
Open Research Online
The Open University’s repository of research publications
and other research outputs

Conceptual graphs and first-order logic
Conference or Workshop Item

How to cite:

Wermelinger, Michel (1995). Conceptual graphs and first-order logic. In: Conceptual Structures: Applications,
Implementation and Theory: Third International Conference on Conceptual Structures, ICCS ’95 Santa Cruz, CA,
USA, August 14–18, 1995 Proceedings, Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence),
Springer, pp. 323–337.

For guidance on citations see FAQs.

c© 1995 Springer-Verlag

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1007/3-540-60161-947

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/82979148?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.1007/3-540-60161-9_47
http://oro.open.ac.uk/policies.html


Conceptual Graphs and First-Order Logic

Michel Wermelinger

Departamento de Inform�atica, Universidade Nova de Lisboa

2825 Monte da Caparica, Portugal

E-mail: mw@fct.unl.pt

Abstract. Conceptual Structures (CS) Theory is a logic-based knowl-

edge representation formalism. To show that conceptual graphs have the

power of �rst-order logic, it is necessary to have a mapping between both

formalisms. A proof system, i.e. axioms and inference rules, for concep-

tual graphs is also useful. It must be sound (no false statement is derived

from a true one) and complete (all possible tautologies can be derived

from the axioms). This paper shows that Sowa's original de�nition of

the mapping is incomplete, incorrect, inconsistent, and unintuitive, and

the proof system is incomplete too. To overcome these problems a new

translation algorithm is given and a complete proof system is presented.

Furthermore, the framework is extended for higher-order types.

Key phrases: logical foundations of Conceptual Structures; � operator;

inference rules; logical axioms; higher-order types; meta-level reasoning.

1 Introduction

The logical foundation of CS Theory, as presented in [Sowa, 1984], is based on the

de�nition of the � operator, which translates conceptual graphs into �rst-order

formulas, and on the de�nition of rules of inference. On page 142 it is claimed that

\any formula in �rst-order logic can be expressed with simply nested contexts

and lines of identity", and Theorem 4.4.7 on page 173 states that the inference

rules for conceptual graphs are complete. However, as will be shown, the formal

de�nition of � doesn't ful�ll the claim and the theorem|which is not proven|is

false. Moreover, Sowa has been advocating the use of meta-level graphs. To that

end, higher-order types are needed, although they are just as useful to specify

�ner-grained ontologies.

The purpose of the work to be described in this paper is therefore twofold: on

one hand to correct the original de�nitions, on the other hand to extend them in

order to accomodate higher-order types, thus providing a �rst step towards meta-

level reasoning with conceptual graphs. The full reformulation and extension

of the (�rst-order) logical foundations of conceptual graphs is made up of the

following steps:

1. De�ne a �rst-order language L and an interpretation for it.

2. De�ne an algorithm to translate conceptual graphs into formulas of L.

3. De�ne inference rules and logical axioms for conceptual graphs.

4. Prove that they form a sound and complete proof system for �rst-order logic.



Due to space limitations, steps 1 and 4 have been omitted

1

. They can be found

in [Wermelinger, 1995] which also includes the higher-order type framework to

be used by � and the inference rules. That framework is a simpli�ed and yet

more expressive formulation of the formal proposal for incorporating higher-

order types into CS Theory presented in [Wermelinger and Lopes, 1994].

The structure of the paper is straightforward. The next section presents an

overview of the adopted higher-order type system, and the other two main sec-

tions deal with the � operator and the inference rules, respectively. The reader is

expected to have some knowledge of conceptual graphs and logic. Most examples

are adapted from [Sowa, 1984; Sowa, 1992].

2 Higher-Order Types

The building units of conceptual graphs are types. There is a concept type

hierarchy T

C

and a relation type hierarchy T

R

. Both of them are lattices. The

top element of T

C

is the universal concept type >

c

, and the bottom element is

the absurd concept type ?

c

. Similarly, the universal relation type >

r

and the

absurd relation type ?

r

are the top and bottom elements of T

R

. Concept types

are classi�ed according to their kind and order, and relation types are classi�ed

according to their arity and order.

There are two kinds of concept types: relational and non-relational ones. The

former denote relations, the latter do not. The set of all relational concept types

is written T

rc

, and T

nc

represents all non-relational ones. Concept types can also

be classi�ed according to their order: T

rc

i

is the set of ith-order relational concept

types, and the symbol T

nc

i

stands for the set of all ith-order non-relational

concept types. Both >

c

and ?

c

can be of any kind and order. Therefore, they

stand apart from the other concept types and aren't included in T

rc

or T

nc

. As

for relation types, each has an associated arity and order. The set of all n-ary

relation types is written as T

r

hni

and the set of all ith-order relation types is

represented by T

r

i

. Again, >

r

and ?

r

do not belong to any of those sets.

