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Abstract

Dynamic reconfiguration is the ability to modify a paral-
lel or distributed system while it is running. We adopt the
framework developed by Jeff Kramer and colleagues at the
system architecture level: changes must occur in a consist-
ent state, which is brought about by “freezing” some system
components. The goal is to reduce system disruption, i.e., to
minimize

1. the part of the system to be “frozen” and

2. the time taken by reconfiguration operations.

Towards the first goal we take a connection based approach
instead of a component based one. To reduce time, we re-
fine the reconfiguration algorithm by executing changes in
parallel as much as possible. Our model also handles hier-
archic systems.

1. Introduction

Most systems must undergo several modifications during
their lifetime in order to cope with new human needs, new
technology or a new environment. Large distributed sys-
tems can be described as a configuration of separate, inter-
connected components. Modifications can therefore occur
both at the component level (change implementation, add
new functions, etc.) and at the architecture level (add or re-
move components or connections). We deal only with the
latter, in particular we address the following questions:

1. What kind of modifications can be done?

2. How are they performed?

The answer to the first one is given by a configuration
model that defines the system architecture and the change
process. The second question is about how the changes will
be executed by the underlying operating system.

For economical or safety reasons, some systems can-
not be stopped or taken off-line to perform those changes.
Thus changes are done while the system is running. This is
called dynamic reconfiguration and applies only to distrib-
uted or parallel systems because centralized “single-thread”
systems must be completely stopped to be altered. Normally
changes may not be executed at once. For example, to re-
move a component first it must cease all interactions with
its neighbour components. Thus a further question must be
addressed:

3. When may the changes be performed?

The answer is: when the components to be changed are in
a consistent state. The definition of “consistency” will be
given by the model and it is brought about by “freezing” a
part of the system which may include components or con-
nections that will not be modified.

To handle the previous questions we adopt a framework
developed by Kramer and colleagues [5, 6]. It is simple and
general, both in terms of the changes it allows and in terms of
the assumptions it makes on systems. Upon closer analysis
of the two algorithms proposed for finding the set of system
components to “freeze” [6, 2], we have found that neither
is minimal regarding the disruption it causes to the system.
Switching to a connection based approach we come up with
a conceptually very simple yet effective minimal solution.

However, that only accounts for disruption in terms of
“size”, i.e., what parts of the system are “frozen”. It does
not take into account for how long they are inactive. Since
we work with an abstract, implementation-independent re-
configuration model, our solution just provides an execution
order for the change commands such that they are performed
as much in parallel as the logical dependencies between
them allow.

The third contribution of this paper is the treatment of
hierarchic systems, whose components can be made of inter-
connected subcomponents. For practical purposes, the ori-
ginal work [5, 6, 2] only deals with flat systems. The hier-
archic reconfiguration management method to be introduced
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Figure 1. The dynamic reconfiguration model

allows the parallel execution of change commands in differ-
ent subsystems while taking into account any dependencies
among them. Furthermore the method is as modular as the
system it is applied to.

The structure of the paper is as follows. The next sec-
tion summarizes and analyzes the work done by Jeff Kramer
and colleagues, showing its problems regarding disruption
minimization and hierarchic systems. Whereas the original
framework is described mainly in informal terms [5, 6], this
paper will provide formal definitions: section 3 describes
the refined architecture model and section 4 deals with dis-
ruption minimization. Towards that end, it presents a con-
nection based approach and an ordering of change com-
mands. Finally, section 5 describes a method to construct a
configuration manager for a given hierarchic system. The
last section presents some concluding remarks and future
work.

2. The original model

We adopt the configuration model developed in [5, 6] and
summarized in Figure 11. In the following we describe the
assumptions made by the model for each element appearing
in the diagram.

A system can be depicted as a directed graph whose
nodes are the system components and whose arcs are trans-
actions between components. As the model is component-
based, it assumes there is at most one connection between
any pair of components. An arc from a node N to a node
N

0 states that the transaction is initiated byN , although dur-
ing the transaction communication flow can occur in both
directions. Transactions complete in bounded time and the
initiator is always informed of completion. In particular,
the system does not get into any deadlock or livelock situ-

1Figures 1 to 5 are adapted from [5, 6, 2].

ation. These assumptions will help to prove that the con-
sistent state can be reached in finite time and that the con-
figuration manager will know when. A transaction t is de-
pendent on the consequent transactions t

1

; t

2

; : : : (written
t=t

1

t

2

: : :), if its completion depends on the completion of
all the other ones. Otherwise a transaction is called inde-
pendent.

Changes to a system are specified using four commands,
to be executed by the operating system, with obvious mean-
ings: create N , remove N , link N to N 0, unlink
N from N

0. Given a specification of the current sys-
tem configuration and the specification of the configuration
changes, the validation process checks whether the changes
may be (totally or partially) applied to the system and pro-
duces the specification of the resulting system. Checks may
range from simple syntactic ones (e.g., removeN is incor-
rect if N does not exist in the system) to deep semantic res-
ults (e.g., will the resulting system be deadlock free?). In
the following it is assumed that changes are valid and that
the specification is declarative, i.e., the change commands
are not in any particular order.

Given the valid changes, the configuration manager gen-
erates the instructions for the operating system to reconfig-
ure the current system, such that the resulting one will con-
form to the specification produced by the validation process.
In particular, the manager performs the following steps:

1. Compute from the change specification the nodes that
must be in a consistent state for reconfiguration to take
place.

2. Compute the nodes that must become “frozen” in order
to achieve consistency over the set of nodes obtained in
the previous step.

