)

• Solution domain (e.g., library, framework, components,
program)

Tool characteristics evaluate the kind of tools that are
necessary to replicate the case. As such, the tool
characteristics are not necessary to assess whether a case may
serve as a representative.

• Implementation language(s) (C++, Java, Smalltalk, Object
Pascal (Delphi), Ada, Eiffel, …)

• Analysis and design language or notations (UML, OMT,
EROOS, Z, VDM, statecharts, ...)

• Operating system (Unix, Linux, Windows, MacOS, …)

• Integrated development and CASE environments

• Special libraries (CORBA, ...)

• Extra utilities (merge tools, version control tools, …)

4. CANDIDATE CASES
Now that we have defined the characteristic attributes of
evolving software systems, we list possible cases that may
serve as representative for a certain category of evolving
software systems.

Material (source code, documentation) concerning the listed
cases is available at http://prog.vub.ac.be/FFSE/cases/ .

4.1 Toy examples
Toy examples are limited in scope and as such provide the
ideal means to make an initial assessment of a technique. Of
course they cannot be used as a means to assess the scalability
of a technique, the other categories must serve this purpose.

• LAN Simulation. Both the Software Composition Group of
the University of Berne and the Programming Technology
Lab of the Vrije Universiteit Brussel make use of a small
simulation of a LAN network to illustrate and teach good
object-oriented design. The simulation starts with a
simplistic model that gets refactored as requirements are
added.

Besides the LAN simulation, there are other cases that may
serve as a representative for the small-scale software systems.
To ease comparison, we insist that people stick to the LAN
simulation. Yet, to encourage research-in-the small, we list
some other options as well.

• TicTacToe. In his course "P2 : Programmierung 2", Prof.
Oscar Nierstrasz guides the students trough a series of steps
to incrementally develop a game (TicTacToe) which is later
incrementally extended into a framework for board games
(incl. distributed playing and GUI). All increments are
written in Java. A scaled-down version of the TicTacToe
game is also available in Oberon.

• Conduits Framework. In yet another introductory course on
object-oriented programming (Principles of Object-Oriented
Languages), Prof. Theo D'Hondt has developed the Conduits
framework, which is a framework to simulate flows of fluids
in pipes. It is available in both Java and Smalltalk.

4.2 Industrial Systems
In general, it is hard to find good industrial cases as these
typically involve non-disclosure agreements, hence go against
the criterion of replicability of experiments. Yet, industrial
cases are necessary to obtain the necessary credibility.

• VisualWorks/Smalltalk. Smalltalk has a long tradition of
shipping the source code along with its products. A quite

impressive one is the GUI-builder that comes with the
VisualWorks programming environment and which is freely
available for academic purposes.

• Swing. Java as well has its platform independent GUI-builder
named Swing. The subsequent releases of the Swing
framework mark a smooth evolution process.

4.3 Public Domain Software
As an alternative for industrial cases, we consider software
created for the public domain.

• HotDraw (DrawLets). HotDraw is a two-dimensional
graphics framework for structured drawing editors (i.e. from
CASE tools to PERT chart editors). It started off as a
Smalltalk framework, but was later redone in Java (under the
name of Drawlets).

• ET++. As a separate yet similar project (thus having lots of
design issues in common), people at the University of
Zurich and the Union Bank of Switzerland have created the
ET++ framework. ET++ is written in C++ and served as a
"known use" for many of the design patterns.

4.4 Open-source projects
The current wave of open-source software development
provides many evolving software projects.

• Mozilla. The classic of course: an open-source web browser,
designed for standards compliance, performance and
portability and partly serving as a basis for the Netscape
browser.

Just like with the toy-examples, we insist that people stick to a
single representative. Yet, to encourage larger-scale studies we
list some other options as well.

• Squeak. An open source variant of Smalltalk, based on the

Smalltalk-80 virtual machine written entirely in Smalltalk
and with superb graphic features.

• Apache. An umbrella for various open-source projects,
mainly related to web servers, including a variety of XML
projects.

• Linux. Almost everything under the Linux operating system
is developed as open source.

5. SELECTED CASES
Table 1 sets out the selected cases against the specified
characteristics. This way we can assess which part of the design
space is covered by the cases and which part is still left open,
hence should be covered by other cases.

From the table we can infer that the candidate cases fall a bit
short. The early life-cycle phases are sparsely covered because
there is little analysis or design documentation available.
Also, the implementations are limited to Java, C++ and
Smalltalk systems, thus no Ada nor Eiffel. Finally, some
important application domains (embedded and distributed
systems) are not yet covered.

Moreover, we lack some quantitative data concerning the
various cases (i.e., number of iterations and staff). Also, the
replicability of the cases is questionable since for some of
them only the last release is publicly accessible. It is feasible
to collect the missing data, but before committing to these
efforts we want to see whether a better suite of cases can be
identified.