Example 1. Following are some types and their classi�cation according to the

above scheme:

{ CAT; FELINE; ANIMAL; SQUARE; RECTANGLE; RHOMBUS 2 T

nc

1

;

{ SPECIES; GENUS; SHAPE 2 T

nc

2

;

{ CATEGORY; CHARACTERISTIC2 T

nc

3

;

{ AGNT; OBJ; LOC 2 T

r

h2i

\ T

r

1

;

{ BETW 2 T

r

h3i

\ T

r

1

;

{ INVERSE-OF is a relation between two �rst-order order relations, hence it is

an element of T

r

h2i

\ T

r

2

;

{ RELATION, BINARY, TRANSITIVE, REFLEXIVE, ANTI-SYM, SYMMETRIC,

PARTIAL-ORDER 2 T

rc

2

because there is a second-order relation type.

1

The completeness proof consists mainly in showing how the axioms and inference

rules given in [Hamilton, 1988] can be translated to conceptual graphs.



Simply put, a higher-order type denotes a set of lower-order types, and if t

1

is

a subtype of t

2

then the denotation of t

1

must be a subset of t

2

's denotation. More

speci�cally, relational concept types denote relation types, non-relational concept

types denote other non-relational concept types, and relation types denote tuples

of concept types

2

. Therefore, if t

1

is a subtype of t

2

then both must be of the same

kind. Furthermore, if t

1

and t

2

are relation types they must have the same arity.

That way relation nodes can be generalized or specialized without removing or

adding concept nodes to the graph.

Example 2. The only subtype relationships (represented by <) among the types

of the previous example are:

{ CAT < FELINE < ANIMAL;

{ SQUARE is the maximal common subtype of RECTANGLE and RHOMBUS;

{ PARTIAL-ORDER is the maximal common subtype of TRANSITIVE, REFLEXIVE,

and ANTI-SYM which in turn are subtypes of BINARY;

{ SYMMETRIC < BINARY < RELATION.

A concept t : m indicates that m is an entity of type t. In other words, m is

an element of the denotation of t. Therefore, if t is a relational concept type then

m must be a relation type. Otherwise, i.e. if t is a non-relational concept type,

then so is m. To sum up, relation types and non-relational concept types can be

used as markers, too. However, as �rst-order non-relational concept types denote

individuals (and not types), a new set T

nc

0

of \zero-order types" is needed. The

elements of T

nc

0

are mutually incomparable since they represent individuals. All

other markers are organized into (disjoint) lattices since they are types. The

marker setM is therefore a partially ordered set. If we add the generic marker *

as a top element and the absurd marker

�

* as a bottom element, thenM becomes

a lattice too, like T

C

and T

R

.

Example 3. The following concepts show the denotation relationships between

the types of Example 1. When a type is used as a marker, it is written in lower

case and pre�xed with #.

{ CAT: #Garfield where #Garfield 2 T

nc

0

;

{ SPECIES: #cat and GENUS: #feline ;

{ SHAPE: #square SHAPE: #rectangle SHAPE: #rhombus ;

{ CATEGORY: #species CATEGORY: #genus CHARACTERISTIC: #shape ;

{ SYMMETRIC: #inverse-of which implies BINARY: #inverse-of and

RELATION: #inverse-of ;

{ BINARY: #agnt BINARY: #obj BINARY: #loc .

2

The arguments of a �rst-order relation are non-relational types, and a higher-order

relation has as arguments lower-order relations. But as conceptual graphs are bipar-

tite, those arguments must be represented by concepts. Hence the need for relational

concept types.



3 Translation

To show the logical foundations of conceptual graphs, the �rst step consists

in �nding a correspondence, i.e. a translation algorithm, between graphs and

closed formulas

3

of some �rst-order language. The latter is implicitly de�ned

by the transformation process. In CS Theory, the translation is given by the �

operator. Let us recall its de�nition as given in [Sowa, 1984].

Assumption3.3.2. The operator � maps conceptual graphs into formulas in

the �rst-order predicate calculus. If u is any conceptual graph, then �u is a

formula determined by the following construction:

{ If u contains k generic concepts, assign a distinct variable symbol x

1

; : : : ; x

k

to each one.

{ For each concept c of u, let identi�er (c) be the variable assigned to c if c is

generic or referent(c) if c is individual.

{ Represent each concept c as a monadic predicate whose name is the same as

type(c) and whose argument is identi�er(c).

{ Represent each n-adic conceptual relation r of u as an n-adic predicate whose

name is the same as type(r). For each i from 1 to n, let the ith argument of

the predicate be the identi�er of the concept linked to the ith arc of r.

{ Then �u has a quanti�er pre�x 9x

1

: : :9x

k

and a body consisting of the

conjunction of all the predicates for the concepts and conceptual relations

of u.

Assumption4.2.3. If p is a proposition asserting the graphs u

1

; : : : ; u

n

, then

�p is the formula (�u

1

^ : : :^�u

n

). If c is a negative context consisting of (NEG)

linked to a proposition p, then �c is :�p. All generic concepts that occur in p

or any context nested in p must be assigned distinct variable symbols by the

formula operator �.

