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A Hierarchic Architecture Model for Dynamic Reconfigur ation
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Abstract

Dynamic reconfiguration istheability to modify a paral-
lel or distributed system while it is running. We adopt the
framework devel oped by Jeff Kramer and colleagues at the
system architecture level: changes must occur in a consist-
ent state, which is brought about by “ freezing” some system
components. The goal isto reduce systemdisruption,i.e., to
minimize

1. the part of the system to be “ frozen” and
2. thetime taken by reconfiguration operations.

Towardsthefirst goal we take a connection based approach
instead of a component based one. To reduce time, we re-
fine the reconfiguration algorithm by executing changes in
parallel as much as possible. Our model also handles hier-
archic systems.

1. Introduction

Most systems must undergo several modificationsduring
their lifetimein order to cope with new human needs, new
technology or a new environment. Large distributed sys-
tems can be described as a configuration of separate, inter-
connected components. Modifications can therefore occur
both at the component level (change implementation, add
new functions, etc.) and at the architecture level (add or re-
move components or connections). We deal only with the
latter, in particul ar we address the following questions:

1. What kind of modifications can be done?
2. How are they performed?

The answer to the first one is given by a configuration
model that defines the system architecture and the change
process. The second question is about how the changes will
be executed by the underlying operating system.

For economical or safety reasons, some systems can-
not be stopped or taken off-line to perform those changes.
Thus changes are done whilethe system isrunning. Thisis
called dynamic reconfiguration and applies only to distrib-
uted or parallel systems because centralized “single-thread”
systems must be completely stoppedto beatered. Normally
changes may not be executed at once. For example, to re-
move a component first it must cease all interactions with
its neighbour components. Thus a further question must be
addressed:

3. When may the changes be performed?

The answer is: when the components to be changed are in
a consistent state. The definition of “consistency” will be
given by the model and it is brought about by “freezing” a
part of the system which may include components or con-
nections that will not be modified.

To handle the previous questions we adopt a framework
developed by Kramer and colleagues|5, 6]. Itissimpleand
genera, bothintermsof thechangesit allowsand intermsof
the assumptions it makes on systems. Upon closer analysis
of the two algorithms proposed for finding the set of system
components to “freeze’ [6, 2], we have found that neither
is minimal regarding the disruption it causes to the system.
Switching to a connection based approach we come up with
aconceptually very simpleyet effective minimal solution.

However, that only accounts for disruption in terms of
“size’, i.e, what parts of the system are “frozen”. It does
not take into account for how long they are inactive. Since
we work with an abstract, implementati on-independent re-
configurationmodel, our solution just providesan execution
order for the change commands such that they are performed
as much in paralée as the logica dependencies between
them allow.

The third contribution of this paper is the treatment of
hierarchic systems, whose components can be made of inter-
connected subcomponents. For practical purposes, the ori-
gina work [5, 6, 2] only deals with flat systems. The hier-
archic reconfiguration management method to beintroduced
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Figure 1. The dynamic reconfiguration model

alowsthe parallel execution of change commandsin differ-
ent subsystems while taking into account any dependencies
among them. Furthermore the method is as modular as the
systemit isapplied to.

The structure of the paper is as follows. The next sec-
tion summarizes and analyzes thework doneby Jeff Kramer
and colleagues, showing its problems regarding disruption
minimization and hierarchic systems. Whereas the origina
framework isdescribed mainly ininformal terms|[5, 6], this
paper will provide forma definitions: section 3 describes
the refined architecture model and section 4 dedswith dis-
ruption minimization. Towards that end, it presents a con-
nection based approach and an ordering of change com-
mands. Finally, section 5 describes a method to construct a
configuration manager for a given hierarchic system. The
last section presents some concluding remarks and future
work.

2. Theoriginal model

We adopt the configuration model developedin|[5, 6] and
summarized in Figure 1'. In the following we describe the
assumptions made by the model for each element appearing
in the diagram.

A system can be depicted as a directed graph whose
nodes are the system components and whose arcs are trans-
actions between components. As the model is component-
based, it assumes there is a most one connection between
any pair of components. An arc from anode N to a node
N’ statesthat thetransactionisinitiated by vV, athough dur-
ing the transaction communication flow can occur in both
directions. Transactions complete in bounded time and the
initiator is dways informed of completion. In particular,
the system does not get into any deadlock or livelock situ-

L Figures 1to 5 are adapted from [5, 6, 2].

ation. These assumptions will help to prove that the con-
sistent state can be reached in finite time and that the con-
figuration manager will know when. A transaction ¢ is de-
pendent on the consequent transactions ¢, -, ... (written
t/tit5 .. .), if its completion depends on the completion of
all the other ones. Otherwise a transaction is called inde-
pendent.

Changesto a system are specified using four commands,
to be executed by the operating system, with obvious mean-
ings. create N,renmove N,link Nto N',unlink
N from N’. Given a specification of the current sys
tem configuration and the specification of the configuration
changes, the validation process checks whether the changes
may be (totally or partially) applied to the system and pro-
duces the specification of the resulting system. Checks may
range from simple syntacticones (e.g., r enrove N isincor-
rect if N does not exist in the system) to deep semantic res-
ults (e.g., will the resulting system be deadlock free?). In
the following it is assumed that changes are valid and that
the specification is declarative, i.e., the change commands
are not in any particular order.

Given thevalid changes, the configuration manager gen-
erates the ingtructions for the operating system to reconfig-
ure the current system, such that the resulting one will con-
form to the specification produced by thevalidation process.
In particular, the manager performs the following steps:

1. Compute from the change specification the nodes that
must bein aconsistent state for reconfiguration to take
place.

2. Computethe nodesthat must become “frozen” in order
to achieve consistency over the set of nodesobtainedin
the previous step.