6. TECHNIQUES AND TOOLS
To complement the characteristics for evolving software
systems (section 3) which lead to the selection of the cases
(sections 4-5), this section proposes a list of attributes that
may be used to classify the merits and applicability of the

Table 1 Overview of the selected cases and their characteristics

Toy Example Industrial System Public Domain Open-source project

LAN -Simulation VisualWorks & Swing HotDraw & ET++ Mozilla

Life-cycle

• Analysis No No Yes (CRC Cards) No

• Design Yes (UML) Partly Yes Yes

• Implementation Smalltalk, Java Smalltalk, Java Smalltalk, Java, C++ C, C++, Java

• Testing No No No Yes

• Maintenance No Partly Partly Yes

Evolution

• Scale Tiny (< 20 classes) Medium Small Very large

• Type Refactoring, Extension All types All types All types

• Granularity Fine (refactoring) Coarse Coarse Fine + Large

• Staff 1 2

Domain

• Application domain networks tool tool network

• Problem domain simulation GUI graphics web-based systems

• Solution domain program black-box framework white-box framework family of programs

evolution support techniques and tools themselves. The
categories are based on an existing classification [4].

6.1 Time of evolution support
(a) Predictive (= before evolution). This category covers all
techniques and tools that allow maintainers to make decisions
concerning the parts of the software that should be improved.

• Evolution-critical: identify those parts of the software that
need to be evolved due to a lack of quality (e.g., quality
metrics)

• Evolution-prone: assess which parts are likely to evolve in
the future (e.g., by visualising the number of changes)

• Evolution-sensitive: distinguish those parts of the software
that will suffer from evolution (e.g., impact analysis)

(b) Curative (= during evolution). This category concerns
techniques and tools that support the actual changes to the
software system.

• Passive: infrastructure that allows to keep track of the
changes (e.g., version control systems)

• Active: techniques and tools that allow to apply changes
(e.g., refactoring tools, merge tools)

(c) Retrospective (= after evolution). This category includes
techniques and tools that allow to analyse where, how and why
a software system has evolved in the past.

• state-based: techniques and tools that compare the
intermediate stages (e.g., the UNIX facility diff)

• change-based: techniques and tools that analyse the
changes (e.g., inspecting the change log)

6.2 Degree of Automation
(a) Semi-automatic tools still require some human assistance.
This can be to interpret the results (e.g., software
visualisation), or to provide additional information that
cannot be derived automatically (e.g. complex refactorings).

(b) Fully-automated tools do not require any human
intervention (e.g., parsers).

7. OPEN QUESTIONS
In this paper, we propose to use a benchmark for evaluating
techniques dealing with evolving software. The benchmark
consists of a number of cases each representing different kinds
of evolving software artefacts; differences being captured in a
set of characteristics. To complement the cases, this paper also
proposes a list of attributes that may be used to classify the
merits of evolution support techniques and tools themselves.

Of course the definition of a benchmark is only a first step
towards sound scientific research in the area of software
evolution. We invite the workshop participants to help us by
answering the following questions

• Does it makes sense to define a benchmark ? The purpose of
this paper is that several research groups each apply their
favourite technique on at least one of the cases. As such we
can compare the various techniques and see how they may
complement or overlap each other. We feel that such a
benchmark is an ideal vehicle for exchanging information
and experience concerning evolving software. Nevertheless,
to complete specification of such a benchmark still requires

a lot of work. Hence we ask the workshop participants if
they would consider to validate their work with such a
benchmark?

• Are the characteristics complete / minimal ? The list of
characteristics has been designed as an instrument for
selecting a set of representative cases. However, care should
be taken whether the instrument is accurate. In particular, we
should address the question whether the list of
characteristics is complete, because if it is not then we risk
that the selected cases are not representative. Equally
important is the question whether the list of characteristics
is minimal, because if it is not then we risk that we must
select too many cases to cover all possibilities. Our initial
experience with the case selection suggests that the list is
not minimal but reasonably complete. However, we explicitly
ask the workshop participants to propose improvements or
–even better– point out other attempts concerning software
evolution benchmarks.

• Are the cases representative ? The cases are meant to
represent the whole design-space of evolving software
systems. However, the current cases fall a bit short: they are
weak in the early life-cycle phases (little analysis or design
documentation is available); they only include object-
oriented implementations limited to Java, C++ and
Smalltalk systems (no Ada or Eiffel, ...); they cover few
application domains (no embedded systems or distributed
systems). Therefore, we explicitly ask the workshop
participants to point out other industrial or semi-
commercial cases that will provide better coverage of all
the characteristics.

• Are the cases replicable ? For the given cases, the source
code and documentation is at least available on the web.
However, for most of them only the latest release is directly
accessible: for earlier releases one should contact the
original developers.

We intend to collect all material (including better
quantitative data on the size and the granularity of the
changes) and acquire the necessary permissions to use it for
experimentation purposes. However, we first want to ask the
workshop participants what kind of information they need
to replicate a case study.

8. ACKNOWLEDGEMENTS
This research is performed inside an International Research
Network on Foundations of Software Evolution, financed by
the Fund for Scientific Research - Flanders (Belgium).

9. REFERENCES
[1] Fenton, N., S. L. Pfleeger and R.L. Glass "Science

and Substance: a Challenge to Software Engineers".
IEEE Software 11(4), July 1994.

[2] Fenton, N. and S. L. Pfleeger, Software Metrics: A
Rigourous and Practical Approach, International
Thomson Computer Press, 1997.

[3] Kemerer, C. and S. Slaughter "An empirical approach
to Studying Software Evolution". IEEE Transactions
on Software Engineering 25(4), July/August 1999.

[4] Mens, T. and S. Demeyer "Evolution Metrics", In
IWPSE2001 Proceedings.

