
Open Research Online
The Open University’s repository of research publications
and other research outputs

Specification of Software Architecture Reconfiguration
Thesis

How to cite:

Wermelinger, Michel (1999). Specification of Software Architecture Reconfiguration. PhD thesis Universidade
Nova de Lisboa.

For guidance on citations see FAQs.

c© 1999 The Author

Version: Version of Record

Link(s) to article on publisher’s website:
http://hdl.handle.net/10362/1137

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/82979132?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://hdl.handle.net/10362/1137
http://oro.open.ac.uk/policies.html

Universidade Nova de Lisboa
Faculdade de Ciências e Tecnologia

Departamento de Informática

Specification of Software
Architecture Reconfiguration

Miguel Alexandre Wermelinger

Dissertação apresentada para obtenção
do grau de Doutor em Informática, pela
Universidade Nova de Lisboa, Faculdade
de Ciências e Tecnologia.

Lisboa
(Setembro 1999)

http://www.unl.pt
http://www.fct.unl.pt
http://www.di.fct.unl.pt
http://ctp.di.fct.unl.pt/~mw

To my daughter, Ana, with the promise of real summer holidays together next year, and
to my wife, Claudia, for her ceaseless love and support.

Acknowledgments

I believe every PhD student needs at least the following people to successfully and sanely
complete his dissertation: an effective supervisor, a colleague working in the same re-
search group to discuss technical details with, a colleague working in a different area
to provide external and unbiased perspective, and a supporting family. I had the good
fortune of counting with excellent people to fulfill these roles.

First and foremost, my supervisor, José Luiz Fiadeiro, from Universidade de Lisboa,
gave me guidance when needed but also provided the necessary freedom to pursue my
own paths. He taught me much about doing research, provided moral support, was
always ready to receive me in his office for a lengthy scientific discussion or for a quick
nice chat, produced the necessary bureaucratic paperwork at lightning speed, and ar-
ranged the money for my insatiable desire to visit universities and attend conferences in
interesting places when all other financial sources had been tried. He is also a wonderful
guide to great food and restaurants.

Antónia Lopes, also from Universidade de Lisboa, was always available to discuss
and explain in depth the technical details of categories and COMMUNITY and to answer
all my questions—even the stupid ones and those I had already asked but had forgotten
the answer. Her patience is truly admirable, especially taking into account how often
I went to her office, interrupting her work. She also carefully read a large part of this
document, providing numerous suggestions and spotting some embarrassing errors.
Her pithy sense of humour makes work more enjoyable. Most of all, I have to thank her
the way she—together with José Fiadeiro, Isabel Nunes, and Nuno Barreiro—made me
feel welcome in a research group belonging to a university that is not my own.

I have the luck of sharing the office with my dear friend Luı́s Caires. Thus we easily
and frequently engaged in long conversations on reconfiguration, the PhD process in
particular and research in general, and many other topics. All this has enriched my
professional and personal education more than he may imagine. He also put me up to
date with the department’s latest gossip after my long retreats at home.

My family provided in abundance the necessary relaxation but also the support that
allowed me to dedicate exclusively to work when needed. I owe them all more than I can
ever express.

I am indebted to Daniel Le Métayer, Narciso Martı́-Oliet, and some anonymous re-
viewers for their helpful comments on drafts of papers which helped to improve the
presentation. I also thank Andrea Corradini and Manuel Koch for answering some
questions on graph grammars.

I gratefully acknowledge the financial support of the following institutions: Asso-
ciation for Computing Machinery; Conselho de Reitores das Universidades Portugue-
sas; Departamento de Informática e Faculdade de Ciências e Tecnologia da Univer-
sidade Nova de Lisboa; Fundação Calouste Gulbenkian; Fundação para a Ciência e
Tecnologia through projects PRAXIS XXI 2/2.1/MAT/46/94 (ESCOLA—Executable and
Verifiable Specifications of Concurrent Systems: Languages and Models), PRAXIS XXI
PCEX/P/MAT/46/96 (ACL—Algebraic Combination of Logics), and PRAXIS XXI 2/2.1/
TIT/1662/95 (SARA—Societies of Animated and Responsible Agents); Fundação Luso-

http://malvasia.di.fct.unl.pt/activity/escola/

v

Americana para o Desenvolvimento; Fundação Oriente; Laboratório de Modelos e Ar-
quitecturas Computacionais; Reitoria da Universidade Nova de Lisboa; ESPRIT network
of excellence RENOIR (Requirements Engineering Network Of International cooperating
Research groups).

Finally, I would like to manifest my appreciation for the many people that developed
the free software used to produce this document.

http://labmac.di.fc.ul.pt
http://labmac.di.fc.ul.pt
http://www.cs.ucl.ac.uk/research/renoir/

Sumário

Nos últimos anos, as arquitecturas de software têm recebido crescente atenção por
parte das comunidades académica e industrial como meio de estruturar o desenho de
sistemas complexos. Uma das áreas de interesse é a possibilidade de reconfigurar arqui-
tecturas para permitir a adaptação dos sistemas por elas descritos a novos requisitos.
A reconfiguração consiste em adicionar ou remover componentes ou ligações e pode ter
de ocorrer sem parar a execução do sistema a alterar. Este trabalho contribui para uma
descrição formal desse processo.

Partindo do princı́pio que raramente um único formalismo consegue satisfazer ple-
namente todos os requisitos em todas as situações, apresentam-se três abordagens,
cada uma com diferentes pressupostos sobre os sistemas a que se aplicam e com dife-
rentes vantagens e desvantagens. Cada uma tem como ponto de partida trabalho feito
por outros investigadores e tem a preocupação estética de alterar o menos possı́vel o
formalismo original, mantendo o seu espı́rito.

A primeira abordagem mostra como uma dada reconfiguração pode ser especificada
da mesma forma que o sistema ao qual se aplica e de modo a ser executada da maneira
mais eficiente possı́vel. A segunda abordagem explora a “Chemical Abstract Machine”,
um formalismo de reescrita de multiconjuntos de termos, para uma descrição uniforme
de arquitecturas, computações e reconfigurações. A última abordagem usa uma lingua-
gem de desenho de programas paralelos similar ao UNITY para descrever computações,
representa as arquitecturas por diagramas no sentido da Teoria das Categorias, e espe-
cifica a reconfiguração por regras de transformação de grafos.

Abstract

In the past years, Software Architecture has attracted increased attention by academia
and industry as the unifying concept to structure the design of complex systems. One
particular research area deals with the possibility of reconfiguring architectures to adapt
the systems they describe to new requirements. Reconfiguration amounts to adding
and removing components and connections, and may have to occur without stopping
the execution of the system being reconfigured. This work contributes to the formal
description of such a process.

Taking as a premise that a single formalism hardly ever satisfies all requirements
in every situation, we present three approaches, each one with its own assumptions
about the systems it can be applied to and with different advantages and disadvantages.
Each approach is based on work of other researchers and has the aesthetic concern of
changing as little as possible the original formalism, keeping its spirit.

The first approach shows how a given reconfiguration can be specified in the same
manner as the system it is applied to and in a way to be efficiently executed. The second
approach explores the Chemical Abstract Machine, a formalism for rewriting multisets
of terms, to describe architectures, computations, and reconfigurations in a uniform
way. The last approach uses a UNITY-like parallel programming design language to
describe computations, represents architectures by diagrams in the sense of Category
Theory, and specifies reconfigurations by graph transformation rules.

List of Symbols

Within each group, symbols are listed alphabetically, special characters coming first.
Some symbols have different meanings, depending on the context.

Sets and Functions
∅ empty set
|A| cardinality of set A
\ set difference
] disjoint union of sets
f : A⇀ B partial function from A to B
f;g function composition: g(f(x))
+n addition modulo natural number n
N natural numbers
πi projection on the i-th element of a tuple

Transaction Approach

< command order Definition 2.6 on page 20
/ transaction dependency relation Definition 2.3 on page 17
C reconfiguration commands Definition 2.6 on page 20
D, Dn port dependency relation (of node interface n) Definition 2.1 on page 16
I, In initiator ports (of node interface n) Definition 2.1 on page 16
N node interfaces Definition 2.2 on page 17
R, Rn recipient ports (of node interface n) Definition 2.1 on page 16
T transactions Definition 2.2 on page 17

Grammars
‘x’ terminal symbol
x non-terminal symbol
[. . .] optional
. . . ∗ sequence of zero or more
. . . + sequence of one or more
. . . | . . . alternative
(. . .) grouping

ix

CHAM

/ airlock
{||} membrane
. . .→. . . reaction rule

Graphs

∅ empty graph Example A.13 on page 117
A arcs Definition A.1 on page 109
Gi paths of length i in graph G Notation A.4 on page 109
LX labels for nodes or arcs X Definition A.9 on page 110
lblX labelling function for nodes or arcs X Definition A.9 on page 110
N nodes Definition A.1 on page 109
src source function Definition A.1 on page 109
T transitions of a labelled transition system Notation A.12 on page 110
trg target function Definition A.1 on page 109
W worlds of a labelled transition system Notation A.12 on page 110
w0 initial world of a labelled transition system Notation A.12 on page 110