3. Send a“freeze” message to each node obtained in step
2 and wait for al the acknowledgments.

4. Ingtruct the operating system to execute changesin the
followingorder: unl i nk, r enove,create,l i nk.

5. Instruct the created and the “frozen” nodes (except the
removed ones) to resume processing.

There are two approaches based on thismode that differ
onlyinsteps2 and 3. Thefirst one[6], whichwewill call the
passive approach, “freezes’ anodeby preventingit fromini-
tiating any new transaction; the second one [2] completely
stops the node's execution and therefore will be called the
blocking approach.

2.1. The Passive Approach
Inthismethod [6] the“frozen” stateiscalled passiveand

the “freeze’ message ispassi vat e. To facilitate exposi-
tion, let usfirst handle only independent transactions.



Figure 2. A client-server system with depend-
ent transactions

A component is passive if it is not engaged in transac-
tionsit initiated and if it will not start new ones. However,
it must accept and service transactions in order to let other
nodes become passive. Therefore, passiveness is reachable
in finite time: a component just has to wait for the transac-
tionsit initiated to finish (thisis guaranteed to happen) and
then make sure it will not start new ones. The passive state
isjust a necessary condition for reconfiguration. In order
to guarantee a consistent and stable internal state, in addi-
tionto being passive a node should not have any outstanding
transactionto service. Thisiscalled quiescence and depends
on those components that can initiate transactions with the
node. Therefore, the passive set of a node ), PS(Q), is
defined as () and all nodes with connection arcs towards ().
Itiseasy toseethat () isquiescent if all nodesin PS(Q)) are
passive.

The quiescent set ().5 for a given change specificationis
the set of nodes that must be quiescent during the reconfig-
uration, namely those that will be removed and theinitiators
of transactions that will be added or removed. Newly cre-
ated nodes are automatically quiescent. The set of nodes to
“freeze’, called change passive set, isthen simply CPS =
Uicqs PS().

To seewhy thisdoes not work for dependent transactions,
consider a system with clients C; accessing through agents
A; aserver S managed by M (Figure 2). If the server is
going to be replaced, then both .5 and p will be removed.
Thus the configuration manager calculates Q.S = {M, S}
and CPS = {Ay, Ay, M, S}. However, if aclient has a
new request s;, then the respective agent cannot service it
because according to the definition of passivenessit may not
initiate r; (on which s; depends). Thiswould lead to a par-
tially incompl ete transaction, i.e., to an inconsistent state of
thewhol e system during reconfiguration. On the other hand,
allowing A; to start transaction r; would lead to new trans-
actions on the manager and on the server, which therefore
would not be in the quiescent state.

To solve this problem, the notion of passive state must
be changed. Otherwise reachability of the quiescent statein
bounded time would be lost. If A; isto be replaced, then
QS = CPS = {Cy,A;}. If A; becomes passive be-
fore 1, and C; just initiates a new transaction s; before
getting the passi vat e command from the configuration

= E
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Figure 3. Mutual dependencies

manager, then the client will never become passive because
rq isnotinitiated. Inthiscase one could order thecommands
(passi vat e (' beforepassi vat e A;), but for systems
with mutual dependencies like the one in Figure 3 no such
ordering is possible.

The notion of passive set must also change, since the
nodes that may initiate transactions with a given node are
not just itsimmediate neighbours. The new definitions are
thus asfollows.

o Inthegeneralized passive stateanodeisnot engagedin
non-consequent transactions it initiated and it will not
initiate new ones. Furthermore the node accepts and
services al requests, initiating consequent transactions
if necessary.

e The enlarged passive set of anode @, EPS(Q), in-
cludes ) and al nodes that can initiate transactions
which result in consequent transactions on ().

Notice that both definitions reduce to the old ones in case
all transactions are independent. The reconfiguration al-
gorithm remains the same, except that P.5(¢) is substituted
by EPS(i) inthecalculationof C'PS.

The server replacement in Figure 2 is now correctly
handled. Since EPS(S) = {01, Aq,C, As, M, S}, al
nodes have to be passivated. Even if al components but C4
are dready passive, any pending s; transaction will be ser-
viced (through A; and M) by the server and therefore the
client can become passive and reconfiguration may start.

In general, systems are not flat as assumed until now
but hierarchic, i.e., some nodes (called composite) are made
of connected subnodes. A composite node is connected to
other nodes through some of its subcomponents. The trans-
action dependency of a composite component must be de-
rived from its subcomponents. The following substitution
ruleisgivenin[6]:

“when composing 2 nodes, substitute the con-
sequents for each occurrence of the dependent
transaction which is hidden by the composition.”

The rule can be iterated on components and connections
(Figure 4). To simplify reconfiguration management, [6]
suggeststhat acomposite nodeisconsidered to be passiveif
all its subnodes are, and that all transactions between com-
posite nodes are independent.
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Figure 4. Composing dependencies

2.2. The Blocking Approach

Anaternativemethod ispresented in[2]. It assumes that
anodeis consistent and self-contained except during trans-
actions, as those are the only interactions with the outside
environment. Thus, to make a node quiescent it is enough
to block it whileit isidle (not engaged in any transaction).
A component isa so assumed not to interleave transactions:
while handling a request a node may not service any new
one, evenif it comesfrom adifferent connection, and it may
initiate only consequent transactions. Thisis used to prove
that the blocked state isreachablein finitetime,

The basic agorithmisthusto send abl ock message to
the nodes in the quiescent set (called BSet, short for block-
ing set, in [2]). Assoon as such anode N isidle, it blocks
and sends an acknowledge to the configuration manager.
Since some of the nodes that depend on V may also have
to block, N must temporarily unblock to service some re-
guests. However, it must be guaranteed that at some point no
more such requests will arrive and N will remain blocked.
The basic question is therefore: what transactions should a
blocked node service?