Assumption4.2.6. If u is a conceptual graph containing one or more lines of

identity, compute the formula �u by �rst transforming the graph u according to

the following algorithm:

assign a unique variable name to every generic concept of u;

for a in the set of dominant concepts of u loop

x := identi�er(a);

append "=x" to the referent field of every

concept dominated by a;

end loop;

erase all coreference links in u;

The formula �u is the result of applying � to the transformed version of u

with the following rule for mapping concepts with multiple referents: if b is a

concept of u of the form [t : x

1

= x

2

= : : : = x

n

], then �b has the form

t(x

1

) ^ x

1

= x

2

^ : : :^ x

1

= x

n

.

3

A formula with free variables can be regarded as equivalent to its universal closure.



Although these de�nitions seem trivial, there are several things to notice

about them. In the �rst place, the universal type > (using Sowa's notation) and

the absurd type ? aren't handled in any special way. Furthermore, a negation

sign can never appear immediately before a predicate; there must be always an

existential quanti�er between them. Notice also that each context corresponds

to a closed formula except for one case. If a concept c

1

in context p

1

is dominated

by a generic concept c

2

which is in p

2

6= p

1

, then the variable corresponding to

c

2

appears free in the translation of p

1

, but it is bounded in the formula �(p

2

).

Having these particularities in mind, consider the formula 8x P(x) where

P is any unary predicate. Since � only uses the existential quanti�er, the for-

mula must be rewritten as :9x :P(x). Because of the negated literal, further

transformation is necessary in order to get :9x :9y P(y) ^ y = x which can be

represented by the incomplete graph :[ :[ [P: *y=*x] ] ] or, in graphical

notation,

:

� � �

:

� � � P . But what concept should be linked to the loose end of

the coreference link? Sowa's answer is

De�nition4.2.8. If t is a type label for some concept, the negated type :t is

de�ned by a type de�nition of the form type :t(x) is [T: *x] :[[t: *x]].

Therefore, :9x :P(x) should be written as

:

:P which gets expanded into

:

> � � �

:

� � � P . But if we apply the formal de�nition of � to that graph we

obtain :(9x T (x)^:(9y P(y) ^ y = x)) which is only equivalent to the original

formula if T (x) is true for any x.

To sum up, the formal de�nition of the � operator is inconsistent, incom-

plete, and not intuitive. The fundamental reason is just one: the translation

process doesn't re
ect the usual interpretation of > as `true' and ? as `false'.

But negated types convey that special meaning of the universal type. There-

fore, Assumption 3.3.2, besides not being intuitive, is not consistent with Def-

inition 4.2.8. Furthermore, that interpretation of > is absolutely necessary for

conceptual graphs to be able to represent any closed �rst-order formula, hence

the incompleteness of �.

Adding to the problems mentioned above, the de�nition of � is not totally

correct. On one hand, the empty context gets translated simply into () which

is not a well-formed �rst-order formula because there is no predicate. On the

other hand, Assumption 4.2.3 doesn't impose any ordering for the translation of

graphs in the same context. That might lead to a formula di�erent from the in-

tended one, if there are coreference links. Consider the graph

:

CAT � � � � � � DOG

which is supposed to state \there is a dog which is not a cat". Applying As-

sumption 4.2.6, one gets :[CAT: *y=*x] [DOG:*x]which can be translated into

:(9y Cat(y)^ y = x)^9x Dog(x) or 9x Dog(x)^:(9y Cat(y)^ y = x) depend-

ing on the chosen order. The formulas are not logically equivalent because x is

free in the �rst formula. Thus, only the second one corresponds to the intuitive

meaning of the graph.



The new translation algorithm given by the ten rules of De�nition 1 over-

comes all these problems and it also handles higher-order types. However, the

basic mechanism remains the same as in Sowa's approach: each concept is as-

signed a unique variable (rule 2) which is existentially quanti�ed (rule 5); those

variables are copied from the dominating to the dominated concepts (rules 4 and

6); the formula corresponding to a graph consists of an existential quanti�er pre-

�x followed by the conjunction of the predicates generated by the concepts and

relations (rule 8); and negative contexts translate into negated formulas (rule

10).

Let us �rst see how the above mentioned problems are dealt with. In order

to be able to represent any closed �rst-order formula, the universal type must be

translated into a true predicate which simultaneously introduces a new variable.

The equality predicate is an obvious candidate. For clarity, it will be written as

an in�x operator. Furthermore, the symbol

:

= was chosen to avoid any confu-

sion with the meta-level equality = used in de�nitions. Therefore, >

c

will be

translated as x

:

= x (rule 6) where x is the variable associated to the concept.

Concepts with the absurd type or the absurd marker are always false and cor-

respond thus to the formula :x

:

= x

4

(rule 6). Similarly for the universal and

absurd relation types (rule 7). Handling empty contexts, the second problem, is

just as easy. According to [Sowa, 1984, p. 151], \an empty set of graphs makes

no assertion whatever. By convention, it is assumed to be true." This means that

having no graph is the same as having >

c

. Hence, by inserting this concept

into each empty context (rule 1), the usual translation process will take care of

the rest. Finally, to prevent � from generating incompatible formulas for graphs

in the same context, the quanti�er pre�x of each graph must be moved to the

front of the whole formula (rule 9).