3. Send a “freeze” message to each node obtained in step
2 and wait for all the acknowledgments.

4. Instruct the operating system to execute changes in the
following order: unlink, remove, create, link.

5. Instruct the created and the “frozen” nodes (except the
removed ones) to resume processing.

There are two approaches based on this model that differ
only in steps 2 and 3. The first one [6], which we will call the
passive approach, “freezes” a node by preventing it from ini-
tiating any new transaction; the second one [2] completely
stops the node’s execution and therefore will be called the
blocking approach.

2.1. The Passive Approach

In this method [6] the “frozen” state is called passive and
the “freeze” message is passivate. To facilitate exposi-
tion, let us first handle only independent transactions.
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Figure 2. A client-server system with depend-
ent transactions

A component is passive if it is not engaged in transac-
tions it initiated and if it will not start new ones. However,
it must accept and service transactions in order to let other
nodes become passive. Therefore, passiveness is reachable
in finite time: a component just has to wait for the transac-
tions it initiated to finish (this is guaranteed to happen) and
then make sure it will not start new ones. The passive state
is just a necessary condition for reconfiguration. In order
to guarantee a consistent and stable internal state, in addi-
tion to being passive a node should not have any outstanding
transaction to service. This is called quiescence and depends
on those components that can initiate transactions with the
node. Therefore, the passive set of a node Q, PS(Q), is
defined as Q and all nodes with connection arcs towardsQ.
It is easy to see thatQ is quiescent if all nodes in PS(Q) are
passive.

The quiescent set QS for a given change specification is
the set of nodes that must be quiescent during the reconfig-
uration, namely those that will be removed and the initiators
of transactions that will be added or removed. Newly cre-
ated nodes are automatically quiescent. The set of nodes to
“freeze”, called change passive set, is then simply CPS =

S

i2QS

PS(i).
To see why this does not work for dependent transactions,

consider a system with clients C
i

accessing through agents
A

i

a server S managed by M (Figure 2). If the server is
going to be replaced, then both S and p will be removed.
Thus the configuration manager calculates QS = fM;Sg

and CPS = fA

1

; A

2

;M; Sg. However, if a client has a
new request s

i

, then the respective agent cannot service it
because according to the definition of passiveness it may not
initiate r

i

(on which s
i

depends). This would lead to a par-
tially incomplete transaction, i.e., to an inconsistent state of
the whole system during reconfiguration. On the other hand,
allowing A

i

to start transaction r
i

would lead to new trans-
actions on the manager and on the server, which therefore
would not be in the quiescent state.

To solve this problem, the notion of passive state must
be changed. Otherwise reachability of the quiescent state in
bounded time would be lost. If A

1

is to be replaced, then
QS = CPS = fC

1

; A

1

g. If A
1

becomes passive be-
fore C

1

, and C

1

just initiates a new transaction s

1

before
getting the passivate command from the configuration
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Figure 3. Mutual dependencies

manager, then the client will never become passive because
r

1

is not initiated. In this case one could order the commands
(passivateC

1

before passivateA
1

), but for systems
with mutual dependencies like the one in Figure 3 no such
ordering is possible.

The notion of passive set must also change, since the
nodes that may initiate transactions with a given node are
not just its immediate neighbours. The new definitions are
thus as follows.

� In the generalized passive state a node is not engaged in
non-consequent transactions it initiated and it will not
initiate new ones. Furthermore the node accepts and
services all requests, initiatingconsequent transactions
if necessary.

� The enlarged passive set of a node Q, EPS(Q), in-
cludes Q and all nodes that can initiate transactions
which result in consequent transactions on Q.

Notice that both definitions reduce to the old ones in case
all transactions are independent. The reconfiguration al-
gorithm remains the same, except that PS(i) is substituted
by EPS(i) in the calculation of CPS.

The server replacement in Figure 2 is now correctly
handled. Since EPS(S) = fC

1

; A

1

; C

2

; A

2

;M; Sg, all
nodes have to be passivated. Even if all components but C

1

are already passive, any pending s
1

transaction will be ser-
viced (through A

1

and M ) by the server and therefore the
client can become passive and reconfiguration may start.

In general, systems are not flat as assumed until now
but hierarchic, i.e., some nodes (called composite) are made
of connected subnodes. A composite node is connected to
other nodes through some of its subcomponents. The trans-
action dependency of a composite component must be de-
rived from its subcomponents. The following substitution
rule is given in [6]:

“when composing 2 nodes, substitute the con-
sequents for each occurrence of the dependent
transaction which is hidden by the composition.”

The rule can be iterated on components and connections
(Figure 4). To simplify reconfiguration management, [6]
suggests that a composite node is considered to be passive if
all its subnodes are, and that all transactions between com-
posite nodes are independent.
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Figure 4. Composing dependencies

2.2. The Blocking Approach

An alternative method is presented in [2]. It assumes that
a node is consistent and self-contained except during trans-
actions, as those are the only interactions with the outside
environment. Thus, to make a node quiescent it is enough
to block it while it is idle (not engaged in any transaction).
A component is also assumed not to interleave transactions:
while handling a request a node may not service any new
one, even if it comes from a different connection, and it may
initiate only consequent transactions. This is used to prove
that the blocked state is reachable in finite time.

The basic algorithm is thus to send a block message to
the nodes in the quiescent set (called BSet, short for block-
ing set, in [2]). As soon as such a node N is idle, it blocks
and sends an acknowledge to the configuration manager.
Since some of the nodes that depend on N may also have
to block, N must temporarily unblock to service some re-
quests. However, it must be guaranteed that at some point no
more such requests will arrive and N will remain blocked.
The basic question is therefore: what transactions should a
blocked node service?