It is obvious that it cannot process just any incoming
transaction, since it might come from a node that is not af -
fected in any way by the reconfiguration and as such might
initiate a new transaction any time. Thus the blocked node
would have to unblock unpredictably and the safe state
needed for reconfiguration to begin would never be reached.
It is aso evident that at least the transactions initiated by
other BSet members will have to be serviced in order for
them to become blocked. On the other hand, not every re-
guest from a non-BSet member can be ignored. Consider
the cases depicted in Figure 5. Node D must servicethere-
guest from C' because it isthe nth consequent transaction of
atransactioninitiated by A, which must be completed for A
to become blocked. In the second case on the right half of
the figure, component F' has initiated a transaction with
before getting a request from E. IF & does not service the
transaction, F' will never be able to start attending E’sre-
guest since transactions do not interleave.

One could let BSet nodes unblock just in those situations
but the authors think thisis non-trivial and has great run-
time overhead. Instead they propose the BSet to grow dy-

Figure 5. A blocking problem

namically in step with outgoing transactions. When a node
gets arequest from a BSet member, it becomes a member
too, and only reguests from BSet members are attended; all
other are queued and serviced after the reconfiguration. In
the previous cases, it means that the BSet grows to encom-
pass the whole system, and therefore D and G will service
the transactionsinitiated by C' and F' respectively.

Notice that the BSet has two kinds of members: those
that “really” must block dueto the reconfiguration and those
that block in order to let members of the first kind to get
blocked. Therefore a distinction is made between the ori-
gina BSet and the extended BSet. Their union isthe BSet.
When all the origina BSet nodes become blocked, the com-
ponents in the extended BSet can be unblocked since their
raisond’ érehas ceased. Thedisruptionthusfirst growsand
then shrinks.

As the calculation of the BSet is dynamic, the reconfig-
uration algorithm is distributed through the configuration
manager and the nodes. Each node runs the same code in
a transparent way using hooks that are caled upon relev-
ant events like message arrival (from another node or from
the configuration manager), transaction begin and transac-
tion end. The application programmer only has to mark in
the component’s code where the last two hooks have to be
activated. The coderun by each hook basically updateslocal
variables and sends messages to other nodes or to the con-
figuration manager when necessary. The main variablesand
messages are those that concern the BSet. The configura:
tion manager computes the original BSet (in the same way
asthepassive approach, sinceit isthe quiescent set) and the
so called PSet (short for primed set), the set of al nodesthat
may be recipients of transactions initiated by BSet mem-
bers. Whenever such anode receives amessage from a BSet
member, itinformsthe configuration manager that it must be
added to the (extended) BSet. The configuration manager
calculates the new PSet and sends the updated value of the
BSet to dl those nodes.

3. Discussion

Theauthors of theapproachesjust described discusstheir
results, but since[2] containsnot asingle example, compar-
ison with [6] is stated in brief and vague terms. Since we



use the same framework, we take a closer look at the two
different methods in order to gain a better insight into the
reconfiguration process to achieve further reduction in dis-
ruption. Both approaches will be analyzed in terms of dis-
ruption, run-time overhead, implementation, and how they
deal with hierarchic systems.

We adopted this model because, as stated in [2], other
work in dynamic reconfiguration either only dealswith tool
and language support to describe and execute the changes
[1] assuming that the system is already in a safe state, or
it imposes limitationsto guarantee maintenance of the sys-
tem’'sstate[4, 3, 9]. Limitationscan beonthekind of system
(e.g., only client-server) or on the kind of changes handled
(e.g., a component may only be replaced by a specidiza-
tion of it). Sometimes they are due to the existence of spe-
cia mechanisms to capture and recover the application state
prior to the change. The described framework is more gen-
erd: it alows any kind of changes, it provides a means to
achievethestablestate, and it doesnot require specia mech-
anisms.

3.1. Implementation

In the first approach the application programmer is ex-
pected to provide code that will dlow the component to
reach the passive state and keep it, whereasin the second ap-
proach this happens transparently dueto the added assump-
tion that nodes are consistent when there are no interactions
with the rest of the system. Of course, the other side of
the coin is that the implementation is hidden away into the
hookswhichmust trap low level eventslikemessage arrival.
Thismeansthat theimplementor of thisapproach must have
access to the operating system source or €l se program anew
layer that will be used by the applications.

On the other hand, the first approach requires just one
passi vat e message for each node in the extended pass-
ive set, while the second method generatesinitially | P Setg|
messages and then 1 + | P .Set; | messages for the addition of
the ith member of the extended BSet. Also, the messages
in the static method are just tokens, while those in the dy-
namic approach are descriptions of (potentially large) sets.
The blocking approach hasthus much greater run-timeover-
head and is more complex to implement, but imposes less
burden on the component programmer.

3.2. Disruption

The important point in any dynamic reconfiguration
method is that the “freezing” of anode NV does not prevent
other nodes from reaching their “frozen” state. Basicaly,
both approaches solve the problem by “freezing” aso every
node that dependson N or on which N depends. This does
not minimizedisruptionand infact may involvemany com-

ponents besides those that will be affected by reconfigura-
tion.