Having �xed �'s de�nition, let us extend it to handle higher-order types. In

the new framework, types can be used as markers, and therefore there is also a

partial order over markers. Furthermore, higher-order graphs are mainly used for

meta-level statements. This means that the interpretation of coreference links

should be slightly di�erent. Consider the graph

g = SHAPE: #rhombus � � � SHAPE: #rectangle

If the markers represent single individuals, and therefore SHAPE is a �rst-order

type, g states that \a rhombus is the same shape as a rectangle". In logic, the

equivalent statement is

Shape(rhombus) ^ rhombus

:

= rectangle ^ Shape(rectangle) (1)

However, if one considers RHOMBUS and RECTANGLE to be �rst-order types, and

SHAPE to be second-order, then the intuitive reading should be \there is a shape

which is both a rhombus and a rectangle". The new translation should be

9x Shape(x) ^ x v rhombus ^ x v rectangle (2)

4

This is the in�x form of :

:

= (x;x) because only predicates can be negated, not

variables.



where v is a special predicate (written as an in�x operator) denoting the partial

order among markers. Notice that formula 1 is false, but 2 is true since x can be

substituted by SQUARE.

However, the translation generated by � won't be exactly as formula 2. Let

us see why. Both relation types and non-relational concept types can appear to

the left or to the right of `:' in a concept. In other words, most types can be used

as markers too. This means that they can be translated as predicates or con-

stants. For example, �( CAT: #Garfield ) = Cat(gar�eld) but �( SPECIES: #cat ) =

Species(cat) where Cat and cat are di�erent logical symbols. With the purpose

of using as few symbols as possible, the form Holds(cat ; gar�eld) will be used

instead of Cat(gar�eld ). The \meta-predicate" Holds (similar to the one used

in the KIF language [Genesereth and Fikes, 1992]) can also be applied to re-

lations. For example, Agnt(x; y) will be written as Holds(agnt ; x; y). Formally,

as each predicate must have a �xed arity, there is not a single Holds but a set

fHolds

i

ji > 0g where i is the arity of the relation type that appears as the �rst

argument of the predicate. Concept types can be seen as unary relation types

and therefore t : m won't be translated to T (m) anymore but to Holds

1

(t;m)

instead (rule 6). Similarly the atomic formula R(x

1

; : : : ; x

n

) will be rewritten as

Holds

n

(r; x

1

; : : : ; x

n

) (rule 7). The predicate Holds

i

has therefore arity i + 1.

The utilization of Holds

i

makes the logical vocabulary even smaller, since

v becomes unnecessary. In fact, if m and m

0

are types, m v m

0

can be re-

stated as 8x Holds(m;x) ! Holds(m

0

; x) which in turn can be written as

:9x Holds

1

(m;x) ^ :Holds

1

(m

0

; x) (rule 6). Otherwise, i.e. if m and m

0

are

individuals, m v m

0

is simply the same as m

:

= m

0

(rule 6), because neither m

nor m

0

have any subtypes.

Notice that relational concept types can't appear in the referent �eld of

concepts. Therefore, they can't be translated to logical constants and as such

can't be quanti�ed over or appear as arguments of some Holds

i

. This means that

t : m will generate t(m) when t is a relational concept type.

De�nition1. The translation of conceptual graphs to �rst-order logic is done

according to the rules that follow. The functions �, �

p

, �

b

return for each con-

ceptual graph a sequence of logical symbols. The sequence �(g) is the �rst-order

formula for graph g, and it consists of the quanti�er pre�x �

p

(g) and the body

�

b

(g). For each concept c, the auxiliary functions id , cl , and dom return, re-

spectively, a variable that uniquely identi�es c, a boolean that indicates if c is

attached to a coreference link, and the set of identi�ers of the concepts that dom-

inate c. When necessary, the operator � explicity represents the concatenation

of symbol sequences.

1. In each empty context of g insert a concept >

c

: * .

2. For each concept c let id(c) = x, where x is a unique variable.

3. For each concept c let cl(c) = true if c is attached to some coreference link,

otherwise cl(c) = false.

4. For each concept c let dom(c) = fid(c

0

)jc

0

dominates cg.

5. For each concept c let �

p

(c) = 9id(c).



6. For each concept c with type(c) = t and referent(c) = m, the formula �

b

(c)

is obtained by the conjuntion of all the following sub-formulas that apply:

{ :id(c)

:

= id(c) if t = ?

c

or m =

�

*;

{ id(c)

:

= id (c) if t = >

c

;

{ t(id(c)) if t 2 T

rc

;

{ Holds

1

(t; id(c)) otherwise;

{

^

x2dom(c)

id(c)

:

= x;

{ m

:

= id (c) if m 2 T

nc

0

or cl(c) = false and m 62 f*;

�

*g;

{ (:9x Holds

1

(id(c); x) ^ :Holds

1

(m;x)), where x 6= id(c), if m 62 T

nc

0

[

f*;

�

*g and cl(c) = true.