Category Theory

f;g morphism composition Definition A.13 on page 111
C category Definition A.13 on page 111
|C| objects of C Definition A.13 on page 111
〈∆D, δD〉 diagram D with graph ∆D and labelling δD Notation A.18 on page 112
GC graph of category C Definition A.13 on page 111
HomC(x, y) morphisms of C from x to y Notation A.14 on page 111
id(x) identity morphism for object x Definition A.13 on page 111
(C ↓ x) comma category Definition A.16 on page 111

Graph Grammars

G
p,m
=⇒ H direct derivation with production p and match m Definition A.32 on page 116

K interface of graph production Definition A.31 on page 116
L left-hand side of graph production Definition A.31 on page 116
R right-hand side of graph production Definition A.31 on page 116

x

COMMUNITY

⊥ idle action Definition 4.14 on page 53
A actions Definition 4.14 on page 53
β program body Definition 4.23 on page 61
C channel Definition 4.42 on page 73
D(x) domain of variable or action x Notation 4.15 on page 54
E(a,o) right-hand side of assignment to o in action a Definition 4.23 on page 61
ε environment of a program instance Definition 4.34 on page 69
F pre-defined functions Definition 4.1 on page 50
G glue of a connector Definition 4.42 on page 73
G(a) guard of action a Definition 4.23 on page 61
γ glue morphism Definition 4.42 on page 73
I input variables Definition 4.14 on page 53
ic initialisation condition Definition 4.23 on page 61
IP functor from program instances to programs Proposition 4.12 on page 71
LV logical variables Definition 4.34 on page 69
O output variables Definition 4.14 on page 53
ψ program signature Definition 4.20 on page 55
R role Definition 4.42 on page 73
ρ role morphism Definition 4.42 on page 73
S predefined sorts Definition 4.1 on page 50
U track length Section 4.1 on page 49
V program variables Notation 4.15 on page 54
Vars(D) logical variables used in diagram D Notation 4.39 on page 71
Vw valuation at world w Notation 4.18 on page 54

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Context . 1
1.3 Issues . 2
1.4 Related Work . 3
1.5 Our Approaches . 6

2 The Transaction Approach 9
2.1 The Original Model . 9

2.1.1 The Passive Approach . 11
2.1.2 The Blocking Approach . 12

2.2 Discussion . 14
2.2.1 Implementation . 14
2.2.2 Disruption . 14
2.2.3 Hierarchic Systems . 16

2.3 The Refined Model . 16
2.4 Minimising Disruption . 18

2.4.1 The Connection Approach . 18
2.4.2 The Partial Order . 19

2.5 The Configuration Manager . 21
2.5.1 Flat Systems . 21
2.5.2 Hierarchic Systems . 23

2.6 Concluding Remarks . 25

3 The CHAM Approach 27
3.1 The CHAM formalism . 27
3.2 The Graph Grammar Approach . 29
3.3 Ad-hoc Reconfiguration . 30

3.3.1 Specification . 31
3.3.2 Analysis . 32
3.3.3 Dynamic Reconfiguration . 33

3.4 Self-Organisation . 34
3.5 A Language . 36
3.6 Programmed Reconfiguration . 40
3.7 A Mixed Example . 41
3.8 Concluding Remarks . 46

4 The COMMUNITY Approach 49
4.1 Example . 49
4.2 Types and Expressions . 50

4.2.1 Syntax . 50
4.2.2 Semantics . 51

xii Contents

4.2.3 Configuration . 52
4.3 Signatures . 53

4.3.1 Syntax . 53
4.3.2 Semantics . 54
4.3.3 Configuration . 54

4.4 Programs . 60
4.4.1 Syntax . 61
4.4.2 Semantics . 63
4.4.3 Configuration . 63

4.5 Program Instances . 69
4.5.1 Syntax . 69
4.5.2 Semantics . 70
4.5.3 Configuration . 70

4.6 Connectors . 72
4.6.1 Definitions . 72
4.6.2 Catalog . 75
4.6.3 Operations . 81

4.7 Architectures . 92
4.7.1 Style . 93

4.8 Reconfiguration . 96
4.8.1 Rules . 96
4.8.2 Process . 104

4.9 Concluding Remarks . 105

5 Conclusion 107

A Mathematics 109
A.1 Graphs . 109
A.2 Category Theory . 111
A.3 Graph Grammars . 116

Chapter 1

Introduction

1.1 Motivation

Most software systems must undergo several modifications during their lifetime in or-
der to cope with new human needs (i.e., new requirements), new technology (e.g., new
implementation), or a new environment (e.g., if a hardware component fails or a new
one is added). For economical or safety reasons (e.g., in banking), some systems can-
not be stopped or taken off-line to perform those changes: they have to be dynamically
reconfigured. Even if it is possible to stop the application to change it, it may be more
advantageous to reconfigure it at run-time because unchanged sections can continue to
provide partial service.

Changes are not always imposed by some external entity like the user or the system
designer. Due to the technological advances in the past years—of which cellular phones,
the World Wide Web, and Java’s run-time component loading capabilities are striking
examples—and the transient nature of interactions they support, many software sys-
tems have an intrinsically dynamic configuration.

The problem of (dynamic) reconfiguration may involve all levels (from the operating
system to the application) and all phases (requirements to implementation) of software
development. It also requires solutions to many technological problems. In this disser-
tation we restrict ourselves to a problem that has received relatively little attention and
yet is fundamental to use reconfiguration facilities in an easier and more systematic
way: how to allow the designer to formally specify the reconfiguration process at a high
level of abstraction, namely the application’s architecture.

1.2 Context

Software Architecture (SA) [PW92, SG96a, SG96b, Per97] is the discipline that addresses
the high-level structure of systems, providing the framework in which to satisfy require-
ments and serving as a basis for the ensuing design phase. The description of the
architecture of a software system basically states the components it is made of, how
they interact, and what quantitative and qualitative constraints components and in-
teractions must satisfy (e.g., throughput, security, conformance to standards, etc). A
software architecture is useful to promote reuse (e.g., for product lines), to help manage
the software process, and to choose among design alternatives.

Three of the most important concepts put forward by research in SA are Architecture
Description Languages (ADLs), connectors, and styles. Languages provide a precise
specification of the architecture. To describe complex systems, architectures may be
hierarchic, i.e., a component may be specified by a sub-architecture. Normally there

2 Introduction

is a supporting toolset that facilitates the construction of architectures from existing
components and connectors and provides some (semi-)automatic analysis capabilities.
A detailed comparative survey on several ADLs is [Med97]. Connectors are first-class
entities to express complex interactions between system components, thus facilitating
the separation of coordination from computation. Styles capture sets of restrictions
on components and their connections leading to patterns that occur often in software
systems (client-server, pipe-filter, etc.).

It has been long recognised that software architectures could be helpful regarding
the evolution of systems during their life-time. On the one hand, they might be used
to check whether the implementation has drifted from the reference architecture; on
the other hand, the high-level synthetic view provided by an architectural description
might make more apparent which parts of the system are amenable to change and
which changes are desirable and possible. In recent years the need for mechanisms to
express changes to architectural descriptions has been manifested in several ways: by
participants in conferences [Wol97], by researchers surveying the field [SG94, Med97,
Per97], by the existence of an Architecture and Generation Technology Cluster in the
DARPA-sponsored Evolutionary Design of Complex Software programme [edc97], and by
a growing number of papers on the subject (see Section 1.4 on the next page). This has
culminated in the explicit recognition of “dynamic architectures” as a major topic within
SA through a dedicated track in the last International Software Architecture Workshop
[MP98].

Being a young discipline, the state-of-the-art is still far from the full promise of SA,
and there is still no agreement on most issues, concepts, and terminology. The notable
exception is some consensus on the structural properties of architectures, which lead
to the development of the architecture interchange language ACME [GMW97].

1.3 Issues

There are several issues involved in reconfiguration, as discussed in [KM85, KM90,
Ore96, Wer98c, MG99]. We let aside technological issues (like the necessary support
from the operating system and the component programming language), and classify
and summarise the remaining ones as follows.

time Architectures may change

1. before compilation,

2. before execution, or

3. at run-time.