Toillustratethe differences between both approaches, et
us apply them to common examples. We will write OBS
and EBS for the original and the extended BSet, respect-
ively. The first example is the system of Figure 2. If the
server isto be replaced, we have seen that thefirst approach
passivates all nodes. The second method considersOBS =
{M,S}, EBS = {} and PSet = {S}, because the only
outgoing transaction from a BSet member is p and goes to
theserver. Thismeansthat onoccurrenceof p, EBS = {S}
and on its completion both M and S block because they are
idleand in the BSet. Notice that the clients are not blocked
and therefore may initiate new transactions during reconfig-
uration. Since M is blocked, it will queue the requests and
service them after the changes doneto the system. Thiswas
considered an inconsistency in the passive approach, but in
our opinion this is perfectly acceptable because the server
manager has not been changed. Therefore itsinterface with
theagentsand the new server isthesame as previoudly. This
means that the new server is ableto attend requests sent to
the old one. To sum up, the blocking approach causes less
disruption. The reason is that a passive node (and in par-
ticular a quiescent one) is active regarding transactions it
services. Therefore, to achieve inactivation the node must
be “shielded” from outside requests and that shield (the ex-
tended passive set) must remain during reconfiguration. No
such shieldisrequired inthe second approach sincethe com-
ponents actually stop.

Now consider the same system but where the first cli-
ent has to bereplaced. Inthiscase QS = EPS = {C1}
since no component depends on ;. Therefore, as soon
as the transaction terminates, C; will become passive and
automatically quiescent. Reconfiguration can start, whileall
other components remain active. Applying the blocking ap-
proach onehas OBS = {C4}, PSety = {A1}, EBSy =
{}. If thereisapending client request, EBS; = {4;} and
PSet; = {M}. Since the transaction is dependent, after
two more steps EBSs = {4y, M, S}. In other words, to
replace a client, the server is blocked (even if temporarily)!
Thiswouldremain so even if all transactions being executed
wereindependent. In thisexample thefirst approach causes
much less disruption, contrary to the claim in [2] that the
blocking approach performs aways at least as well as the
passive method. The reason is that the blocking approach
ispurely dynamic: it does not precompute the dependencies
between nodes, which is essentia to determine whether the
blocking of two components will interfere with each other.
Therefore a run-timethe method goesthrough all the nodes
an O B.S member depends on, which formthe £BS. If the
configuration manager would compute the paths between
OBS members, disruption could be greatly reduced in most
Cases.



The last example is the left half of the system in Figure
5. In the second approach, if A isnot engaged in any trans-
action with B, it will block immediately. Thus as soon as
D isidleit will get blocked too and reconfiguration starts.
In the first approach, al nodes from B to C' will be passiv-
ated even if no dependent transaction will occur. Thisisthe
advantage of a dynamic method. It only takes into account
transactions that are actually occurring in the running sys-
tem, whilea staticanalysismust involveall transactionsthat
may occur.

The authors have concentrated on the number of nodes
that are passivated or blocked by their methods, but wethink
that indirect disruption must aso be taken into account.
Since ablocked node does not any processing whatever, any
transactionit servicesor initiatesunrel ated to thereconfigur-
ationwill also be stopped and that may |ead to (partial) inac-
tivation of other components. Since passive nodes till ser-
vicerequeststhey cause indirect disruptionin smaller scale.
But internal processing that requires initiation of transac-
tionsis till hindered. Thisis recognized in [6]. The au-
thors observe that the replacement of the server in Figure
2 passivates the clients thus stopping them from interacting
with other nodes not shown on the figure. Therefore, they
should only be passive with respect to the server being re-
placed, not other nodes unrelated to the change. This could
be achieved by distinguishing the relevant connections and
modeling their state (connected-passive, connected-active,
disconnected). Thiswould alow more granularity, but the
authors think it would lead to more complex substates and
more complex actionsto obtain consistency since the nodes
would be partially active. Therefore they think their ap-
proach, while not minimal, is simple and sufficient.

In our opinionthereisanother factor that contributesto a
greater disruptionthan necessary in some cases. therequire-
ment for quiescence of theinitiator nodein (un)link changes.

Let us assume that the change specification contains a
command unl i nk v f romN' for anonconsequent trans-
action. Itisnot necessary for IV to be quiescent. Itisenough
to be passive, thusnot starting any new transaction with ',
Consider the right subsystem of Figure 5 where connection
1 will beremoved. If FF € S then E and every node that
depends on transaction 2would bein FPS. Thereforethey
and al nodes on which they can initiate transactions would
be partidly inactive. If F' were only passivated, the exten-
ded passive set would not include the other nodes, reducing
direct and indirect disruption greatly.

Also,if thereisal i nk Nt o N’ command but neither N
nor N’ are changed, then the new connectionisthe replace-
ment of a previously existing connection or it isan optiona
connection (because N was dready working without it). In
any case N does hot haveto be quiescent or even passive. It
isonly inthose statesif it hasto bereplaced or if someof its
connectionswill beremoved. Inour opinion, theaddition of

connections by itself should not impose passiveness.

Both approaches measure disruption only in terms of
nodes, neglecting thetimefactor. Intheconfiguration model
described in section 2 first components are “frozen”, then
change commands are applied, and finally components are
activated. This does not minimize disruption time because
each phase can only begin after the previous one ended.
Moreover, commands are performed in a fixed sequence
(firstdl unl i nk, thendl r enpve, etc.). Itisobviousthat
in many cases some changes are independent of others. In
those cases a part of the system might be changed without
having to wait for nodes in other parts to be “frozen”, or
commands of different kinds might be performed in paral-
lel.

3.3. Hierarchic systems

In[2] no reference ismade to hierarchic systems. Infact,
the blocking approach does not work for them since a com-
posite node will in the genera case interleave transactions,
because its subcomponents run in paralel. As written be-
fore, [6] deds with such systems but their treatment is still
very sketchy. Basically, it only indicates how to compute
a composite node's dependencies from its subcomponents.
From there the extended passive set a the higher level can
be computed. If the composite node hasto be passivated, all
itssubcomponentsshould. Thiscertainly doesnot minimize
disruption. We aso fed that requiring independent trans-
actions between composite components (asin CONIC [8])
to reduce the number of those to be passivated may lead to
extremely large components or to many small ones. In any
caseit may forcethe system designer to partitionthe system
into artificial composite componentsthat are uneasy towork
with. But moreimportantly, [6] does not deal with theinter-
action between changes at different levels or how changes
at alower level will affect higher levels of the component
hierarchy.