7. Let r be a relation with concepts c

1

; : : : ; c

n

as arguments. If type(r) = >

r

or type(r) = ?

r

then �

b

(r) = id(c

1

)

:

= id(c

1

) or �

b

(r) = :id(c

1

)

:

= id(c

1

),

respectively. Otherwise �

b

(r) = Holds

n

(type(r); id(c

1

); : : : ; id(c

n

)).

8. If g is a conceptual graph without contexts and with concepts C and relations

R, then �(g) = �

p

(g)�

b

(g) where

�

p

(g) =

K

c2C

�

p

(c) �

b

(g) =

^

c2C

�

b

(c) ^

^

r2R

�

b

(r)

9. If p is a proposition containing the set of graphs G then �

p

(p) is the empty

sequence and �(p) = �

b

(p) = (

K

g2G

�

p

(g)

^

g2G

�

b

(g)).

10. If c is a context formed by the negation of proposition p, then �

p

(c) is the

empty sequence and �(c) = �

b

(c) = :�(p).

Several translation examples follow. They show the di�erence between the

old and the new de�nition of �, and illustrate how some previously problematic

cases are now handled. Table 2 gives further examples.

Example 4. The translation of CAT: #Garfield  

�

�

�

�

AGNT CHASE !

�

�

�

�

OBJ! DOG

is

9x9y Cat(gar�eld ) ^ Chase(x) ^Dog(y) ^Agnt(x; gar�eld) ^Obj (x; y)

according to Assumption 3.3.2. Applying De�nition 1 instead, one has

9x9y9z Holds

1

(cat ; z) ^ z

:

= gar�eld ^Holds

1

(chase ; x)^Holds

1

(dog ; y)^

Holds

2

(agnt ; x; z) ^Holds

2

(obj ; x; y)

Example 5. The formula 8x P(x) states basically that \if x is some entity then

P (x) is true". Let P be any relational type

5

. Then

�(

:

>

c

� � �

:

� � � P ) = :(9x x

:

= x ^ :(9y P (y) ^ y

:

= x))

5

The result would be similar if P were a non-relational type. Just substitute

Holds

1

(p; x) for P (x).



This formula is equivalent to 8x x

:

= x! 9y P (y)^y

:

= x. Due to the properties

of equality, x

:

= x is always true and P (y) ^ y

:

= x corresponds to P (x). Thus

one gets 8x P (x) as expected.

Example 6. According to the formulation of rule 9, the graph

:

CAT � � � � � � DOG

shown before is correctly translated as

9x :(9y Holds

1

(cat ; y) ^ y = x) ^Holds

1

(dog ; x)

Example 7. The graph SHAPE: #rectangle � � � SHAPE: #rhombus has a coreference link

between higher-order concepts. The corresponding formula is therefore

9x9y Holds

1

(shape; x) ^ x

:

= y ^ (:9z Holds

1

(x; z) ^ :Holds

1

(rectangle; z))^

Holds

1

(shape; y) ^ y

:

= x ^ (:9z Holds

1

(y; z) ^ :Holds

1

(rhombus ; z))

Example 8. The coreference link in PERSON: Rosalie � � �

:

� � � PERSON: Rosann con-

nects two �rst-order concepts. Applying rule 6 in this case leads to

9xHolds

1

(person ; x)^x

:

= rosalie^:(9y Holds

1

(person; y)^y

:

= rosann^y

:

= x)

The � operator just translates a sequence of symbols of some language (Con-

ceptual Graphs) into another sequence of symbols (called formula) of some other

language (�rst-order logic). For this process to have any meaning, the resulting

formulas must have an interpretation. Classically, an interpretation of a �rst-

order language L is a pair hD; �i where the denotation function � maps con-

stants of L into elements of the domainD and predicates into tuples of elements

of D. The new de�nition of interpretation [Wermelinger, 1995] just adds the

constraints presented informally in Section 2.

4 Inference

Theoretically, the translation and interpretation of conceptual graphs is impor-

tant to show the formalism's expressiveness. But the main goal is to have infer-

ence rules that operate directly on conceptual graphs, instead of translating the

graphs to formulas, do the proofs with them and then translating back to the

graphical form.

The proof system given in [Sowa, 1984] consists of a single axiom, the empty

set of graphs, and several �rst-order rules of inference. These are mainly based

on the depth of a graph, i.e. on how many negative contexts one must traverse

to reach the graph starting from the outer context. Depending on the depth, the

graph is said to be in an evenly enclosed or oddly enclosed context. Even contexts

contain true graphs and odd contexts contain false graphs. Therefore, conditions

(i.e, graphs and coreference links) can be removed from the former and added

to the latter. Moreover, a context c dominating a context c

0

(that is, c

0

= c or

c

0

is enclosed in a context dominated by c) corresponds to an implication and

therefore the graphs in c (the antecedent) can be copied to c

0

(the consequent).