The third case is usually called dynamic reconfiguration, but some authors (like
the research group from the University of California at Irvine [Ore96, Med97]) use
the term dynamic architectures. We prefer the former since the latter has also
been used to refer to architectural descriptions that emphasize behaviour [SG96a].
Each of the three cases requires different supporting technology, but for our work
we are only interested whether changes are executed off-line, when the system is
shut down, or on-line, while it is running, because that affects whether application
state has to be taken into account or not. We therefore do not distinguish the first
two cases.

source Changes may be triggered by the current state of components or topology of the
architecture. This is called programmed [End94, MG99] or constrained run-time
[Ore96] modification. Reconfigurations may also be asked for by the user. This is
called ad-hoc [End94], evolutionary [MG99], or simply runtime [Ore96] change. We

1.4 Related Work 3

adopt the terminology of [End94]. Programmed reconfigurations are described by
“change scripts” together with conditions when they are to be executed. Scripts
are usually given with the initial architecture, while ad-hoc reconfigurations are
requested unpredictably.

operations The four fundamental reconfiguration commands provided by almost all lan-
guages and systems are addition and removal of components and connections.
Their names vary, of course: for example, link [KM90], weld [Ore96], attach
[ADG98] all create connections. By the very definition, programmed reconfigura-
tion requires operations that query at run-time relevant properties of the system,
be they of computational (e.g., the state of components), structural (e.g., the to-
pology of the architecture), or other nature (e.g., the version of a component to be
upgraded). Such operations also allow writing general, reusable change scripts.
For example, it becomes possible to remove any component satisfying some to-
pological property (e.g., number of connections) because the script may query its
identifier instead of relying on some fixed name. This is also useful because a pro-
grammed reconfiguration script, although given with the initial architecture, may
be executed when the architecture has already been changed (by another script or
directly by the user). The query operations thus assess the current architecture,
and provide the actual components and connections to be used as arguments of
the reconfiguration commands in the script.

constraints Changes must preserve the consistency of the system. Moazami-Goudarzi
[MG99] distinguishes three cases: structural integrity (e.g., the architecture must
keep a ring topology), mutually consistent component state (e.g., a client must not
be removed if the server is still processing its request), and application state invari-
ants (e.g., exactly one component holds the token in a ring topology). The second
and third cases are only relevant for dynamic reconfiguration. We should add that
any kind of property (functional, behavioural, etc.) may serve as a constraint if it is
to be preserved by change. Programmed reconfiguration may automatically enforce
certain constraints by using their negation as triggering conditions for executing
scripts that take corrective action.

specification In the limit, a specification is written in three languages: the architecture
is described using an ADL, the reconfigurations using an Architecture Modification
Language (AML), and the restrictions with an Architecture Constraint Language
(ACL). All of them should be declarative, understandable, and analysable. In par-
ticular, the changes should be verifiable against the constraints. They also should
be modular to allow compositional specifications.

management The reconfiguration process may be managed in an explicit and central-
ized manner by a configuration manager [KM85] (also called architecture evolution
manager [OT98], coordinator [Mét98] or configuror [ADG98]), or management is
implicit and distributed among the components. The latter case has been called
self-organising architectures [MK96b]. The configuration manager translates the
AML specification into low-level commands of the underlying platform. In case of
dynamic reconfiguration, the manager should minimise the disruption caused to
the running system. The manager should be general-purpose, i.e., not tailored to
any specific application domain.

1.4 Related Work

Most of the existing work on reconfiguration stems from the Distributed Systems com-
munity (see, e.g., [CDS96, CDS98]). As to be expected, it is mainly concerned with

4 Introduction

the technology needed to enable reconfiguration. As a result the approaches are often
suited to a specific application or domain; they are based on particular frameworks
(e.g., CORBA) or programming language (e.g., Java [MG99]); they only deal with certain
classes of systems (e.g., client-server [Kin93]) or reconfiguration (e.g., replacement by a
copy [HP93]).

Many of the current approaches follow the Configuration Programming philosophy of
Kramer and colleagues. Its principles are briefly stated in [KM98]:

1. The configuration language used for structural description should be separate from
the programming language used for basic component programming and from the
specification language used for specifying component behaviour.

2. Components should be defined as context independent types with well-defined in-
terfaces and should specify the visible behaviour at the component interface.

3. Using the configuration language, complex components should be definable as a
composition of instances of component types, and complex specifications should
be the composition of component specifications.

4. Change should be expressed at the configuration level, as changes of the com-
ponent instances and/or their interconnections and of component specifications
and/or their interaction.

A detailed survey on many of the existing approaches with a discussion of their merits
and drawbacks can be found in [MG99].

Dynamic reconfiguration also occurs in Mobile Computing. Due to change of loca-
tions, computational agents may appear and disappear within some system boundary,
and the interaction patterns between them vary. Probably the most prominent formal-
ism for mobility is the π-calculus [Mil99], a process algebra. A state-based formalism
is MOBILE UNITY [MR98, RMP97], which extends the parallel program design language
UNITY [CM88] and its associated proof logic in order to provide useful programming
abstractions to describe transient interactions among programs. The description of a
system has a single, separate section that contains all statements necessary to describe
interactions. Such statements are able to change the state of the programs (e.g., to
transmit a value from one to another). They may also be reactive, i.e., their execution is
triggered when a condition on the system state becomes true. This allows to guarantee
consistency in face of change.

PoliS [CFM98] and MobiS [Mas99] are formal approaches for code mobility based on
Linda-like tuple spaces and the chemical computation model. Tuples may represent
data or rules, and spaces may be nested. A rule specifies a tuple rewriting step. Tuples
may be consumed and produced in the same space as the rule or in the parent space.
This allows data and code to move along the space tree. The difference between the two
languages is that PoliS comes equipped with a temporal logic to express properties and
a model-checker, while MobiS makes spaces first-class entities, by representing them
as tuples, allowing them to move also.

Due to the different foci of mobile and distributed systems, many of the approaches
do not capture architectural abstractions, like hierarchic decomposition and connect-
ors. Others are not at the architectural level: they only deal with the implementation,
or do not show explicitly which components are allowed to interact and in which ways.
Hence we have to turn to work done in SA.

Only few ADLs are able to express dynamism [Med97]. Darwin [MK96a] only permits
constrained dynamism: the initial architecture may depend on some parameters, and
during run-time components may be replicated. To show the interaction between recon-
figuration and the ongoing computations a different formalism, Finite State Processes,
is used. Its semantics is given by labelled transition systems and model-checking tools
are used to check safety and liveness properties [MKG99].

1.4 Related Work 5

The C2 language does not have any reconfiguration capabilities by itself; they are
provided by a separate AML [Med96]. The ACL used to enforce constraints on reconfig-
uration is Armani [Mon98], which allows to write propositions in a subset of first-order
logic with primitive predicates to query the architecture’s topology.

Rapide [LV95] is intended to model architectures of concurrent hardware and soft-
ware systems and to allow the simulation of their execution. Components’ behaviour
is described as a set of events partially ordered by time or causality. Event patterns
describe succinctly a partially ordered set of events. Patterns are used to impose con-
straints on the allowed behaviours. Moreover, rules can use patterns to generate new
events based on the occurrence of other. The language only allows changing the com-
munication topology of an architecture. However, recent work [VPL99] added primitive
events corresponding to the four main reconfiguration operations. As architectures may
be hierarchic (i.e., components are organised into a tree), the authors also added an
event to change the parent of a component. Patterns may be used to restrain the pos-
sible architectural changes, and such constraints may be functionally dependent since
behaviour is also represented by events.

Wright [ADG98] uses a slight variation of the process algebra CSP to describe com-
ponent behaviour. Reconfigurations are specified also in CSP, using primitive actions to
add and delete components and links. The semantics provides a translation into pure
CSP but it is a bit cumbersome; it requires all distinct configurations to be uniquely
tagged because CSP, unlike the π-calculus, only allows static configurations. Properties
are verified with a model-checking tool.

ACME’s proposal only allows for the specification of optional elements (i.e., compon-
ents, connectors, and links) [MGW97].

LEDA [CPT99] uses the π-calculus to specify the behaviour of components. There are
two primitive operators to create new components and to create connections depending
on some condition. Due to the name passing of the π-calculus, it is possible to dynamic-
ally establish communication channels that are not explicitly captured at the structural
description level of LEDA.

There has been also formal work that is not related to any ADL. Le Métayer [Mét98]
describes architectures as graphs, reconfigurations are specified by graph rewrite rules,
and computations by a specially designed language, inspired on CSP.

Taentzer et al. [TGM98] have the most uniform framework we are aware of. They rep-
resent the architecture as well as the state of components by graphs. Reconfigurations
and computations are thus described by graph rewrite rules. Components may export
and import part of their state, i.e., graphs, and hence graph rewrite rules also describe
communication. The authors impose many constraints on the form of rewrite rules due
to their three-fold use.

We [FWM99] represent architectures also as graphs, but nodes (i.e., components) are
labelled with name/value pairs to indicate their state. The allowed reconfigurations,
creation and removal of connectors, only cater for transient interactions. Graphs are
encoded as terms, and reconfiguration and computation are then described using Re-
writing Logic [Mes96]. The rules for reconfiguration rewrite the graph while those for
computation—one for each action of each component—rewrite the labels. If a connector
synchronises two actions of different components, the corresponding rewrite rules must
be executed simultaneously to guarantee the correct semantics. But if the connector
is removed, they do not have to any more. The rewriting strategy must therefore be
dynamically changed.

Hirsch et al. [HIM99] use labelled hypergraphs (i.e., graphs where arcs may connect
more than two nodes) to represent architectures. Contrary to other approaches, com-
ponents are represented by hyperarcs and connections by nodes. The label of a com-
ponent indicates its current state and the label of a connection represents a communic-
ation action. A specification has separate rewrite rules for computations/interactions

6 Introduction

and reconfigurations. Computations are thus described as label rewriting. All rules
are context-free: the left-hand side is always a single hyperarc with the nodes it con-
nects. Rules may not delete any nodes, because other arcs may be linked to them.
Moreover, as the authors remark, a simple reconfiguration like adding a connection
between two existing components is not possible. When communication occurs, all
rules corresponding to the involved components must be applied simultaneously. For
this purpose, the authors use constraint-solving (where the constraints are equalities
of node labels) to obtain a set of context-dependent rules from the context-free rules
given by the user. There are only two kinds of communications (and hence two types of
nodes): point-to-point and broadcast. The former is easier since it amounts to combine
the communication rule of the sender with the one of the receiver.