4. Therefined mode

Although the origina analysis of the requirements for
dynamic configuration [5] stressed the importance of mod-
ularity and well-defined component interfaces, the model
presented in [6] does not support it. However, the con-
crete configuration language presented in [5], CONIC, and
its successor DARWIN [7] provide a mechanism to specify
the communi cation pointsof acomponent, called ports. Our
model will thussupport that notion, too. Aninterfaceisjust
aset of ports, each being used either to initiate transactions
or to receive requests. Since the environment has no access
to theinner structure of acomponent, the programmer must
providein the interface the dependencies between initiator
portsand recipient ports.



Definition 1 A nodeinterfaceisatriple(7, R, D) where
o [ isthefinite set of initiator ports;
o Risthefiniteset of recipient portssuchthat TN R = ;
e D C R x I istheport dependency relation.

A systemissimply aset of connected nodes, where acon-
nection is given by an initiator port and a recipient port. To
capture sound software engineering principles (modularity,
encapsulation, data hiding, etc.), a system has no access to
the inner structure of its nodes; it knows only their inter-
faces.

The origina model isintended for node based reconfig-
uration, i.e., “freezing” is done upon nodes. Moreover, the
computation of the passive and blocked sets depends only
on the pattern of connections, not on their number. There-
fore the model can assume without loss of generdity that
there is only one arc between a given pair of components.
A connection based approach like ours distinguishes indi-
vidual transactions and thus one must alow severa con-
nections to be linked to the same port (but only one trans-
action for any given pair of ports). This covers typica
situationslike client-server (al client transactions linked to
same server recipient port) and broadcast (many transac-
tions with common initiator port). To avoid deadlock, the
connections (together withthe port dependencies) may form
no cycle. Formally, there may be no closed sequence of a-
ternating recipient and initiator ports such that every initi-
ator port depends on the succeeding recipient port which in
turnislinked to the next initiator port.

Definition 2 A systemisapair (N, T) where
e N isanon-empty finite set of node interfaces;

o TC | J I. x | Rnistheset of transactions.
neN neN

A non-empty path is a sequence of portsriiirais - - - Pty
withm > 0 such that

e Vie{l,...om—1} (i, rj41) €T,
e Vje{l,...om}3IneN (rj,i;) € D,.
For every non-empty path r; - - -4,,, onehas (i,,, 1) ¢ T

Theorigina model assumes that the dependenciesamong
transactions are given with the system. We feel that our no-
tion of port dependency is more redlistic and more flexible
sinceit allowsthe system architect to work with components
he has not programmed himself. Besides, itisamore prim-
itive notion because the dependencies among connections
can be computed from those between ports: if recipient port
r depends on initiator port 7, then any transaction received

by r starts atransaction (i.e., depends) on every connection
fromi. Asintheorigina modd, theinverseisnot true: the
component might start atransaction on port : without having
received any request on port r. The transaction dependency
relation is closed under transitivity.

Definition 3 Given a system (N, 7", the transaction de-
pendency relation / C 7' x T isdefined as (i, r)/{¢,7') &
(Fne N (i) e D)V (3 eT (i,r)/t" ANt/ r")).

A transaction ¢ is dependent (on the consequent transac-
tiont) if 3¢’ € T t/t’, otherwiset isindependent.

The acyclic condition on port paths can thus be restated
as. transaction dependency is anti-reflexive.

Proposition 4 Inasystem (N, T), A&t € T t/t.

To build modular architecturesit must be possibleto ab-
stract systemsinto nodeswhichwill be part of other systems.
A system will be encapsulated in a composite node by hid-
ing part of the system’s ports. The dependencies of the re-
maining visible ones (i.e., the ports of the composite node)
are given by the underlying system.

Definition 5 A composite node consists of an interface
(I, R, D)y and asystem (N, T") such that

QIQUIH;

neN

o RC |J Ru:
neN

o D={(r,i) € RxI|ri - rpiisanon-empty path
in{N,T)}.

If a node is not decomposed into further nodes, then it
is caled simple. Formally, only its interface is available.
A system is hierarchic if it contains at least one composite
node. Strictly spesking, given a system it isimpossible to
know for any of its nodes whether it is simple or composite
because the formal definition of a system only providesthe
node interfaces. Thusitis possible for a simple node to be
changed into acompositeoneand vice-versain atransparent
manner to the system.

5. Minimizing disruption

From the long summary and analysis of the passive and
blocking approaches it becomes clear that to minimize dis-
ruption we must look for a static blocking method at the
connection level. To ensure that blocking a connection will
not prevent others from reaching the blocked state, we can
use a previously mentioned idea: to order the execution of



“freeze” commands. Thisworksat the connection level be-
cause transactions do not form cycles. Extending the execu-
tion orderingto all commands one can define precisaly what
changes may be performed in parallel to reduce disruption
time.

5.1. The connection approach

The essence of our proposal isto block only those con-
nectionsthat will be removed. To block aconnectionitsini-
tiator node waits for any ongoing transaction (on that con-
nection) to finish and then simply does not start a new one.
For thisto work we assume, asin the original model, that a
transaction finishesin finitetime and that itsinitiator knows
whenit ends. A simpleimplementation might bethefollow-
ing. For each component, assign to each transaction 7; it
might initiate a boolean variable bl ocked[ i ] initialized
to false and a semaphore S i ] . Then substitute the trans-
action code 7; by

P(S[i]);
wait while blocked[i]; T;;
V(S[i]);

and add the following case to the code that dispatches the
incoming requests:

if msg. command = bl ock then begin
i :=nmsg.arg; P(Si]);
bl ocked[i] :=true; V(S[i]);
send(confi g_manager, bl ocked, i)
end

This code can aso be provided by three hooks if wished.
One to be caled on transaction begin, one on transaction
end. These hooks must be explicitly called by the compon-
ent’s programmer, passing the transaction identifier as argu-
ment. The third hook would be called transparently to the
component on message arrival. Compared to the blocking
approach, run-time overhead is small since only one simple
bl ock message per connection is sent and acknowledged.
However, the number of messages is usualy larger than in
the passive approach because each node to be removed has
to receive as many bl ock messages as the connections it
has.