It is obvious that it cannot process just any incoming
transaction, since it might come from a node that is not af-
fected in any way by the reconfiguration and as such might
initiate a new transaction any time. Thus the blocked node
would have to unblock unpredictably and the safe state
needed for reconfiguration to begin would never be reached.
It is also evident that at least the transactions initiated by
other BSet members will have to be serviced in order for
them to become blocked. On the other hand, not every re-
quest from a non-BSet member can be ignored. Consider
the cases depicted in Figure 5. Node D must service the re-
quest fromC because it is the nth consequent transaction of
a transaction initiated byA, which must be completed forA
to become blocked. In the second case on the right half of
the figure, component F has initiated a transaction with G
before getting a request from E. IF G does not service the
transaction, F will never be able to start attending E’s re-
quest since transactions do not interleave.

One could let BSet nodes unblock just in those situations
but the authors think this is non-trivial and has great run-
time overhead. Instead they propose the BSet to grow dy-
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Figure 5. A blocking problem

namically in step with outgoing transactions. When a node
gets a request from a BSet member, it becomes a member
too, and only requests from BSet members are attended; all
other are queued and serviced after the reconfiguration. In
the previous cases, it means that the BSet grows to encom-
pass the whole system, and therefore D and G will service
the transactions initiated by C and F respectively.

Notice that the BSet has two kinds of members: those
that “really” must block due to the reconfiguration and those
that block in order to let members of the first kind to get
blocked. Therefore a distinction is made between the ori-
ginal BSet and the extended BSet. Their union is the BSet.
When all the original BSet nodes become blocked, the com-
ponents in the extended BSet can be unblocked since their
raison d’être has ceased. The disruption thus first grows and
then shrinks.

As the calculation of the BSet is dynamic, the reconfig-
uration algorithm is distributed through the configuration
manager and the nodes. Each node runs the same code in
a transparent way using hooks that are called upon relev-
ant events like message arrival (from another node or from
the configuration manager), transaction begin and transac-
tion end. The application programmer only has to mark in
the component’s code where the last two hooks have to be
activated. The code run by each hook basically updates local
variables and sends messages to other nodes or to the con-
figuration manager when necessary. The main variables and
messages are those that concern the BSet. The configura-
tion manager computes the original BSet (in the same way
as the passive approach, since it is the quiescent set) and the
so called PSet (short for primed set), the set of all nodes that
may be recipients of transactions initiated by BSet mem-
bers. Whenever such a node receives a message from a BSet
member, it informs the configuration manager that it must be
added to the (extended) BSet. The configuration manager
calculates the new PSet and sends the updated value of the
BSet to all those nodes.

3. Discussion

The authors of the approaches just described discuss their
results, but since [2] contains not a single example, compar-
ison with [6] is stated in brief and vague terms. Since we



use the same framework, we take a closer look at the two
different methods in order to gain a better insight into the
reconfiguration process to achieve further reduction in dis-
ruption. Both approaches will be analyzed in terms of dis-
ruption, run-time overhead, implementation, and how they
deal with hierarchic systems.

We adopted this model because, as stated in [2], other
work in dynamic reconfiguration either only deals with tool
and language support to describe and execute the changes
[1] assuming that the system is already in a safe state, or
it imposes limitations to guarantee maintenance of the sys-
tem’s state [4, 3, 9]. Limitations can be on the kind of system
(e.g., only client-server) or on the kind of changes handled
(e.g., a component may only be replaced by a specializa-
tion of it). Sometimes they are due to the existence of spe-
cial mechanisms to capture and recover the application state
prior to the change. The described framework is more gen-
eral: it allows any kind of changes, it provides a means to
achieve the stable state, and it does not require special mech-
anisms.

3.1. Implementation

In the first approach the application programmer is ex-
pected to provide code that will allow the component to
reach the passive state and keep it, whereas in the second ap-
proach this happens transparently due to the added assump-
tion that nodes are consistent when there are no interactions
with the rest of the system. Of course, the other side of
the coin is that the implementation is hidden away into the
hooks which must trap low level events like message arrival.
This means that the implementor of this approach must have
access to the operating system source or else program a new
layer that will be used by the applications.

On the other hand, the first approach requires just one
passivate message for each node in the extended pass-
ive set, while the second method generates initially jPSet

0

j

messages and then 1+ jPSet

i

j messages for the addition of
the ith member of the extended BSet. Also, the messages
in the static method are just tokens, while those in the dy-
namic approach are descriptions of (potentially large) sets.
The blocking approach has thus much greater run-time over-
head and is more complex to implement, but imposes less
burden on the component programmer.

3.2. Disruption

The important point in any dynamic reconfiguration
method is that the “freezing” of a node N does not prevent
other nodes from reaching their “frozen” state. Basically,
both approaches solve the problem by “freezing” also every
node that depends on N or on which N depends. This does
not minimize disruption and in fact may involve many com-

ponents besides those that will be affected by reconfigura-
tion.