To sum up, the existing approaches, taken collectively, have the following drawbacks:

• arbitrary reconfigurations are not possible;

• they are not at the architectural level;

• computations are described with simple, low-level languages which do not capture
some of the abstractions used by programmers and hence may lead to cumbersome
specifications;

• the interaction between computation and reconfiguration—needed for dynamic re-
configuration—either leads to additional, possibly complex, linguistic or semantic
constructs, or is not explicit, or not cleanly separated.

1.5 Our Approaches

Our goal is to be able to formally specify arbitrary dynamic reconfigurations at the ar-
chitectural level in a simple, explicit, and adequate way. Given the diversity of problems
that need to be addressed, it is futile to search for a “universal” formalism. Hence we
present three different approaches, each addressing different problems and emphasiz-
ing different aspects. We adopt the Configuration Programming philosophy, giving more
importance to separation of concerns (reconfiguration vs. computation) than to separate
languages. We do not invent new languages or formalisms, and changes to existing ones
are kept simple, small, and in the spirit of the original. The common aspect of the three
approaches is the use of graphs due to their suitability for architectures, their simple
but rigorous mathematical basis, and their intuitive depiction capabilities.

The first approach, based on work by Kramer and colleagues [KM90, GK96], deals
only with the specification of the efficient and modular execution by the configuration
manager of a given set of reconfiguration commands. Its major contributions with re-
spect to the original work are: to minimise the disruption time; to handle hierarchic
architectures; to represent reconfiguration processes and the systems they are applied
to in the same way.

The other two approaches are used to describe the allowed reconfigurations and
their effects. Both are based on rewriting in order to have at all times an explicit archi-
tectural model. As a by-product, they can generate the reconfiguration commands to
be processed by the first approach. The second approach, inspired by work done by Le
Métayer [Mét98] and Inverardi and Wolf [IW95], explores the Chemical Abstract Machine
(CHAM), a formalism for rewriting multisets of terms, to describe architectures, compu-
tations, and reconfigurations in a uniform way. The original work by Inverardi and Wolf
on the application of the CHAM to Software Architecture only deals with systems whose
architecture does not change and is specified in a monolithic way. The main contribu-
tion of our approach is the definition of a simple CHAM-based ADL and methodology

1.5 Our Approaches 7

to define dynamically reconfigurable hierarchic software architectures from reusable
component specifications.

Finally, we extend the categorical approach to parallel program design, initially de-
veloped by Fiadeiro and Maibaum [FM97], in order to handle dynamic reconfiguration.
It uses a UNITY-like language to describe computations and represents architectures by
diagrams in the sense of Category Theory. To specify reconfigurations, we add graph
productions as defined by Ehrig and colleagues [CMR+96a]. The main contribution of
our approach is to provide a uniform algebraic framework for dynamic reconfiguration.
The framework also provides a simple notion of style and the automatic maintenance of
a style during reconfiguration, and operations to construct new connectors from existing
ones. Moreover, the combination of the categorical framework with a program design
language has none of the problems listed at the end of the previous section.

Each approach is presented in a separate, self-contained chapter with its own ab-
stract and conclusions. The appendix contains the mathematical definitions needed for
Chapter 4. Some notation (like the syntax of context-free grammars) is only defined in
the List of Symbols on page viii. Much of the material in this dissertation has been
presented previously in a preliminary form [Wer97, WF98b, WF98a, Wer98b, Wer98c,
Wer98a, WF99, Wer99].

Chapter 2

The Transaction Approach

In this chapter we adopt a framework developed by Kramer and colleagues [KM85,
KM90, GK96]. It is simple and general, both in terms of the changes it allows and
in terms of the assumptions it makes on systems. Changes must occur in a consistent
state, which is brought about by “freezing” some system components. Upon closer ana-
lysis of the two algorithms proposed for computing the set of those components, we find
that neither is minimal regarding the disruption it causes to the system. Switching to
a connection based approach we come up with a conceptually very simple yet effective
minimal solution.

However, that only accounts for disruption in terms of “size”, i.e., what parts of
the system are “frozen”. It does not take into account for how long they are inactive.
Since we work with an abstract, implementation-independent reconfiguration model,
our solution just provides an execution order for the change commands such that they
are performed as much in parallel as the logical dependencies between them allow.

The third contribution of this chapter is the treatment of hierarchic systems, whose
components can be made of interconnected subcomponents. For practical purposes, the
original work only deals with flat systems. The hierarchic reconfiguration management
method to be introduced allows the parallel execution of change commands in different
subsystems while taking into account any dependencies among them. Furthermore the
method is as modular as the system it is applied to.

This chapter is a slightly revised and extended version of [Wer97].

2.1 The Original Model

We adopt the reconfiguration model developed in [KM85, KM90] and summarised in
Figure 2.1 on the next page1. In the following we describe the assumptions made by the
model for each element appearing in the diagram.

A system can be depicted as a directed graph whose nodes are the system compon-
ents and whose arcs are connections between components. The model assumes there
is at most one connection between any pair of components. A transaction is a sequence
of one or more message exchanges along a connection. An arc from a node N to a node
N ′ states that all transactions along that connection are initiated by N, although during
a transaction communication flow can occur in both directions. Transactions complete
in bounded time and the initiator is always informed of completion. In particular, the
system does not get into any deadlock or livelock situation. These assumptions help to
prove that the consistent state can be reached in finite time and that the configuration
manager knows when. A transaction t is dependent on the consequent transactions

1Figures 2.1 to 2.5 are adapted from [KM85, KM90, GK96].

10 The Transaction Approach

configuration changes

��configuration
specification i

//

�
�
�
�
�
�
�

validation //

valid changes

��

configuration
specification i+ 1

�
�
�
�
�
�
�

configuration manager

commands
��

system i // operating system // system i+ 1

Figure 2.1: The dynamic reconfiguration model

t1, t2, . . . (written t/t1t2 . . .), if its completion depends on the completion of all the other
ones. Otherwise a transaction is called independent.

Changes to a system are specified using four commands, to be executed by the op-
erating system, with obvious meanings: create N, remove N, link N to N ′, unlink N

from N ′. Given a specification of the current system configuration and the specification
of the configuration changes, the validation process checks whether the changes may be
(totally or partially) applied to the system and produces the specification of the result-
ing system. Checks may range from simple syntactic ones (e.g., remove N is incorrect
if N does not exist in the system) to deep semantic results (e.g., is the resulting sys-
tem deadlock free?). In the following it is assumed that changes are valid and that the
specification is declarative, i.e., the change commands are not in any particular order.

Given the valid changes, the configuration manager generates the instructions for
the operating system to reconfigure the current system, such that the resulting one
conforms to the specification produced by the validation process. In particular, the
manager performs the following steps:

1. Compute from the change specification the nodes that must be in a consistent
state for reconfiguration to take place.

2. Compute the nodes that must become “frozen” in order to achieve consistency over
the set of nodes obtained in the previous step.

3. Send a “freeze” message to each node obtained in step 2 and wait for all the ac-
knowledgments.

4. Instruct the operating system to execute changes in the following order: unlink ,
remove , create , link .

5. Instruct the created and the “frozen” nodes (except the removed ones) to resume
processing.

There are two approaches based on this model that differ only in steps 2 and 3. The
first one [KM90], which we call the passive approach, “freezes” a node by preventing it
from initiating any new transaction; the second one [GK96] completely stops the node’s
execution and therefore we call it the blocking approach.

2.1 The Original Model 11

C1
s1/r1 // A1 r1/p

**TTTTTT

M
p // S

C2
s2/r2 // A2 r2/p

44jjjjjj

Figure 2.2: A client-server system with dependent transactions

N1
doo

a/b //
N2

b //
c/d
oo

Figure 2.3: Mutual dependencies

2.1.1 The Passive Approach

In this method [KM90] the “frozen” state is called passive and the “freeze” message is
passivate . To facilitate exposition, let us first handle only independent transactions.

A component is passive if it is not engaged in transactions it initiated and if it will not
start new ones. However, it must accept and service transactions in order to let other
nodes become passive. Therefore, passiveness is reachable in finite time: a component
just has to wait for the transactions it initiated to finish (this is guaranteed to happen)
and then make sure it will not start new ones. The passive state is just a necessary
condition for reconfiguration. In order to guarantee a consistent and stable internal
state, in addition to being passive a node should not have any outstanding transaction
to service. This is called quiescence and depends on those components that can initiate
transactions with the node. Therefore, the passive set of a node Q, PS(Q), is defined as
Q and all nodes with connection arcs towards Q. It is easy to see that Q is quiescent if
all nodes in PS(Q) are passive.

The quiescent set QS for a given change specification is the set of nodes that must
be quiescent during the reconfiguration, namely those that will be removed and the
initiators of transactions that will be added or removed. Newly created nodes are auto-
matically quiescent. The set of nodes to “freeze”, called change passive set, is then
simply CPS =

⋃
i∈QS PS(i).