As simple and elegant it is, Sowa's system must be changed, even if one

considers the corrected version of � and no higher-order types. In fact, there

are now several ways of representing truth, and each true graph that can't be

derived from others must be an axiom. Otherwise the system won't be com-

plete. Moreover, a new rule must be added: axioms may be inserted and re-

moved from any context. Without these changes the universal instantion rule

can't be applied to conceptual graphs. Using the old notation for clarity, con-

sider the example 8x Cat(x) ` Cat(gar�eld). In graphical form the hypothesis

is

:

>

c

� � �

:

� � � CAT . Restricting the referent in the oddly enclosed context one

gets

:

>

c

: #Garfield � � �

:

� � � CAT . By the individuation rule, a individual marker

can be iterated from a dominating concept to a dominated one

6

and the corefer-

ence link may be erased, provided the dominated concept is generic. We thus get

:

>

c

: #Garfield

:

CAT: #Garfield but can't proceed any further because graphs

can't be removed from odd contexts.

The remaining of this section presents therefore a new formal proof system.

For the most part it is similar to Sowa's. The changes that were done (including

the above mentioned) are due to the type and marker hierarchies, the new in-

terpretation of universal and absurd types, and the new meaning of coreference

links resulting from the use of higher-order types.

In [Sowa, 1984] only concept types formed a hierarchy. Relation types and

markers were incomparable. Therefore, the inference rules only enabled one to

restrict concept types, i.e. to substitute them by subtypes, and to replace the

generic marker by an individual marker, or the other way round. In this frame-

work, relation types and markers may also be (un)restricted but there are some

limitations. Let t and t

0

be any concept or relation types, such that t is a sub-

type of t

0

. Therefore, if Holds

n

(t; x

1

; : : : ; x

n

) is true, then Holds

n

(t

0

; x

1

; : : : ; x

n

)

is also true, and if the latter is false, so is the former. Thus any type may be

unrestricted in evenly enclosed contexts and it may be substituted by a subtype

in oddly enclosed contexts. In this respect higher-order types don't change the

original inference rules.

However, markers can't be changed at will. Consider Examples 1 and 3:

CAT is a subtype of FELINE which is a GENUS while CAT is a SPECIES. If the

graph SPECIES: #cat is in an evenly enclosed context it is true, but it can't

be generalized to the false graph SPECIES: #feline . Similarly, if the latter is in

an oddly enclosed context, it can't be specialized to the former. To sum up,

individual markers can't be (un)restricted to other individual markers but they

can be transformed into the generic or absurd markers. For example, the true

graph

:

SPECIES: #feline can be specialized to the equally true

:

SPECIES:

�

* .

There is however one case where the marker hierarchy can be put to use,

6

A concept c

1

dominates a concept c

2

if there is a coreference link between them and

the context of c

1

dominates the context of c

2

.



Context of c Coreference link? m Action

even no

�

* unrestrict

even no 6=

�

* unrestrict to *

even yes any unrestrict

odd no * restrict

odd no 6=* restrict to

�

*

odd yes any restrict

Table 1. Conditions for changing referent m of concept c

namely if a coreference link is present. Let m be the marker of some dominating

or dominated concept c whose identi�er is the variable x. If m is a type, the

condition x v m belongs to the context of c. If that context is even, the condition

is true and so is x v m

0

where m

0

is a supertype of m. If the context is odd, the

condition is false and restricting m to some subtype doesn't make it true. Table

1 summarizes all these conditions.

There is one more situation where markers can be restricted. Consider a

concept c

1

, with marker m

1

and identi�er x

1

, dominating a concept c

2

with

referent m

2

and associated variable x

2

. Then, the condition x

2

:

= x

1

enables one

to iterate any condition on x

1

from c

1

's context to c

2

's context. This corresponds

to the replacement of m

2

by m

12

, the greatest lower bound of m

1

and m

2

: if

x

1

v m

1

and x

2

v m

2

then x

2

v m

12

7

(assuming x

2

:

= x

1

). Notice however

that the restriction on m

2

can only be done if the result isn't the absurd marker,

because a false graph might be obtained if c

2

is evenly enclosed. If c

2

were oddly

enclosed the last line of Table 1 would apply and therefore this new rule, which

�nds an upper limit for the value x

2

that satis�es the formula, wouldn't be

needed.

As for logical axioms, Sowa only uses the empty set of graphs. As seen in

the previous section, some predicate true(x) is needed in order to be able to

represent all closed formulas of �rst-order logic. That predicate turned out to

be the equality

:

=. Therefore, the new axioms are graphs whose translation is

some tautology based on x

:

= x. Looking at De�nition 1 the possibilities listed

in Table 2 are obtained, where m and m

0

are any markers di�erent from

�

* and

t; t

0

are any concept types (although the given translations assume that they are

non-relational).

It is obvious that the graphs involving >

r

and ?

r

may have any arity. How-

ever, there is a subtle di�erence. The mere presence of the absurd type ?

r

au-

tomatically makes the graph false, and therefore the axiom true. The concepts

used as relation arguments are thus irrelevant. But the same does not happen

with the universal type >

r

. The concepts to which it is linked must be true too

for the whole graph to be true. It is also worth noticing that � translates the

empty context in the same way as >

c

. The rules of inference will of course

7

See Example 9.