Blocking a connection means that the node will not ser-
vice any transaction that depends on the blocked one. To
ensure that the blocking of one connection will not prevent
other pending transactions to block, the configuration man-
ager orders the blocking according to dependency: if trans-
actiont dependson¢’ thenthebl ock messageissent tothe
initiator of ¢’ only after t isknownto beblocking. Thisisal-
ways possi ble because transactions do not depend cyclically
on each other.

Consider again the client-server system of Figure 2. Let
us assume that C'; and the server will be replaced. Then
s1 and p must block because they will be removed, but p
cannot sSimply block at once because it may have to ser-
viceapending s; request (or else s; could never terminate
and get blocked). Therefore, blocking s; before p we are
surethat the blocking state is reachable for each link. Also,
any request received by manager M after p blocked can be
safely queued until the server has been replaced because it
isknown that any connection that depends on p and that had
to block has aready done so.

Notice that this method would not work if the server
would be alowed to be simply removed without being re-
placed by a new one. In that case a partially completed s,
request could remain after reconfiguration: clearly an in-
consistent state. We assume that the validation process has
ruled out such cases. If aconseguent transactionisremoved,
either areplacement connection is created or el se thetrans-
actions which depend on the removed one are changed too.

The origina reconfiguration model distinguished two
kinds of commands. those that are given in the change
specification (cr eat e, etc) and those that are used to
“freeze’ the components (passi vat e, bl ock) and to ac-
tivate them again after reconfiguration end. The former
are common to the passive and blocking approaches, while
the latter are specific to each approach. In our modd the
“freeze’ command blocks a connection and we will ignore
the activation commands since they are not fundamental
for the main issues of this paper, namely disruption min-
imization and hierarchic systems. Furthermore, as multiple
transactions are allowed between the same pair of compon-
ents, the syntax of the( un) I i nk commands hasto change
dightly.

Definition 6 A command is either of cr eat e n, r enove
n,l i nkt,unlinkt¢orbl ock ¢, where n isanodeinter-
face and ¢t atransaction.

5.2. The partial order

To minimize disruptiontime, the preci se execution of the
commands issued by the configuration manager is given by
atempora order <: if ¢ < ¢’ then command ¢’ can only be
executed after command ¢ has completed. Commands that
are not related through the ordering can be executed in par-
alel. It isobviousthat the order must include the following
relationships:

1. If atransaction ¢ depends on a transaction ¢/, then ¢
must be blocked before t'.

2. A connection must be blocked beforeiit is removed.

3. A node can only beremoved after its connections have
been removed.



4. A node can only be linked after its creation.

We will be conservative and impose a further restriction.
In some systems it might not be necessary and thus further
paralelization can be achieved. Consider a simple system
with aclient linked through transaction ¢ to a server. If the
server isto be replaced then anew connection ¢’ is needed.
However, since the client remains the same, the communic-
ation protocol withthenew server isthesame aswiththeold
one. Therefore, ¢’ isthe same transaction as ¢ and we fed it
does not make sense to link ¢’ before unlinking ¢. Besides,
it might lead to execution errorsif theimplementation of the
client assumes that there is aways only one connection on
that particular port. The general ruleis:

5. A transaction initiated by a node can be established
only if no more transactions initiated by it will be re-
moved.

Ascan be seen by exhaustiveinspection of al possiblein-
teractionsbetween theexisting kindsof commands (bl ock,
i nk, unlink, renove, cr eat e) no further rules are
necessary since there are no other dependencies between the
commands and thus they may runin paraldl.

Definition 7 Given a set of commands C' for a system
(N, T, the command order < C ' x ' isthesmallest re-
lation that satisfies

1. bl ock ¢t < bl ock ¢ if¢/t’ and Abl ock ¢ € C
t/t///\t///t/;

2. bl ock ¢t <unlinkt,

3. unlink {(i,r)<removenifie I, orr € Ry;
4. createn<link{ir)yifie I, orr € Ry;
5. unlink (7,r) <link ().

Since the configuration manager will directly implement
the command order, it is desirable to avoid redundancy.
Therefore the ordering is an immediate precedence relation:
if ¢ < ¢’ thenthereisno command ¢ suchthate < ¢” < ¢'.
Due to the nature of the five cases this could only happen
with bl ock commands (case 1). Therefore the definition
above imposes the additional condition.

Let usreturnto theexample of Figure2. Only 4 stepsare
necessary to replace the first client and the server whereby
each step consists of several commands executing in paral-
lel:

1. create C},bl ock s, create s
2. unlink sy, bl ock p

3. i nk s} (theconnectionfrom C to A4,),r enove C1,
unlinkp

4. 1i nk p’ (the connectionfrom A/ to S’), r emove S

Noticethat in some cases some commands of step 7 + 1 can
start without step : being completed (theexact order isgiven
by Figure 6 as explained inthe next section). Since our rules
take into account the specific components or connections
on which the commands are to be executed, the disruption
suffered by each system part being changed is grestly re-
duced since change actions are much moreinterleaved than
in the original model.