To see why this does not work for dependent transactions, consider a system with
clients Ci accessing through agents Ai a server S managed by M (Figure 2.2). If the
server is going to be replaced, then both S and p will be removed. Thus the configuration
manager calculates QS = {M,S} and CPS = {A1, A2,M, S}. However, if a client has a
new request si, then the respective agent cannot service it because according to the
definition of passiveness it may not initiate ri (on which si depends). This would lead
to a partially incomplete transaction, i.e., to an inconsistent state of the whole system
during reconfiguration. On the other hand, allowing Ai to start transaction ri would
lead to new transactions on the manager and on the server, which therefore would not
be in the quiescent state.

Another problem is that reachability of the quiescent state in bounded time is lost.
For example, if A1 is to be replaced, then QS = CPS = {C1, A1}. If A1 becomes pass-
ive before C1, and C1 just initiates a new transaction s1 before getting the passivate
command from the configuration manager, then the client will never become passive
because r1 is not initiated. In this case one could order the commands (passivate
C1 before passivate A1), but for systems with mutual dependencies like the one in
Figure 2.3 no such ordering is possible.

To solve these problems, the notion of passive state is changed. The characterisation

12 The Transaction Approach

N2
d //

a/bc // N1

b/d 66mmmmmm

c/e ((QQQQQQ

N3
e //

=⇒ a/de // N
d //
e
//

Figure 2.4: Composing dependencies

of passive set must also change, since the nodes that may initiate transactions with
a given node are not just its immediate neighbours. The new definitions are thus as
follows.

In the generalised passive state a node is not engaged in non-consequent transac-
tions it initiated and it will not initiate new ones. Furthermore the node accepts and
services all requests, initiating consequent transactions if necessary. The enlarged pass-
ive set of a node Q, EPS(Q), includes Q and all nodes that can initiate transactions which
result in consequent transactions on Q.

Notice that both definitions reduce to the old ones in case all transactions are inde-
pendent. The reconfiguration algorithm remains the same, except that PS(i) is substi-
tuted by EPS(i) in the calculation of CPS.

The server replacement in Figure 2.2 on the preceding page is now correctly handled.
Since EPS(S) = {C1, A1, C2, A2,M, S}, all nodes have to be passivated. Even if all compon-
ents but C1 are already passive, any pending s1 transaction will be serviced (through A1
and M) by the server and therefore the client can become passive and reconfiguration
may start.

In general, systems are not flat as assumed until now but hierarchic, i.e., some nodes
(called composite) are made of connected subnodes. A composite node is connected to
other nodes through some of its subcomponents. The transaction dependency of a com-
posite component must be derived from its subcomponents. The following substitution
rule is given in [KM90]:

“in composing two nodes, substitute the consequents for each occurrence of
the dependent transaction which is hidden by the composition.”

The rule can be iterated on components and connections (Figure 2.4). To simplify re-
configuration management, [KM90] suggests that a composite node is considered to be
passive if all its subnodes are, and that all transactions between composite nodes are
independent.

2.1.2 The Blocking Approach

An alternative method is presented in [GK96]. It assumes that a node is consistent and
self-contained except during transactions, as those are the only interactions with the
outside environment. Thus, to make a node quiescent it is enough to block it while it
is idle (not engaged in any transaction). A component is also assumed not to interleave
transactions: while handling a request a node may not service any new one, even if it
comes from a different connection, and it may initiate only consequent transactions.
This is used to prove that the blocked state is reachable in finite time.

The basic algorithm is thus to send a block message to the nodes in the quiescent
set (called BSet, short for blocking set, in [GK96]). As soon as such a node N is idle, it
blocks and sends an acknowledge to the configuration manager. Since some of the nodes
that depend on N may also have to block, N must temporarily unblock to service some
requests. However, it must be guaranteed that at some point no more such requests will

2.1 The Original Model 13

B

���
�
� A

1oo

BSet

E

2

��????????

C n
// D G F

1
oo

Figure 2.5: A blocking problem

arrive and N will remain blocked. The basic question is therefore: what transactions
should a blocked node service?

It is obvious that it cannot process just any incoming transaction, since it might come
from a node that is not affected in any way by the reconfiguration and as such might
initiate a new transaction any time. Thus the blocked node would have to unblock
unpredictably and the safe state needed for reconfiguration to begin would never be
reached. It is also evident that at least the transactions initiated by other BSet members
will have to be serviced in order for them to become blocked. On the other hand, not
every request from a non-BSet member can be ignored. Consider the cases depicted in
Figure 2.5. Node D must service the request from C because it is the n-th consequent
transaction of a transaction initiated by A, which must be completed for A to become
blocked. In the second case on the right half of the figure, component F has initiated a
transaction with G before getting a request from E. If G does not service the transaction,
F will never be able to start attending E’s request since transactions do not interleave.

One could let BSet nodes unblock just in those situations but the authors argue this
is non-trivial and has great run-time overhead. Instead they propose the BSet to grow
dynamically in step with outgoing transactions. When a node gets a request from a BSet
member, it becomes a member too, and only requests from BSet members are attended;
all other are queued and serviced after the reconfiguration. In the previous cases, it
means that the BSet grows to encompass the whole system, and therefore D and G will
service the transactions initiated by C and F respectively.

Notice that the BSet has two kinds of members: those that “really” must block due
to the reconfiguration and those that block in order to let members of the first kind to
get blocked. Therefore a distinction is made between the original BSet and the extended
BSet. Their union is the BSet. When all the original BSet nodes become blocked, the
components in the extended BSet can be unblocked. The disruption thus first grows
and then shrinks.

As the calculation of the BSet is dynamic, the reconfiguration algorithm is distrib-
uted through the configuration manager and the nodes. Each node runs the same code
in a transparent way using hooks that are called upon relevant events like message
arrival (from another node or from the configuration manager), transaction begin and
transaction end. The application programmer only has to mark in the component’s code
where the last two hooks have to be activated. The code run by each hook basically
updates local variables and sends messages to other nodes or to the configuration man-
ager when necessary. The main variables and messages are those that concern the
BSet. The configuration manager computes the original BSet (in the same way as the
passive approach, since it is the quiescent set) and the so called PSet (short for primed
set), the set of all nodes that may be recipients of transactions initiated by BSet mem-
bers. Whenever such a node receives a message from a BSet member, it informs the
configuration manager that it must be added to the (extended) BSet. The configuration
manager calculates the new PSet and sends the updated value of the BSet to all those
nodes.

14 The Transaction Approach

2.2 Discussion

The authors of the approaches just described discuss their results, but since [GK96]
contains not a single example, comparison with [KM90] is stated in brief and vague
terms. Since we use the same framework, we take a closer look at the two different
methods in order to gain a better insight into the reconfiguration process to achieve
further reduction in disruption. Both approaches are analysed in terms of disruption,
run-time overhead, implementation, and how they deal with hierarchic systems.

2.2.1 Implementation

In the first approach the application programmer is expected to provide code that allows
the component to reach the passive state and keep it, whereas in the second approach
this happens transparently due to the added assumption that nodes are consistent
when there are no interactions with the rest of the system. Of course, the other side of
the coin is that the implementation is hidden away into the hooks which must trap low
level events like message arrival.

On the other hand, the first approach requires just one passivate message for each
node in the extended passive set, while the second method generates initially |PSet0|

messages and then 1+ |PSeti| messages for the addition of the i-th member of the exten-
ded BSet. Also, the messages in the static method are just tokens, while those in the
dynamic approach are descriptions of (potentially large) sets. The blocking approach has
thus much greater run-time overhead and is more complex to implement, but imposes
less burden on the component programmer.

2.2.2 Disruption

The important point in any dynamic reconfiguration method is that the “freezing” of a
node N does not prevent other nodes from reaching their “frozen” state. Basically, both
approaches solve the problem by “freezing” also every node that depends on N or on
which N depends. This does not minimise disruption and in fact may involve many
components besides those that are affected by reconfiguration.

To illustrate the differences between both approaches, let us apply them to common
examples. We write OBS and EBS for the original and the extended BSet, respectively.
The first example is the system of Figure 2.2 on page 11. If the server is to be replaced,
we have seen that the first approach passivates all nodes. The second method considers
OBS = {M,S}, EBS = {} and PSet = {S}, because the only outgoing transaction from a
BSet member is p and goes to the server. This means that on occurrence of p, EBS = {S}

and on its completion both M and S block because they are idle and in the BSet. No-
tice that the clients are not blocked and therefore may initiate new transactions during
reconfiguration. Since M is blocked, it will queue the requests and service them after
the changes done to the system. This was considered an inconsistency in the passive
approach, but in our opinion this is perfectly acceptable because the server manager
has not been changed. Therefore its interface with the agents and the new server is the
same as previously. This means that the new server is able to attend requests sent to
the old one. To sum up, the blocking approach causes less disruption. The reason is
that a passive node is active regarding transactions it services. Therefore, to achieve
quiescence the node must be “shielded” from outside requests and that shield (the ex-
tended passive set) must remain during reconfiguration. No such shield is required in
the second approach since the components actually stop.