�( ) = 9x x

:

= x

�( >

c

: m ) = 9x x

:

= x ^ x

:

= m

�(

:

?

c

: m ) = :9x :x

:

= x ^ x

:

= m

�(

:

t:

�

* ) = :9x Holds

1

(t; x) ^ :x

:

= x

�(

:

�

�

�

�

?

r

! t : m ) = :9x :x

:

= x ^Holds

1

(t; x) ^ x

:

= m

�(

:

t : m !

�

�

�

�

?

r

! t

0

: m

0

) = :9x9y :x

:

= x ^ Holds

1

(t; x) ^ x

:

= m ^

Holds

1

(t

0

; y) ^ y

:

=m

0

�(

�

�

�

�

>

r

! >

c

: m ) = 9x x

:

= x ^ x

:

= x ^ x

:

= m

�( >

c

: m !

�

�

�

�

>

r

! >

c

: m

0

) = 9x9y x

:

= x^x

:

= x^x

:

= m^y

:

= y^y

:

=m

0

Table 2. Logical axioms

allow one to insert and erase logical axioms from any context. The empty con-

text becomes therefore obsolete because it can be derived from any other axiom

by erasure. However, it will be kept for convenience. There are other redundant

graphs in the above table. For example, any

:

?

c

: m can be obtained from

:

?

c

: * by restricting the referent (see the fourth line of Table 1). In the same

way,

:

�

�

�

�

?

r

! t : m can be derived from

:

�

�

�

�

?

r

! >

c

: * . The �nal set of logical

axioms can be found in De�nition 2.

Finally, the rules for handling coreference links are basically the same as in

[Sowa, 1984] when the dominated concept is �rst-order. Otherwise a coreference

link can't be inserted or removed in the general case. Let us see why. Consider

again concepts c

1

and c

2

mentioned before. When a coreference link is drawn

the following happens:

1. The condition x

2

:

= x

1

is added to the context of c

2

.

2. The condition x

2

= m

2

becomes x

2

v m

2

if m

2

62 T

nc

0

[ f*;

�

*g.

3. The condition x

1

= m

1

becomes x

1

v m

1

if m

1

62 T

nc

0

[ f*;

�

*g.

The erasure of a coreference link consists in doing the opposite actions. Due

to step 1, coreference links can't be inserted when c

2

is evenly enclosed, and

they can't be removed if c

2

is in an odd context. Additionally, if c

2

is a higher-

order concept, step 2 applies. In this case inserting a coreference link relaxes the

condition (i.e., it could become true), and therefore c

2

can't be oddly enclosed.

Inversely, erasing a coreference link makes the condition stronger (x

2

v m

2



Context of c

1

Context of c

2

m

1

2 T

nc

0

[ f*;

�

*g m

2

2 T

nc

0

[ f*;

�

*g Action

any even yes yes erasure

any odd yes yes insertion

odd even no yes erasure

even odd no yes insertion

odd even no no erasure if m

1

=m

2

even odd no no insertion if m

1

= m

2

Table 3. Conditions for changing coreference links

becomes x

2

= m

2

) which prevents c

2

from being evenly enclosed

8

. Steps 1 and

2 thus impose contradictory restrictions on the context of c

2

.

Fortunately, there is an exception, namely if m

1

= m

2

. Consider the case

where c

2

is evenly enclosed and the coreference link has therefore been removed.

The new conditions are x

2

:

= m

2

and x

1

:

= m

1

. Due to our assumption, the

conditions are equivalent and therefore the erasure corresponds to the iteration of

a condition from the dominating to the dominated context. The other possibility

is to insert a coreference link if c

2

is oddly enclosed. The new conditions are

x

1

v m

1

in c

1

's context and x

2

v m

2

^ x

2

:

= x

1

for c

2

. Again, due to their

equivalence, insertion of a coreference link corresponds to an iteration.

Table 3 summarizes the preceding observations. No action is possible for

the unlisted cases. It should be obvious that it is not necessary to check any

restrictions if the coreference link to be inserted or removed is an exact copy of

another existing one. Also, since coreference links represent equalities, they may

be inserted or removed according to the transitivity rule.

The inference rules can at last be presented.

De�nition2. Let S be a set of conceptual graphs in the outer context. Any

graph derived from S by the following �rst-order rules of inference is said to be

provable from S.

Equivalence In any context, a logical axiom may be inserted or removed, a

double negation may be drawn or erased around any set of graphs.

Generalization In an evenly enclosed context, any type or marker may be

unrestricted, and any graph or coreference link may be deleted, as long as

the conditions in Tables 1 and 3 are obeyed.

Specialization In an oddly enclosed context, any type or marker may be re-

stricted, and any graph or coreference link may be inserted, as long as the

conditions in Tables 1 and 3 are obeyed.

Iteration A graph may be copied from context c to any context dominated by

c, and coreference links may be drawn between the original concepts and

their copies.

Deiteration The result of some possible iteration may be deleted.

8

The same reasoning applies to c

1

if it isn't a �rst-order concept.