To illustrate the differences between both approaches, let
us apply them to common examples. We will write OBS
and EBS for the original and the extended BSet, respect-
ively. The first example is the system of Figure 2. If the
server is to be replaced, we have seen that the first approach
passivates all nodes. The second method considersOBS =

fM;Sg, EBS = fg and PSet = fSg, because the only
outgoing transaction from a BSet member is p and goes to
the server. This means that on occurrence of p,EBS = fSg

and on its completion both M and S block because they are
idle and in the BSet. Notice that the clients are not blocked
and therefore may initiate new transactions during reconfig-
uration. Since M is blocked, it will queue the requests and
service them after the changes done to the system. This was
considered an inconsistency in the passive approach, but in
our opinion this is perfectly acceptable because the server
manager has not been changed. Therefore its interface with
the agents and the new server is the same as previously. This
means that the new server is able to attend requests sent to
the old one. To sum up, the blocking approach causes less
disruption. The reason is that a passive node (and in par-
ticular a quiescent one) is active regarding transactions it
services. Therefore, to achieve inactivation the node must
be “shielded” from outside requests and that shield (the ex-
tended passive set) must remain during reconfiguration. No
such shield is required in the second approach since the com-
ponents actually stop.

Now consider the same system but where the first cli-
ent has to be replaced. In this case QS = EPS = fC

1

g

since no component depends on C

1

. Therefore, as soon
as the transaction terminates, C

1

will become passive and
automatically quiescent. Reconfiguration can start, while all
other components remain active. Applying the blocking ap-
proach one has OBS = fC

1

g, PSet
0

= fA

1

g, EBS
0

=

fg. If there is a pending client request, EBS
1

= fA

1

g and
PSet

1

= fMg. Since the transaction is dependent, after
two more steps EBS

3

= fA

1

;M; Sg. In other words, to
replace a client, the server is blocked (even if temporarily)!
This would remain so even if all transactions being executed
were independent. In this example the first approach causes
much less disruption, contrary to the claim in [2] that the
blocking approach performs always at least as well as the
passive method. The reason is that the blocking approach
is purely dynamic: it does not precompute the dependencies
between nodes, which is essential to determine whether the
blocking of two components will interfere with each other.
Therefore at run-time the method goes through all the nodes
an OBS member depends on, which form the EBS. If the
configuration manager would compute the paths between
OBS members, disruption could be greatly reduced in most
cases.



The last example is the left half of the system in Figure
5. In the second approach, if A is not engaged in any trans-
action with B, it will block immediately. Thus as soon as
D is idle it will get blocked too and reconfiguration starts.
In the first approach, all nodes from B to C will be passiv-
ated even if no dependent transaction will occur. This is the
advantage of a dynamic method. It only takes into account
transactions that are actually occurring in the running sys-
tem, while a static analysis must involve all transactions that
may occur.

The authors have concentrated on the number of nodes
that are passivated or blocked by their methods, but we think
that indirect disruption must also be taken into account.
Since a blocked node does not any processing whatever, any
transaction it services or initiates unrelated to the reconfigur-
ation will also be stopped and that may lead to (partial) inac-
tivation of other components. Since passive nodes still ser-
vice requests they cause indirect disruption in smaller scale.
But internal processing that requires initiation of transac-
tions is still hindered. This is recognized in [6]. The au-
thors observe that the replacement of the server in Figure
2 passivates the clients thus stopping them from interacting
with other nodes not shown on the figure. Therefore, they
should only be passive with respect to the server being re-
placed, not other nodes unrelated to the change. This could
be achieved by distinguishing the relevant connections and
modeling their state (connected-passive, connected-active,
disconnected). This would allow more granularity, but the
authors think it would lead to more complex substates and
more complex actions to obtain consistency since the nodes
would be partially active. Therefore they think their ap-
proach, while not minimal, is simple and sufficient.

In our opinion there is another factor that contributes to a
greater disruption than necessary in some cases: the require-
ment for quiescence of the initiatornode in (un)linkchanges.

Let us assume that the change specification contains a
command unlinkN fromN 0 for a nonconsequent trans-
action. It is not necessary forN to be quiescent. It is enough
to be passive, thus not starting any new transaction withN 0.
Consider the right subsystem of Figure 5 where connection
1 will be removed. If F 2 QS then E and every node that
depends on transaction 2 would be in EPS. Therefore they
and all nodes on which they can initiate transactions would
be partially inactive. If F were only passivated, the exten-
ded passive set would not include the other nodes, reducing
direct and indirect disruption greatly.

Also, if there is alinkN toN 0 command but neitherN
nor N 0 are changed, then the new connection is the replace-
ment of a previously existing connection or it is an optional
connection (because N was already working without it). In
any case N does not have to be quiescent or even passive. It
is only in those states if it has to be replaced or if some of its
connections will be removed. In our opinion, the addition of

connections by itself should not impose passiveness.
Both approaches measure disruption only in terms of

nodes, neglecting the time factor. In the configuration model
described in section 2 first components are “frozen”, then
change commands are applied, and finally components are
activated. This does not minimize disruption time because
each phase can only begin after the previous one ended.
Moreover, commands are performed in a fixed sequence
(first all unlink, then all remove, etc.). It is obvious that
in many cases some changes are independent of others. In
those cases a part of the system might be changed without
having to wait for nodes in other parts to be “frozen”, or
commands of different kinds might be performed in paral-
lel.

3.3. Hierarchic systems

In [2] no reference is made to hierarchic systems. In fact,
the blocking approach does not work for them since a com-
posite node will in the general case interleave transactions,
because its subcomponents run in parallel. As written be-
fore, [6] deals with such systems but their treatment is still
very sketchy. Basically, it only indicates how to compute
a composite node’s dependencies from its subcomponents.
From there the extended passive set at the higher level can
be computed. If the composite node has to be passivated, all
its subcomponents should. This certainly does not minimize
disruption. We also feel that requiring independent trans-
actions between composite components (as in CONIC [8])
to reduce the number of those to be passivated may lead to
extremely large components or to many small ones. In any
case it may force the system designer to partition the system
into artificial composite components that are uneasy to work
with. But more importantly, [6] does not deal with the inter-
action between changes at different levels or how changes
at a lower level will affect higher levels of the component
hierarchy.