Now consider the same system but where the first client has to be replaced. In this
case QS = EPS = {C1} since no component depends on C1. Therefore, as soon as the

2.2 Discussion 15

transaction terminates, C1 will become passive and automatically quiescent. Recon-
figuration can start, while all other components remain active. Applying the blocking
approach one has OBS = {C1}, PSet0 = {A1}, EBS0 = {}. If there is a pending client re-
quest, EBS1 = {A1} and PSet1 = {M}. Since the transaction is dependent, after two more
steps EBS3 = {A1,M, S}. In other words, to replace a client, the server is blocked (even if
temporarily)! In this example the first approach causes much less disruption, contrary
to the claim in [GK96] that the blocking approach performs always at least as well as the
passive method. The reason is that the blocking approach is purely dynamic: it does not
precompute the dependencies between nodes, which is essential to determine whether
the blocking of two components will interfere with each other. Therefore at run-time the
method goes through all the nodes an OBS member depends on, which form the EBS. If
the configuration manager would compute the paths between OBS members, disruption
could be greatly reduced in most cases.

The last example is the left half of the system in Figure 2.5 on page 13. In the
second approach, if A is not engaged in any transaction with B, it will block immediately.
Thus as soon as D is idle it will get blocked too and reconfiguration starts. In the first
approach, all nodes from B to C will be passivated even if no dependent transaction
will occur. This is the advantage of a dynamic method. It only takes into account
transactions that are actually occurring in the running system, while a static analysis
must involve all transactions that may occur.

The authors have concentrated on the number of nodes that are passivated or blocked
by their methods, but we think that indirect disruption must also be taken into account.
Since a blocked node does not any processing whatever, any transaction it services or
initiates unrelated to the reconfiguration will also be stopped and that may lead to (par-
tial) inactivation of other components. Since passive nodes still service requests they
cause indirect disruption in smaller scale. But internal processing that requires initi-
ation of transactions is still hindered. This is recognised in [KM90]. The authors observe
that the replacement of the server in Figure 2.2 on page 11 passivates the clients thus
stopping them from interacting with other nodes not shown on the figure. Therefore,
they should only be passive with respect to the server being replaced, not other nodes
unrelated to the change. This could be achieved by distinguishing the relevant con-
nections and modeling their state (connected-passive, connected-active, disconnected).
This would allow more granularity, but the authors argue it would lead to more com-
plex substates and more complex actions to obtain consistency since the nodes would
be partially active. Therefore they conclude that their approach, while not minimal, is
simple and sufficient.

In our opinion there is another factor that contributes to a greater disruption than
necessary in some cases: the requirement for quiescence of the initiator node in (un)link
changes.

Let us assume that the change specification contains a command unlink N from
N ′ for a non-consequent transaction. It is not necessary for N to be quiescent. It is
enough to be passive, thus not starting any new transaction with N ′. Consider the right
subsystem of Figure 2.5 on page 13 where connection 1 will be removed. If F ∈ QS then
E and every node that depends on transaction 2 would be in EPS. Therefore they and all
nodes on which they can initiate transactions would be partially inactive. If F were only
passivated, the extended passive set would not include the other nodes, reducing direct
and indirect disruption greatly.

Also, if there is a link N to N ′ command but neither N nor N ′ are changed, then
the new connection is the replacement of a previously existing connection or it is an
optional connection (because N was already working without it). In any case N does not
have to be quiescent or even passive. It is only in those states if it has to be replaced or
if some of its connections will be removed. In our opinion, the addition of connections
by itself should not impose passiveness.

16 The Transaction Approach

Both approaches measure disruption only in terms of nodes, neglecting the time
factor. In the configuration model described in Section 2.1 on page 9, first components
are “frozen”, then change commands are applied, and finally components are activated.
This does not minimise disruption time because each phase can only begin after the
previous one ended. Moreover, commands are performed in a fixed sequence (first all
unlink , then all remove , etc.). It is obvious that in many cases some changes are
independent of others. In those cases a part of the system might be changed without
having to wait for nodes in other parts to be “frozen”, or commands of different kinds
might be performed in parallel.

2.2.3 Hierarchic Systems

In [GK96] no reference is made to hierarchic systems. In fact, the blocking approach
does not work for them since a composite node will in the general case interleave trans-
actions, because its subcomponents run in parallel. As written before, [KM90] deals
with such systems but their treatment is still very sketchy. Basically, it only indicates
how to compute a composite node’s dependencies from its subcomponents. From there
the extended passive set at the higher level can be computed. If the composite node
has to be passivated, all its subcomponents must also. This certainly does not minim-
ise disruption. We also feel that requiring independent transactions between composite
components (as in CONIC [MKS89]) to reduce the number of those to be passivated may
lead to extremely large components or to many small ones. In any case it may force the
system designer to partition the system into artificial composite components that are
uneasy to work with. But more importantly, [KM90] does not deal with the interaction
between changes at different levels or how changes at a lower level will affect higher
levels of the component hierarchy.

2.3 The Refined Model

Although the original analysis of the requirements for dynamic configuration [KM85]
stressed the importance of modularity and well-defined component interfaces, the model
presented in [KM90] does not provide any details about it. However, the concrete con-
figuration language presented in [KM85], CONIC, and its successor DARWIN [MDEK95]
provide a mechanism to specify the communication points of a component, called ports.
Our model will thus support that notion, too. An interface is just a set of ports, each
being used either to initiate transactions or to receive requests. Since the environment
has no access to the inner structure of a component, the programmer must provide in
the interface the dependencies between initiator ports and recipient ports.

Definition 2.1. A node interface is a triple 〈I, R,D〉 where

• I is the finite set of initiator ports;

• R is the finite set of recipient ports such that I ∩ R = ∅;

• D ⊆ R× I is the port dependency relation.

A system is simply a set of connected nodes, where a connection is given by an initi-
ator port and a recipient port. To capture sound software engineering principles (mod-
ularity, encapsulation, data hiding, etc.), a system has no access to the inner structure
of its nodes; it knows only their interfaces.

The original model is intended for node based reconfiguration, i.e., “freezing” is done
upon nodes. Moreover, the computation of the passive and blocked sets depends only
on the pattern of connections, not on their number. Therefore the model can assume

2.3 The Refined Model 17

without loss of generality that there is only one arc between a given pair of components.
A connection based approach like ours distinguishes individual transactions and thus
one must allow several connections to be linked to the same port (but only one trans-
action for any given pair of ports). This covers typical situations like client-server (all
client transactions linked to same server recipient port) and broadcast (many transac-
tions with common initiator port). To avoid deadlock, the connections (together with
the port dependencies) may form no cycle. Formally, there may be no closed sequence
of alternating recipient and initiator ports such that every initiator port is linked to
the succeeding recipient port which in turn depends on the next initiator port in the
sequence.

Definition 2.2. A system is a pair 〈N, T〉 where

• N is a non-empty finite set of node interfaces;

• T ⊆
⋃
n∈N

In ×
⋃
n∈N

Rn is the set of transactions.

A non-empty path is a sequence of ports r1i1r2i2 · · · rmim with m > 0 such that

• ∀j ∈ {1, . . . ,m− 1} 〈ij, rj+1〉 ∈ T ;

• ∀j ∈ {1, . . . ,m} ∃n ∈ N 〈rj, ij〉 ∈ Dn.

For every non-empty path r1 · · · im one has 〈im, r1〉 6∈ T .

The original model assumes that the dependencies among transactions are given with
the system. We feel that our notion of port dependency is more realistic and more flexible
since it allows the system architect to work with components programmed by several
people, which may not include himself. Besides, it is a more primitive notion because
the dependencies among connections can be computed from those between ports: if
recipient port r depends on initiator port i, then any transaction received by r starts
a transaction (i.e., depends) on every connection from i. As in the original model, the
inverse is not true: the component might start a transaction on port i without having
received any request on port r. The transaction dependency relation is closed under
transitivity.

Definition 2.3. Given a system 〈N, T〉, the transaction dependency relation / ⊆ T × T is
defined as 〈i, r〉/〈i ′, r ′〉⇔ (∃n ∈ N 〈r, i ′〉 ∈ Dn) ∨ (∃t ′′ ∈ T 〈i, r〉/t ′′ ∧ t ′′/〈i ′, r ′〉).

A transaction t is dependent (on the consequent transaction t ′) if ∃t ′ ∈ T t/t ′, other-
wise t is independent.

The acyclic condition on port paths can thus be restated as: transaction dependency
is anti-reflexive.

Proposition 2.1. In a system 〈N, T〉, @t ∈ T t/t.

Proof. It is easy to see that whenever t/t ′, with t = 〈i, r〉 and t ′ = 〈i ′, r ′〉, there is a non-
empty path from r to i ′. It is immediate for the base case, and whenever t/t ′′ and t ′′/t ′,
the non-empty paths r · · · i ′′ and r ′′ · · · i ′ can be concatenated, forming a new non-empty
path. Therefore, if we had t/t, the path r · · · i would be cyclic: 〈i, r〉 = t ∈ T . ✓

To build modular architectures it must be possible to abstract systems into nodes
which will be part of other systems. A system is encapsulated in a composite node by
hiding part of the system’s ports. The dependencies of the remaining visible ones (i.e.,
the ports of the composite node) are given by the underlying system.

Definition 2.4. A composite node consists of an interface 〈I, R,D〉 and a system 〈N, T〉
such that

18 The Transaction Approach

• I ⊆
⋃
n∈N

In;

• R ⊆
⋃
n∈N

Rn;

• D = {〈r, i〉 ∈ R× I | r i1 · · · rmi is a non-empty path in 〈N, T〉}.