To summarize, a connection based approach is not
only advantageous in terms of the number of parts being
“frozen”, but also in terms of minimizing disruption time.
In fact, in the node based approaches severa nodes have
to “freeze” just to let those nodes that realy matter for
the reconfiguration to become quiescent. In practice this
meansthat reconfiguration can only start after all nodeshave
“frozen”. We think it is possible to have rules that allow
oneto calculate the exact set of nodesthat have to “freeze”
for agiven change command to be executed, but those rules
would be much more complicated than those shown above.
Given that in a connection based approach the number of
partsto be “frozen” is much smaller, and that “freeze” and
change commands can be better interleaved, we conclude
that our method can reduce disruption time considerably.

6. The configuration manager

Since a configuration manager executes several com-
mands with some dependencies among them, we observe
that such a manager can be seen as a paradlel system too,
with componentsand transactions. Thegoal isto haveapre-
cise definition of a configuration manager for a given set of
commands to be applied to a given system. In thisway the
same framework can be used both for managers and the sys-
tems they reconfigure. In particular, the definition to be ob-
tained can serve asabasisfor astraightforwardimplementa
tion of configuration managers, athough our main goal isto
provideasystem view of amanager. To facilitateexposition
we will start with flat systems.

The basic idea is that each change command is imple-
mented by a component, and connections between compon-
ents make dependencies between the corresponding com-
mands explicit. To be more precisg, if ¢ < ¢’ then the com-
ponent correspondingto ¢’ will initiateatransactionwith the
component corresponding to ¢. The transaction can be seen
asarequest from ¢’ to execute c. Once the acknowledgment
isreceived, ¢’ can execute. If ¢/ depends on several com-
mandsit must wait for all itsrequeststo beattended. A com-
mand isexecuted only once, even if severa other commands
are connected to (i.e., depend on) it.

A component implementing acommand ¢ must therefore
have two ports. The recipient port s. receives al requests
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Figure 6. A specific configuration manager

from the successors of ¢, i.e., those nodes that can only ex-
ecute after ¢. The initiator port p. sends requeststo all pre-
decessors of ¢ to start execution and waits for the acknow-
ledgments. Itisobviousthat s. dependson p..

In some cases a command ¢ does not depend on the ex-
ecution of others. In other words, there isno ¢’ such that
¢ < ¢. Theinverse can aso happen: no ¢’ depends on c.
For example, if connections are to be removed, thereisa-
waysat least one bl ock command to be executed first (i.e.,
it depends on no other one) and at least one bl ock to be
executed last. In these cases the corresponding components
only need one port. Instead of providing special compon-
ent definitions we take a generic approach. The configura-
tion manager has aways one special nop component with
one recipient port snop and one initiator port pnop (like
any regular component) but thereis no dependency between
them. For any request received by snop an acknowledg-
ment isimmediately sent. Likewise, any transaction linked
topnop isimmediately started. To seewhy thisworks, con-
sider the case where thereisno ¢’ suchthat ¢’ < ¢. Sincec
depends on no other command, it can execute at once. In
other words, the fact that ¢ has no predecessor can be seen
asitspredecessor being the“empty” command nop. There-
fore, if ¢’spredecessor port p. islinked to the successor port
snop, the request from ¢ isimmediately attended by nop
and therefore ¢ can execute at once as wished.

Definition 8 The system configuration manager that recon-
figures the flat system (V, T") according to commands C' is
asystem (N', T") where

N = {{pe}, {sc), {(se,pe)}) | c € CY
U {({pnop}, {snop},®)}
and 7" isthe smallest relation that satisfies
L (pe,sery €T ifd <

2. <Pc,5n0p> eT if Ad ¢ < ¢
3. {pnop,scy € T"if A’ e < ',

According to this definition the reconfiguration of the
client-server system of Figure 2 can be done by the man-
ager depicted in Figure 6 which alows usto quickly seethe
ordering of the commands, in particular which must be ex-
ecuted sequentialy and which can run in paralel. Notice
that the execution path starts and ends at the nop node, and
that the four steps presented in the previous section corres-
pond to the four levels of the topological sort of the graph.

Hierarchic systems pose a problem that does not occur in
flat systems. if commands ¢ and ¢’ apply to different sub-
systems, it might still be the casethat ¢ < ¢ (or vice-versa)
duetotheway thesubsystemsare connected. Asan example
let us consider Figure 7 where the dotted lines indicate for
each port of a composite node which is the corresponding
port of the contained system. Assume further that for each
of B, C, D,and E, therecipient port dependson theinitiator
port. The same appliesto N, according to the definitions of
composite nodes and transaction dependency, and thusb/d
as seen on the right. Moreover, for the given configuration
onehasa/e, whichisnot apparent just by lookingat N . If
A and I are to be replaced, those two connections cannot
be blocked in paraldl. One could flatten the whole system
to discover that bl ock a < bl ock e, but that defeats the
whole purpose of buildinga modular system.

Therefore, toreflect the hierarchy of asystem and the be-
nefits of its partitioning, we propose a configuration man-
ager for each node. We have seen that a manager for asys
temisasystemitself. Likewise, the manager of anode will
be anode, with an interface that will alow it to belinked to
other configuration managers. The problem isthuswhat in-
terface a node manager needs and how should it be linked
to other managers. The goal is to achieve the correct order
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Figure 7. A hierarchic system

of command execution in the most modular possible way.
In other words, anode manager should only know about the
subsystem it manages, not about the managersitislinkedto.
Therefore, the internal structure of a node manager should
be such that it can work in any possible context.

The solutionto the problemisbased on thefollowing ob-
servations. Let us assume that node x has an initiator port
i linked to recipient port r of node y. Thus any change in-
side # that depends on transaction (:, ) must occur before
the changes inside y that depend on (i, ). Thereforethere-
guests of the change commands inside y must be acknow-
ledged by the changecommandsinsidex. Thereforethedir-
ection of requests is opposite to the direction of the trans-
action that establishes the dependency between z and y. To
sumup, theconfiguration manager z’ for z hasreci pient port
1, themanager ¢ for y hasinitiator port r, and the requests
of ¢ are passed to #’ through transaction (r, 7). If the sys-
tem’s transaction (4, r) is going to be blocked then the re-
configuration manager for the whol e system cannot just link
sub-manager z’ to sub-manager 3. In thiscase port » of
isconnected to therecipient port of bl ock (7, ) whoseini-
tiator port islinked to port i of ='.