Transitivity If concept c

1

dominates concept c

2

which in turn dominates c

3

6=

c

1

, then a coreference link between c

1

and c

3

may be drawn or erased. If it

is inserted, then the coreference link between c

2

and c

3

may be erased.

Individuation If concept c

1

dominates concept c

2

then referent(c

2

) may be

replaced by the greatest lower bound of referent(c

1

) and referent(c

2

) if the

result is di�erent than

�

*.

A graph provable from the following logical axioms is called a theorem.

{ The empty set of graphs fg;

{ >

c

: m for any m 2 M� f

�

*g;

{

:

?

c

: * ;

{

:

>

c

:

�

* ;

{

:

�

�

�

�

?

r

! >

c

: * and for any other arity;

{

�

�

�

�

>

r

! >

c

: m for any m 2M� f

�

*g and any arity.

Example 9. Applying the individuation rule twice, and considering Exam-

ple 2, the graph SHAPE: #rectangle � � � SHAPE: #rhombus is �rst transformed to

SHAPE: #rectangle � � � SHAPE: #square and then SHAPE: #square � � � SHAPE: #square is

derived. Notice that this graph doesn't necessarily imply SHAPE: #square because

the former states that there exists a subtype of SQUARE which is a shape while

the latter states that SQUARE itself is a shape.

Example 10. The subtype relationships CAT < FELINE < ANIMAL can be stated

by the graph

:

CAT � � �

:

� � �

:

� � � FELINE � � �

:

� � � ANIMAL

Erasing the double negation (an equivalence rule), it can be simplied to

:

CAT � � � FELINE � � �

:

� � � ANIMAL

and applying the transitivity rule one gets

:

FELINE � � � CAT � � �

:

� � � ANIMAL

The �rst graph corresponds indeed to the given type hierarchy fragment, as can

be easily seen by the translation of it:

:9x Holds

1

(cat ; x) ^ ::9y Holds

1

(feline; y) ^ y

:

= x^

:9z Holds

1

(animal ; z) ^ z

:

= y



or more simply

8x Holds

1

(cat ; x)! 8yHolds

1

(feline; y) ^ x

:

= y ! 9z Holds

1

(animal ; z) ^ z

:

= y

This formula is equivalent to

8x8y Holds

1

(cat ; x)^Holds

1

(feline; y) ^ x

:

= y ! 9z Holds

1

(animal ; z) ^ z

:

= y

which is the translation of the second graph. Obviously, it can be rewritten as

8x8y Holds

1

(cat ; x) ^Holds

1

(feline; y) ^ x

:

= y ! 9z Holds

1

(animal ; z) ^ z

:

= x

corresponding to the last graph.

5 Conclusions

This paper has provided a closer look at the logical foundations of Conceptual

Structures Theory. It was shown that the original formal de�nitions of [Sowa,

1984] are incomplete: on one hand, some closed �rst-order formulas can't be

represented with conceptual graphs, on the other hand the universal instantiation

rule is missing. Therefore, the de�nitions of the � operator and of the �rst-order

inference rules have been corrected. Furthermore, they have been extended to

handle higher-order types.

It is hoped that this paper provides a �rst step towards a meta-level reasoning

engine and a deeper investigation of the model-theoretic and proof-theoretic

properties of Conceptual Structures.

References

[Genesereth and Fikes, 1992] Michael R. Genesereth and Richard E. Fikes. Knowl-

edge interchange format version 3.0 reference manual. Technical Report Logic-92-1,

Computer Science Department, Stanford University, June 1992. \Living document"

of the Interlingua Working Group of the DARPA Knowledge Sharing E�ort.

[Hamilton, 1988] A. G. Hamilton. Logic for Mathematicians. Cambridge University

Press, 1988. Revised edition.

[Sowa, 1984] John F. Sowa. Conceptual Structures: Information Processing in Mind

and Machine. The System Programming Series. Addison-Wesley Publishing Com-

pany, 1984.

[Sowa, 1992] John F. Sowa. Conceptual graph summary. In Timothy E. Nagle, Jan-

ice A. Nagle, Laurie L. Gerholz, and Peter W. Eklund, editors, Conceptual Struc-

tures: Current Research and Practice, Ellis Horwood Series in Workshops, pages 3{51.

Ellis Horwood, 1992.

[Wermelinger and Lopes, 1994] Michel Wermelinger and Jos�e Gabriel Lopes. Basic

conceptual structures theory. In William M. Tepfenhart, Judith P. Dick, and John F.

Sowa, editors, Conceptual Structures: Current Practices | Proceedings of the Second

International Conference on Conceptual Structures, number 835 in Lecture Notes in

Arti�cial Intelligence, pages 144{159, College Park MD, USA, 16{19 August 1994.

University of Maryland, Springer-Verlag.

[Wermelinger, 1995] Michel Wermelinger. Teoria B�asica das Estruturas Conceptuais.

Master's thesis, Universidade Nova de Lisboa, 1995.

This article was processed using the L

A

T

E

X macro package with LLNCS style