Example 2.1. Consider the two-pass filter depicted below with Passn = 〈{in}, {rn}, {〈rn, in〉}〉
for n = 1, 2. The dotted lines indicate for each port of a composite node which is the cor-
responding port of the contained system.

t1 // r1
Pass1

〈i1,r2〉

��

i2t2

oo

Filter

Pass2

Since r1i1r2i2 is a non-empty path, we have Filter = 〈{i2}, {r1}, {〈r1, i2〉}〉 and hence t1/t2.
This shows how inner port dependencies entail outer transaction dependencies.

If a node is not decomposed into further nodes, then it is called simple. Formally, only
its interface is available. A system is hierarchic if it contains at least one composite node.
Strictly speaking, given a system it is impossible to know for any of its nodes whether it
is simple or composite because the formal definition of a system only provides the node
interfaces. Thus it is possible for a simple node to be changed into a composite one and
vice-versa in a transparent manner to the system.

2.4 Minimising Disruption

From the long summary and analysis of the passive and blocking approaches it be-
comes clear that to minimise disruption we must look for a static blocking method at
the connection level. To ensure that blocking a connection will not prevent others from
reaching the blocked state, we can use a previously mentioned idea: to order the exe-
cution of “freeze” commands. This works at the connection level because transactions
do not form cycles. Extending the execution ordering to all commands one can define
precisely what changes may be performed in parallel to reduce disruption time.

2.4.1 The Connection Approach

The essence of our proposal is to block only those connections that will be removed. To
block a connection its initiator node waits for any ongoing transaction (on that connec-
tion) to finish and then simply does not start a new one. For this to work we assume,
as in the original model, that a transaction finishes in finite time and that its initiator
knows when it ends. A simple implementation might be the following. For each com-
ponent, assign to each transaction Ti it might initiate a boolean variable blocked[i]
initialised to false and a semaphore S[i] to ensure that the transaction completes be-
fore being blocked. Then substitute the transaction code Ti by

P(S[i]);
wait while blocked[i]; Ti;
V(S[i]);

and add the following case to the code that dispatches the incoming requests:

2.4 Minimising Disruption 19

if msg.command = block then begin
i := msg.arg; P(S[i]);
blocked[i] := true; V(S[i]);
send(config_manager, blocked, i)

end

This code can also be provided by three hooks if wished. One to be called on transaction
begin, one on transaction end. These hooks must be explicitly called by the component’s
programmer, passing the transaction identifier as argument. The third hook would be
called transparently to the component on message arrival. Compared to the blocking
approach, run-time overhead is small since only one simple block message per connec-
tion is sent and acknowledged. However, the number of messages is usually larger than
in the passive approach because each node to be removed has to receive as many block
messages as the connections it has.

Blocking a connection means that the node will not service any transaction that de-
pends on the blocked one. To ensure that the blocking of one connection will not prevent
other pending transactions to block, the configuration manager orders the blocking ac-
cording to dependency: if transaction t depends on t ′ then the block message is sent
to the initiator of t ′ only after t is known to be blocking. This is always possible because
transactions do not depend cyclically on each other.

Example 2.2. Consider again the client-server system of Figure 2.2 on page 11. Let us
assume that C1 and the server will be replaced. Then s1 and p must block because
they will be removed, but p cannot simply block at once because it may have to service
a pending s1 request (or else s1 could never terminate and get blocked). Therefore,
blocking s1 before p we are sure that the blocking state is reachable for each link. Also,
any request received by manager M after p blocked can be safely queued until the server
has been replaced because it is known that any connection that depends on p and that
had to block has already done so.

Notice that this method would not work if the server would be allowed to be simply
removed without being replaced by a new one. In that case a partially completed s2
request could remain after reconfiguration: clearly an inconsistent state. We assume
that the validation process has ruled out such cases. If a consequent transaction is
removed, either a replacement connection is created or else the transactions which
depend on the removed one are changed too.

The original reconfiguration model distinguished two kinds of commands: those
that are given in the change specification (create , etc.) and those that are used to
“freeze” the components (passivate , block). The former are common to the passive
and blocking approaches, while the latter are specific to each approach. In our model
the “freeze” command blocks a connection. Furthermore, as multiple transactions are
allowed between the same pair of components, the syntax of the (un)link commands
has to change slightly.

Definition 2.5. A command is either of create n, remove n, link t, unlink t or block
t, where n is a node interface and t a transaction.

2.4.2 The Partial Order

To minimise disruption time, the precise execution of the commands issued by the
configuration manager is given by a temporal order <: if c < c ′ then command c ′ can
only be executed after command c has completed. Commands that are not related
through the ordering can be executed in parallel. It is obvious that the order must
include the following relationships:

1. If a transaction t depends on a transaction t ′, then t must be blocked before t ′.

20 The Transaction Approach

2. A connection must be blocked before it is removed.

3. A node can only be removed after its connections have been removed.

4. A node can only be linked after its creation.

We will be conservative and impose a further restriction. In some systems it might
not be necessary and thus further parallelisation can be achieved. Consider a simple
system with a client linked through transaction c to a server. If the server is to be
replaced then a new connection c ′ is needed. However, since the client remains the
same, the communication protocol with the new server is the same as with the old one.
Therefore, c ′ is the same transaction as c and we feel it does not make sense to link c ′

before unlinking c. Besides, it might lead to execution errors if the implementation of
the client assumes that there is always only one connection on that particular port. The
general rule is:

5. A connection for transactions initiated by a node can be established only if no more
connections from it will be removed.

As can be seen by exhaustive inspection of all possible interactions between the
existing kinds of commands (block , link , unlink , remove , create) no further rules
are necessary since there are no other dependencies between the commands and thus
they may run in parallel.

Definition 2.6. Given a set of commands C for a system 〈N, T〉, the command order
< ⊆ C× C is the smallest relation that satisfies

1. block t < block t ′ if t/t ′ and @block t ′′ ∈ C t/t ′′ ∧ t ′′/t ′;

2. block t < unlink t;

3. unlink 〈i, r〉 < remove n if i ∈ In or r ∈ Rn;

4. create n < link 〈i, r〉 if i ∈ In or r ∈ Rn;

5. unlink 〈i, r〉 < link 〈i, r ′〉.

Since the configuration manager directly implements the command order, it is desir-
able to avoid redundancy. Therefore the ordering is an immediate precedence relation:
if c < c ′ then there is no command c ′′ such that c < c ′′ < c ′. Due to the nature of the five
cases this could only happen with block commands (case 1). Therefore the definition
above imposes the additional condition.

Example 2.3. Applying the definition to Example 2.2 on the page before, only 4 steps are
necessary to replace the first client and the server whereby each step consists of several
commands executing in parallel:

1. create C ′1, block s1, create S ′

2. unlink s1, block p

3. link s ′1 (the connection from C ′1 to A1), remove C1, unlink p

4. link p ′ (the connection from M to S ′), remove S

Notice that in some cases some commands of step i + 1 can start without step i being
completed (the exact order is given in Example 2.4 on page 22).

2.5 The Configuration Manager 21

To summarise, a connection based approach is not only advantageous in terms of
the number of parts being “frozen”, but also in terms of minimising disruption time. In
fact, in the node based approaches several nodes have to “freeze” just to let those nodes
that really matter for the reconfiguration to become quiescent. In practice this means
that reconfiguration can only start after all nodes have “frozen”. We think it is possible
to have rules that allow one to calculate the exact set of nodes that have to “freeze”
for a given change command to be executed, but those rules would be much more
complicated than those shown above. Given that in a connection based approach the
number of parts to be “frozen” is much smaller, and that “freeze” and change commands
can be better interleaved, we conclude that our method can reduce disruption time
considerably.

2.5 The Configuration Manager

Since a configuration manager executes several commands with some dependencies
among them, we observe that such a manager can be seen as a parallel system too, with
components and transactions. The goal is to have a precise definition of a configuration
manager for a given set of commands to be applied to a given system. In this way the
same framework can be used both for managers and the systems they reconfigure. In
particular, the definition to be obtained can serve as a basis for a straightforward im-
plementation of configuration managers, although our main goal is to provide a system
view of a manager. To facilitate exposition we start with flat systems.

2.5.1 Flat Systems

The basic idea is that each change command is implemented by a component, and
connections between components make dependencies between the corresponding com-
mands explicit. To be more precise, if c < c ′ then the component corresponding to c ′

will initiate a transaction with the component corresponding to c. The transaction can
be seen as a request from c ′ to execute c. Once the acknowledgment is received, c ′ can
execute. If c ′ depends on several commands it must wait for all its requests to be atten-
ded. A command is executed only once, even if several other commands are connected
to (i.e., depend on) it.

A component implementing a command c must therefore have two ports. The re-
cipient port sc receives all requests from the successors of c, i.e., those nodes that can
only execute after c. The initiator port pc sends requests to all predecessors of c to start
execution and waits for the acknowledgments. It is obvious that sc depends on pc.