To put it in more genera terms, the configuration man-
ager for a hierarchical system S consists of one compon-
ent for each command, one component called nop, and one
configuration manager for each nodein .S. A node manager
has the same interface as the node whose reconfiguration it
manages, except that initiator ports are exchanged with re-
cipient ports. Thisimpliesthat the manager’s port depend-
ency relaionistheinverse of the node's dependencies, and
that connections among node managers are the opposite of
those between nodes, except for transactionsthat must bere-
moved. Thosewill be of course substituted by the respective
bl ock command.

Definition 9 The system configuration manager that recon-
figures the hierarchic system (N, T) according to com-
mands C' isasystem (N’, T") where

N’ {(Rn, I, D;*) [ n € N}
{{ped st {{se, pe)}) | e € C}
{({pnop}, {snop},0)}

and 7" isthe smallest relation that satisfies
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Figure 8. Composing reconfigurations

1. (r,i) € T'if (i,r) € T Abl ock (i,r) & C;

r,5¢), (pe, i) € T' if ¢ =bl ock (i, r);

-
2. (
3. (pe,sy €T if ¢! < ¢;
4. (pe,snop) € T"if A’ ¢/ < ¢;
5.

pnop, sc) € T if A’ ¢ < (.

Definition 10 The node configuration manager for a com-
posite node with interface {7, R, D) and system (N, T, to
which commands C' will apply, is a composite node with
interface (R, I, D~') and system configuration manager
(N, T").

Applyingthe definitionto the example of Figure 7 we get
the manager depicted in Figure 8. Notice how indeed e gets
blocked only after a, since therequest of bl ock ¢ ispassed
aong NV, back through the other port of N tobl ock a.

For thedefinitionto be completeit remainsto be said how
a configuration manager =’ for a simple node = behaves.
Asfor any node manager itsinterface isthe “mirror” of the
node's interface, and the same happens to port dependen-
cies. If recipient port r of =’ (the manager!) dependsonini-
tiator port 7, then =’ must forward any request received on r
to port ;2. If + does not depend on any initiator port, then z’
acknowledges immediately any request received by r. As
usual, all transactions connected to ainitiator port are also
immediately started.

Returning to our example, let us assume that al nodes
from A to I aresimple. Then « can beblocked at oncesince
A’ attends the request made by bl ock a. F’ issuesare
quest to bl ock e which getsforwarded by ¢’ and D’ until
A’ which getsimmediately acknowledged at that point. Ina
dlightly optimized implementation of this mode, if bl ock
a had already executed, it would acknowledge bl ock e's
request without forwarding it to A’. As afurther example,
consider that there is no dependency between the ports of
C (i.e, b isindependent of d)., Then bl ock e is acknow-
ledged at the recipient port of C* and therefore ¢ and e can
be blocked in parallel as desired.

2 A composite node manager aso does this, the only difference being
that the forwarding is done through the dependency path made explicit by
the composite node’s architecture.



7. Conclusions

Dynamic reconfiguration is a problem specific to paral-
lel and distributed systems that has practica relevance. We
have adopted a smple and genera framework at the soft-
ware architecture level stating which parts of the system
should be “frozen” in order to achieve a stable consistent
state and how the“freezing” and the changes are performed.
We analyzed, formalized, refined, and extended the frame-
work in order to minimize disruption and to handle hier-
archic systems.

In fact, switching from a component based to a connec-
tion based approach, we have come up with aminimal solu-
tion (since it only blocks the connections that will be re-
moved) that is conceptually very simple and not harder to
implement. On the other hand, for the first time for this
framework, we have concentrated on the time taken by the
reconfiguration process. In particular we have defined an or-
der for the change commands that may reduce, considerably,
the disruption of independent parts of the system being re-
configured. The assumption is, again, that commands may
be executed in paralldl.

Since a configuration manager executes the commands
of a given change specification, it can be seen itself as a
system of interconnected components, where a component
is a single change command and a connection denotes the
dependency between the two commands it links together.
This model gives a precise and compl ete account on how a
configuration manager may execute a change specification.
Themodel isaso particularly useful for hierarchic systems,
showing how the reconfiguration process of the whole sys-
tem can be obtained simply by connecting the configuration
managers of the subsystems together, in away that mirrors
the connections between the subsystems.

We plan to further develop this view of a configuration
manager as a system like the one it manages. In particu-
lar, thisview impliesthat a configuration manager might be
subject to reconfigurationtoo. In other words, achange spe-
cification can be changed. We think this might be useful in
two situations: failuresand validation. If an ongoing recon-
figurationfailsfor some reason, then one may try to find an-
other but equivalent (or similar) reconfiguration. A simpler
approach isto undo the changes done so far and re-establish
the existing system. In both cases it means that the existing
change specification has to be changed whileit is being ap-
plied, i.e., the configuration manager which isexecuting the
changes must be reconfigured dynamically.

The other situation concerns the vaidation process. A
change in a subsystem (like the removal without replace-
ment of aserver) may force some changesto bedonein other
partsof thesystem (like substitutinga dependent transaction
by an independent one). Thus the validation of the change
specification for asubsystem may force the change specific-

ationsof other subsystemsto bechanged. Ontheother hand,
this means that the validation of those systems must be re-
done which may cause further changes in the specifications
of other subsystems and so on. Again, change specifications
may change dynamically (inthiscase asthey are validated).
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