4. The refined model

Although the original analysis of the requirements for
dynamic configuration [5] stressed the importance of mod-
ularity and well-defined component interfaces, the model
presented in [6] does not support it. However, the con-
crete configuration language presented in [5], CONIC, and
its successor DARWIN [7] provide a mechanism to specify
the communication points of a component, called ports. Our
model will thus support that notion, too. An interface is just
a set of ports, each being used either to initiate transactions
or to receive requests. Since the environment has no access
to the inner structure of a component, the programmer must
provide in the interface the dependencies between initiator
ports and recipient ports.



Definition 1 A node interface is a triple hI;R;Di where

� I is the finite set of initiator ports;

� R is the finite set of recipient ports such that I\R = ;;

� D � R� I is the port dependency relation.

A system is simply a set of connected nodes, where a con-
nection is given by an initiator port and a recipient port. To
capture sound software engineering principles (modularity,
encapsulation, data hiding, etc.), a system has no access to
the inner structure of its nodes; it knows only their inter-
faces.

The original model is intended for node based reconfig-
uration, i.e., “freezing” is done upon nodes. Moreover, the
computation of the passive and blocked sets depends only
on the pattern of connections, not on their number. There-
fore the model can assume without loss of generality that
there is only one arc between a given pair of components.
A connection based approach like ours distinguishes indi-
vidual transactions and thus one must allow several con-
nections to be linked to the same port (but only one trans-
action for any given pair of ports). This covers typical
situations like client-server (all client transactions linked to
same server recipient port) and broadcast (many transac-
tions with common initiator port). To avoid deadlock, the
connections (together with the port dependencies) may form
no cycle. Formally, there may be no closed sequence of al-
ternating recipient and initiator ports such that every initi-
ator port depends on the succeeding recipient port which in
turn is linked to the next initiator port.

Definition 2 A system is a pair hN; T i where

� N is a non-empty finite set of node interfaces;

� T �

[

n2N

I

n

�

[

n2N

R

n

is the set of transactions.

A non-empty path is a sequence of ports r
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.

For every non-empty path r
1
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m

one has hi
m

; r
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i 62 T .

The original model assumes that the dependencies among
transactions are given with the system. We feel that our no-
tion of port dependency is more realistic and more flexible
since it allows the system architect to work with components
he has not programmed himself. Besides, it is a more prim-
itive notion because the dependencies among connections
can be computed from those between ports: if recipient port
r depends on initiator port i, then any transaction received

by r starts a transaction (i.e., depends) on every connection
from i. As in the original model, the inverse is not true: the
component might start a transaction on port iwithout having
received any request on port r. The transaction dependency
relation is closed under transitivity.

Definition 3 Given a system hN; T i, the transaction de-
pendency relation = � T � T is defined as hi; ri=hi0; r0i ,
(9n 2 N hr; i

0

i 2 D

n

) _ (9t

00

2 T hi; ri=t

00

^ t

00

=hi

0

; r

0

i).
A transaction t is dependent (on the consequent transac-

tion t0) if 9t0 2 T t=t

0, otherwise t is independent.

The acyclic condition on port paths can thus be restated
as: transaction dependency is anti-reflexive.

Proposition 4 In a system hN; T i, 6 9t 2 T t=t.

To build modular architectures it must be possible to ab-
stract systems into nodes which will be part of other systems.
A system will be encapsulated in a composite node by hid-
ing part of the system’s ports. The dependencies of the re-
maining visible ones (i.e., the ports of the composite node)
are given by the underlying system.

Definition 5 A composite node consists of an interface
hI;R;Di and a system hN; T i such that

� I �

[

n2N

I

n

;

� R �

[

n2N

R

n

;

� D = fhr; ii 2 R� I j ri

1

� � �r

m

i is a non-empty path
in hN; T ig.

If a node is not decomposed into further nodes, then it
is called simple. Formally, only its interface is available.
A system is hierarchic if it contains at least one composite
node. Strictly speaking, given a system it is impossible to
know for any of its nodes whether it is simple or composite
because the formal definition of a system only provides the
node interfaces. Thus it is possible for a simple node to be
changed into a composite one and vice-versa in a transparent
manner to the system.

5. Minimizing disruption

From the long summary and analysis of the passive and
blocking approaches it becomes clear that to minimize dis-
ruption we must look for a static blocking method at the
connection level. To ensure that blocking a connection will
not prevent others from reaching the blocked state, we can
use a previously mentioned idea: to order the execution of



“freeze” commands. This works at the connection level be-
cause transactions do not form cycles. Extending the execu-
tion ordering to all commands one can define precisely what
changes may be performed in parallel to reduce disruption
time.

5.1. The connection approach

The essence of our proposal is to block only those con-
nections that will be removed. To block a connection its ini-
tiator node waits for any ongoing transaction (on that con-
nection) to finish and then simply does not start a new one.
For this to work we assume, as in the original model, that a
transaction finishes in finite time and that its initiator knows
when it ends. A simple implementation might be the follow-
ing. For each component, assign to each transaction T

i

it
might initiate a boolean variable blocked[i] initialized
to false and a semaphore S[i]. Then substitute the trans-
action code T

i

by

P(S[i]);
wait while blocked[i]; T

i

;
V(S[i]);

and add the following case to the code that dispatches the
incoming requests:

if msg.command = block then begin
i := msg.arg; P(S[i]);
blocked[i] := true; V(S[i]);
send(config_manager, blocked, i)

end

This code can also be provided by three hooks if wished.
One to be called on transaction begin, one on transaction
end. These hooks must be explicitly called by the compon-
ent’s programmer, passing the transaction identifier as argu-
ment. The third hook would be called transparently to the
component on message arrival. Compared to the blocking
approach, run-time overhead is small since only one simple
block message per connection is sent and acknowledged.
However, the number of messages is usually larger than in
the passive approach because each node to be removed has
to receive as many block messages as the connections it
has.

Blocking a connection means that the node will not ser-
vice any transaction that depends on the blocked one. To
ensure that the blocking of one connection will not prevent
other pending transactions to block, the configuration man-
ager orders the blocking according to dependency: if trans-
action t depends on t0 then the blockmessage is sent to the
initiator of t0 only after t is known to be blocking. This is al-
ways possible because transactions do not depend cyclically
on each other.

Consider again the client-server system of Figure 2. Let
us assume that C

1

and the server will be replaced. Then
s

1

and p must block because they will be removed, but p
cannot simply block at once because it may have to ser-
vice a pending s

1

request (or else s
1

could never terminate
and get blocked). Therefore, blocking s

1

before p we are
sure that the blocking state is reachable for each link. Also,
any request received by manager M after p blocked can be
safely queued until the server has been replaced because it
is known that any connection that depends on p and that had
to block has already done so.

Notice that this method would not work if the server
would be allowed to be simply removed without being re-
placed by a new one. In that case a partially completed s

2

request could remain after reconfiguration: clearly an in-
consistent state. We assume that the validation process has
ruled out such cases. If a consequent transaction is removed,
either a replacement connection is created or else the trans-
actions which depend on the removed one are changed too.

The original reconfiguration model distinguished two
kinds of commands: those that are given in the change
specification (create, etc.) and those that are used to
“freeze” the components (passivate, block) and to ac-
tivate them again after reconfiguration end. The former
are common to the passive and blocking approaches, while
the latter are specific to each approach. In our model the
“freeze” command blocks a connection and we will ignore
the activation commands since they are not fundamental
for the main issues of this paper, namely disruption min-
imization and hierarchic systems. Furthermore, as multiple
transactions are allowed between the same pair of compon-
ents, the syntax of the (un)link commands has to change
slightly.

Definition 6 A command is either of create n, remove
n, link t, unlink t or block t, where n is a node inter-
face and t a transaction.

5.2. The partial order

To minimize disruption time, the precise execution of the
commands issued by the configuration manager is given by
a temporal order <: if c < c

0 then command c0 can only be
executed after command c has completed. Commands that
are not related through the ordering can be executed in par-
allel. It is obvious that the order must include the following
relationships:

1. If a transaction t depends on a transaction t

0, then t

must be blocked before t0.

2. A connection must be blocked before it is removed.

3. A node can only be removed after its connections have
been removed.



4. A node can only be linked after its creation.

We will be conservative and impose a further restriction.
In some systems it might not be necessary and thus further
parallelization can be achieved. Consider a simple system
with a client linked through transaction c to a server. If the
server is to be replaced then a new connection c0 is needed.
However, since the client remains the same, the communic-
ation protocol with the new server is the same as with the old
one. Therefore, c0 is the same transaction as c and we feel it
does not make sense to link c0 before unlinking c. Besides,
it might lead to execution errors if the implementation of the
client assumes that there is always only one connection on
that particular port. The general rule is:

5. A transaction initiated by a node can be established
only if no more transactions initiated by it will be re-
moved.

As can be seen by exhaustive inspection of all possible in-
teractions between the existing kinds of commands (block,
link, unlink, remove, create) no further rules are
necessary since there are no other dependencies between the
commands and thus they may run in parallel.

Definition 7 Given a set of commands C for a system
hN; T i, the command order < � C � C is the smallest re-
lation that satisfies

1. block t < block t0 if t=t0 and 6 9block t00 2 C

t=t

00

^ t

00

=t

0;

2. block t < unlink t;

3. unlink hi; ri < remove n if i 2 I

n

or r 2 R

n

;

4. create n < link hi; ri if i 2 I

n

or r 2 R

n

;

5. unlink hi; ri < link hi; r0i.

Since the configuration manager will directly implement
the command order, it is desirable to avoid redundancy.
Therefore the ordering is an immediate precedence relation:
if c < c

0 then there is no command c00 such that c < c

00

< c

0.
Due to the nature of the five cases this could only happen
with block commands (case 1). Therefore the definition
above imposes the additional condition.

Let us return to the example of Figure 2. Only 4 steps are
necessary to replace the first client and the server whereby
each step consists of several commands executing in paral-
lel:

1. create C0

1

, block s
1

, create S0

2. unlink s
1

, block p

3. link s0
1

(the connection fromC

0

1

toA
1

), removeC
1

,
unlink p

4. link p0 (the connection from M to S0), remove S

Notice that in some cases some commands of step i+1 can
start without step i being completed (the exact order is given
by Figure 6 as explained in the next section). Since our rules
take into account the specific components or connections
on which the commands are to be executed, the disruption
suffered by each system part being changed is greatly re-
duced since change actions are much more interleaved than
in the original model.

To summarize, a connection based approach is not
only advantageous in terms of the number of parts being
“frozen”, but also in terms of minimizing disruption time.
In fact, in the node based approaches several nodes have
to “freeze” just to let those nodes that really matter for
the reconfiguration to become quiescent. In practice this
means that reconfiguration can only start after all nodes have
“frozen”. We think it is possible to have rules that allow
one to calculate the exact set of nodes that have to “freeze”
for a given change command to be executed, but those rules
would be much more complicated than those shown above.
Given that in a connection based approach the number of
parts to be “frozen” is much smaller, and that “freeze” and
change commands can be better interleaved, we conclude
that our method can reduce disruption time considerably.

6. The configuration manager

Since a configuration manager executes several com-
mands with some dependencies among them, we observe
that such a manager can be seen as a parallel system too,
with components and transactions. The goal is to have a pre-
cise definition of a configuration manager for a given set of
commands to be applied to a given system. In this way the
same framework can be used both for managers and the sys-
tems they reconfigure. In particular, the definition to be ob-
tained can serve as a basis for a straightforward implementa-
tion of configuration managers, although our main goal is to
provide a system view of a manager. To facilitate exposition
we will start with flat systems.

The basic idea is that each change command is imple-
mented by a component, and connections between compon-
ents make dependencies between the corresponding com-
mands explicit. To be more precise, if c < c

0 then the com-
ponent corresponding to c0 will initiate a transaction with the
component corresponding to c. The transaction can be seen
as a request from c

0 to execute c. Once the acknowledgment
is received, c0 can execute. If c0 depends on several com-
mands it must wait for all its requests to be attended. A com-
mand is executed only once, even if several other commands
are connected to (i.e., depend on) it.

A component implementing a command cmust therefore
have two ports. The recipient port s

c

receives all requests
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Figure 6. A specific configuration manager

from the successors of c, i.e., those nodes that can only ex-
ecute after c. The initiator port p

c

sends requests to all pre-
decessors of c to start execution and waits for the acknow-
ledgments. It is obvious that s

c

depends on p
c

.
In some cases a command c does not depend on the ex-

ecution of others. In other words, there is no c

0 such that
c

0

< c. The inverse can also happen: no c0 depends on c.
For example, if connections are to be removed, there is al-
ways at least one block command to be executed first (i.e.,
it depends on no other one) and at least one block to be
executed last. In these cases the corresponding components
only need one port. Instead of providing special compon-
ent definitions we take a generic approach. The configura-
tion manager has always one special nop component with
one recipient port snop and one initiator port pnop (like
any regular component) but there is no dependency between
them. For any request received by snop an acknowledg-
ment is immediately sent. Likewise, any transaction linked
to pnop is immediately started. To see why this works, con-
sider the case where there is no c0 such that c0 < c. Since c
depends on no other command, it can execute at once. In
other words, the fact that c has no predecessor can be seen
as its predecessor being the “empty” command nop. There-
fore, if c’s predecessor port p

c

is linked to the successor port
snop, the request from c is immediately attended by nop
and therefore c can execute at once as wished.

Definition 8 The system configuration manager that recon-
figures the flat system hN; T i according to commands C is
a system hN

0

; T

0

i where

N

0

= fhfp

c

g; fs

c

g; fhs

c

; p

c

igi j c 2 Cg

[ fhfpnopg; fsnopg; ;ig

and T 0 is the smallest relation that satisfies

1. hp
c

; s

c

0

i 2 T

0 if c0 < c;

2. hp
c

; snopi 2 T

0 if 6 9c0 c0 < c;

3. hpnop; sci 2 T

0 if 6 9c0 c < c

0.

According to this definition the reconfiguration of the
client-server system of Figure 2 can be done by the man-
ager depicted in Figure 6 which allows us to quickly see the
ordering of the commands, in particular which must be ex-
ecuted sequentially and which can run in parallel. Notice
that the execution path starts and ends at the nop node, and
that the four steps presented in the previous section corres-
pond to the four levels of the topological sort of the graph.

Hierarchic systems pose a problem that does not occur in
flat systems: if commands c and c

0 apply to different sub-
systems, it might still be the case that c < c

0 (or vice-versa)
due to the way the subsystems are connected. As an example
let us consider Figure 7 where the dotted lines indicate for
each port of a composite node which is the corresponding
port of the contained system. Assume further that for each
ofB;C;D, andE, the recipient port depends on the initiator
port. The same applies toN

2

, according to the definitions of
composite nodes and transaction dependency, and thus b=d
as seen on the right. Moreover, for the given configuration
one has a=e, which is not apparent just by looking at N

1

. If
A and F are to be replaced, those two connections cannot
be blocked in parallel. One could flatten the whole system
to discover that block a < block e, but that defeats the
whole purpose of building a modular system.

Therefore, to reflect the hierarchy of a system and the be-
nefits of its partitioning, we propose a configuration man-
ager for each node. We have seen that a manager for a sys-
tem is a system itself. Likewise, the manager of a node will
be a node, with an interface that will allow it to be linked to
other configuration managers. The problem is thus what in-
terface a node manager needs and how should it be linked
to other managers. The goal is to achieve the correct order
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Figure 7. A hierarchic system

of command execution in the most modular possible way.
In other words, a node manager should only know about the
subsystem it manages, not about the managers it is linked to.
Therefore, the internal structure of a node manager should
be such that it can work in any possible context.

The solution to the problem is based on the following ob-
servations. Let us assume that node x has an initiator port
i linked to recipient port r of node y. Thus any change in-
side x that depends on transaction hi; ri must occur before
the changes inside y that depend on hi; ri. Therefore the re-
quests of the change commands inside y must be acknow-
ledged by the change commands insidex. Therefore the dir-
ection of requests is opposite to the direction of the trans-
action that establishes the dependency between x and y. To
sum up, the configurationmanager x0 forx has recipient port
i, the manager y0 for y has initiator port r, and the requests
of y0 are passed to x0 through transaction hr; ii. If the sys-
tem’s transaction hi; ri is going to be blocked then the re-
configuration manager for the whole system cannot just link
sub-manager x0 to sub-manager y0. In this case port r of y0

is connected to the recipient port of block hi; ri whose ini-
tiator port is linked to port i of x0.

To put it in more general terms, the configuration man-
ager for a hierarchical system S consists of one compon-
ent for each command, one component called nop, and one
configuration manager for each node in S. A node manager
has the same interface as the node whose reconfiguration it
manages, except that initiator ports are exchanged with re-
cipient ports. This implies that the manager’s port depend-
ency relation is the inverse of the node’s dependencies, and
that connections among node managers are the opposite of
those between nodes, except for transactions that must be re-
moved. Those will be of course substituted by the respective
block command.

Definition 9 The system configuration manager that recon-
figures the hierarchic system hN; T i according to com-
mands C is a system hN

0
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Figure 8. Composing reconfigurations

1. hr; ii 2 T

0 if hi; ri 2 T ^ block hi; ri 62 C;

2. hr; s
c

i; hp

c

; ii 2 T

0 if c = block hi; ri;

3. hp
c

; s

c

0

i 2 T

0 if c0 < c;

4. hp
c

; snopi 2 T

0 if 6 9c0 c0 < c;

5. hpnop; sci 2 T

0 if 6 9c0 c < c

0.

Definition 10 The node configuration manager for a com-
posite node with interface hI;R;Di and system hN; T i, to
which commands C will apply, is a composite node with
interface hR; I;D

�1

i and system configuration manager
hN

0

; T

0

i.

Applying the definition to the example of Figure 7 we get
the manager depicted in Figure 8. Notice how indeed e gets
blocked only after a, since the request of block e is passed
along N 0

2

back through the other port of N 0

1

to block a.
For the definition to be complete it remains to be said how

a configuration manager x0 for a simple node x behaves.
As for any node manager its interface is the “mirror” of the
node’s interface, and the same happens to port dependen-
cies. If recipient port r of x0 (the manager!) depends on ini-
tiator port i, then x0 must forward any request received on r
to port i2. If r does not depend on any initiator port, then x0

acknowledges immediately any request received by r. As
usual, all transactions connected to a initiator port are also
immediately started.

Returning to our example, let us assume that all nodes
fromA to F are simple. Then a can be blocked at once since
A

0 attends the request made by block a. F 0 issues a re-
quest to block e which gets forwarded by C0 and D0 until
A

0 which gets immediately acknowledged at that point. In a
slightly optimized implementation of this model, if block
a had already executed, it would acknowledge block e’s
request without forwarding it to A0. As a further example,
consider that there is no dependency between the ports of
C (i.e., b is independent of d)., Then block e is acknow-
ledged at the recipient port of C 0 and therefore a and e can
be blocked in parallel as desired.

2A composite node manager also does this, the only difference being
that the forwarding is done through the dependency path made explicit by
the composite node’s architecture.



7. Conclusions

Dynamic reconfiguration is a problem specific to paral-
lel and distributed systems that has practical relevance. We
have adopted a simple and general framework at the soft-
ware architecture level stating which parts of the system
should be “frozen” in order to achieve a stable consistent
state and how the “freezing” and the changes are performed.
We analyzed, formalized, refined, and extended the frame-
work in order to minimize disruption and to handle hier-
archic systems.

In fact, switching from a component based to a connec-
tion based approach, we have come up with a minimal solu-
tion (since it only blocks the connections that will be re-
moved) that is conceptually very simple and not harder to
implement. On the other hand, for the first time for this
framework, we have concentrated on the time taken by the
reconfiguration process. In particular we have defined an or-
der for the change commands that may reduce, considerably,
the disruption of independent parts of the system being re-
configured. The assumption is, again, that commands may
be executed in parallel.

Since a configuration manager executes the commands
of a given change specification, it can be seen itself as a
system of interconnected components, where a component
is a single change command and a connection denotes the
dependency between the two commands it links together.
This model gives a precise and complete account on how a
configuration manager may execute a change specification.
The model is also particularly useful for hierarchic systems,
showing how the reconfiguration process of the whole sys-
tem can be obtained simply by connecting the configuration
managers of the subsystems together, in a way that mirrors
the connections between the subsystems.

We plan to further develop this view of a configuration
manager as a system like the one it manages. In particu-
lar, this view implies that a configuration manager might be
subject to reconfiguration too. In other words, a change spe-
cification can be changed. We think this might be useful in
two situations: failures and validation. If an ongoing recon-
figuration fails for some reason, then one may try to find an-
other but equivalent (or similar) reconfiguration. A simpler
approach is to undo the changes done so far and re-establish
the existing system. In both cases it means that the existing
change specification has to be changed while it is being ap-
plied, i.e., the configuration manager which is executing the
changes must be reconfigured dynamically.

The other situation concerns the validation process. A
change in a subsystem (like the removal without replace-
ment of a server) may force some changes to be done in other
parts of the system (like substitutinga dependent transaction
by an independent one). Thus the validation of the change
specification for a subsystem may force the change specific-

ations of other subsystems to be changed. On the other hand,
this means that the validation of those systems must be re-
done which may cause further changes in the specifications
of other subsystems and so on. Again, change specifications
may change dynamically (in this case as they are validated).
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