In some cases a command c does not depend on the execution of others. In other
words, there is no c ′ such that c ′ < c. The inverse can also happen: no c ′ depends on c.
For example, if connections are to be removed, there is always at least one block com-
mand to be executed first (i.e., it depends on no other one) and at least one block to be
executed last. In these cases the corresponding components only need one port. Instead
of providing special component definitions we take a generic approach. The configura-
tion manager has always one special nop component with one recipient port snop and
one initiator port pnop (like any regular component) but there is no dependency between
them. For any request received by snop an acknowledgment is immediately sent. Like-
wise, any transaction linked to pnop is immediately started. To see why this works,
consider the case where there is no c ′ such that c ′ < c. Since c depends on no other
command, it can execute at once. In other words, the fact that c has no predecessor can
be seen as its predecessor being the “empty” command nop . Therefore, if c’s predecessor
port pc is linked to the successor port snop , the request from c is immediately attended
by nop and therefore c can execute at once as wished.

22 The Transaction Approach

Definition 2.7. The system configuration manager that reconfigures the flat system
〈N, T〉 according to commands C is a system 〈N ′, T ′〉 where

N ′ = {〈{pc}, {sc}, {〈sc, pc〉}〉 | c ∈ C}

∪ {〈{pnop }, {snop }, ∅〉}

and T ′ is the smallest relation that satisfies

1. 〈pc, sc ′〉 ∈ T ′ if c ′ < c;

2. 〈pc, snop 〉 ∈ T ′ if @c ′ c ′ < c;

3. 〈pnop , sc〉 ∈ T ′ if @c ′ c < c ′.

It is possible to simplify matters by omitting pnop and the third condition, since a
command c without successors does not get any request in its sc port from any other
command and therefore the port may be left unlinked. However, we chose the above
presentation to emphasize the uniformity of the approach.

Example 2.4. According to this definition the reconfiguration of Example 2.2 on page 19
can be done by the following manager which allows us to quickly see the ordering of the
commands, in particular which must be executed sequentially and which can run in
parallel.

block p
5/10 // block s1

10

create S ′
12

unlink p

4/5

OO

unlink s1

6/10

99ssssssssssss
create C ′1

11

OO

link p ′

1/12

OO
2/4

55kkkkkkkkkkkkkkk
remove S

3/4

OO

remove C1

7/6

OO

link s ′1

9/11

OO

8/6

iiTTTTTTTTTTTTTTT

nop

15/7

OO

13/1,2

llYYYYYYYYYYYYYYYYYYYYYYYYYYYY

14/3
iiSSSSSSSSSSSSSSS 16/8,9

44jjjjjjjjjjjjjjj
OO

Notice that the execution path starts and ends at nop . The arrows show the direction of
requests, it is upon acknowledgments (in the opposite direction) that commands are ex-
ecuted (compare with the partial order in Example 2.3 on page 20). Hence, a sequential
(ie, total) execution order for the commands can be obtained by removing the nop node
and its arcs, reversing the direction of the other arcs, and then computing a topological
sort [CLR90].

Example 2.5. Consider the system Client
r/f−→ Filter f−→ Server . To remove the filter

and link the client directly to the server with connection r∗ we execute the following
commands:

nop
1/2 //

3/7

��

link r∗
2/5 // unlink r

5/6

##GGGGGGGGGGG

remove Filter
7/8
//

4/5

55kkkkkkkkkkkkkkkkkkkkk unlink f
8/9

// block f
9/6

// block r

6

��

Note that link r∗ > unlink r because those transactions have the same initiator.

2.5 The Configuration Manager 23

The graphical representation of the configuration manager makes it easy to have an
estimate of the upper bound of the time needed for reconfiguration. First assign to each
transaction a numeric weight representing the upper bound for executing the command
corresponding to the initiator of the given transaction. The bound may only take the
command type into account (link , create , etc.) or it may be specific to the component
or connection operated upon. Transactions initiated by nop have weight zero. The time
needed for reconfiguration is then the longest path from nop back to nop [CLR90].

2.5.2 Hierarchic Systems

Hierarchic systems pose a problem that does not occur in flat systems: if commands c
and c ′ apply to different subsystems, it might still be the case that c < c ′ (or vice-versa)
due to the way the subsystems are connected.

Example 2.6. Consider the hierarchic system presented below. Assume that for each of
B,C,D, and E, the recipient port depends on the initiator port. The same applies to N2,
according to the definitions of composite nodes and transaction dependency, and thus
b/d as seen on the right. In other words, N2 is like the two-pass filter of Example 2.1 on
page 18.

A a
// B

b //

N1

C

c
��

F E
eoo doo

N2

D

=⇒ N1

b/d //
N2

d
oo

For this configuration one has a/e, which is not apparent just by looking at N1. If A and
F are to be replaced, those two connections cannot be blocked in parallel. One could
flatten the whole system to discover that block a < block e, but that defeats the whole
purpose of building a modular system.

To reflect the hierarchy of a system and the benefits of its partitioning, we propose
a configuration manager for each node. We have seen that a manager for a system is a
system itself. Likewise, the manager of a node will be a node, with an interface that will
allow it to be linked to other configuration managers. The problem is thus what interface
a node manager needs and how should it be linked to other managers. The goal is to
achieve the correct order of command execution in the most modular possible way. In
other words, a node manager should only know about the subsystem it manages, not
about the managers it is linked to. Therefore, the internal structure of a node manager
should be such that it can work in any possible context.

The solution to the problem is based on the following observations. Let us assume
that node x has an initiator port i linked to recipient port r of node y. Thus any change
inside x that depends on transaction 〈i, r〉 must occur before the changes inside y that
depend on 〈i, r〉. Therefore the requests of the change commands inside y must be
acknowledged by the change commands inside x. Therefore the direction of requests is
opposite to the direction of the transaction that establishes the dependency between x

and y. To sum up, the configuration manager x ′ for x has recipient port i, the manager
y ′ for y has initiator port r, and the requests of y ′ are passed to x ′ through transaction
〈r, i〉. If the system’s transaction 〈i, r〉 is going to be blocked then the reconfiguration
manager for the whole system cannot just link sub-manager x ′ to sub-manager y ′. In
this case port r of y ′ is connected to the recipient port of block 〈i, r〉 whose initiator port
is linked to port i of x ′.

To put it in more general terms, the configuration manager for a hierarchical system
S consists of one component for each command, one component called nop , and one
configuration manager for each node in S. A node manager has the same interface as
the node whose reconfiguration it manages, except that initiator ports are exchanged
with recipient ports. This implies that the manager’s port dependency relation is the

24 The Transaction Approach

inverse of the node’s dependencies, and that connections among node managers are the
opposite of those between nodes, except for transactions that must be removed. Those
will be of course substituted by the respective block command.

Definition 2.8. The system configuration manager that reconfigures the hierarchic sys-
tem 〈N, T〉 according to commands C is a system 〈N ′, T ′〉 where

N ′ = {〈Rn, In,D−1
n 〉 | n ∈ N}

∪ {〈{pc}, {sc}, {〈sc, pc〉}〉 | c ∈ C}

∪ {〈{pnop }, {snop }, ∅〉}

and T ′ is the smallest relation that satisfies

1. 〈r, i〉 ∈ T ′ if 〈i, r〉 ∈ T ∧ block 〈i, r〉 6∈ C;

2. 〈r, sc〉, 〈pc, i〉 ∈ T ′ if c = block 〈i, r〉;

3. 〈pc, sc ′〉 ∈ T ′ if c ′ < c;

4. 〈pc, snop 〉 ∈ T ′ if @c ′ c ′ < c;

5. 〈pnop , sc〉 ∈ T ′ if @c ′ c < c ′.

Definition 2.9. The node configuration manager for a composite node with interface
〈I, R,D〉 and system 〈N, T〉, to which commands C will apply, is a composite node with
interface 〈R, I,D−1〉 and system configuration manager 〈N ′, T ′〉.

Example 2.7. Let us assume that the components in Example 2.5 on page 22 are com-
posite, with the two-pass filter of Example 2.1 on page 18, the client and its agent (see
Figure 2.2 on page 11) being put together, and similarly for the server and its manager.

C
s // A

r/f // P1 // P2
f // M

p // S

Assume further that in addition to the reconfiguration of Example 2.5 on page 22 we
replace the client C by C∗. The resulting manager is

C ′ block soo A ′oo block roo Filter ′oo block foo Server ′oo

nop

�� ''PPPPPPPPPP unlink s

aaCCCCCCCC
unlink r

OO

unlink f

OO

create C∗

::uuuuuuuuu
link s∗oo remove C

OO

link r∗

OO

nopoo // remove Filter

llYYYYYYYYYYYYYYYYYYYYYYY

OO

For the definition to be complete it remains to be said how a configuration manager
x ′ for a simple node x behaves. As for any node manager its interface is the “mirror” of
the node’s interface, and the same happens to port dependencies. If recipient port r of
the manager x ′ depends on initiator port i, then x ′ must forward any request received on
r to port i2. If r does not depend on any initiator port, then x ′ acknowledges immediately
any request received by r. As usual, all transactions connected to a initiator port are
also immediately started.

2A composite node manager also does this, the only difference being that the forwarding is done through
the dependency path made explicit by the composite node’s architecture.

2.6 Concluding Remarks 25

Example 2.8. Returning to Example 2.6 on page 23, let us assume that all nodes from
A to F are simple. Then a can be blocked at once since A ′ attends the request made by
block a. F ′ issues a request to block e which gets forwarded by C ′ and D ′ until A ′ which
gets immediately acknowledged at that point. In a slightly optimised implementation of
this model, if block a had already executed, it would acknowledge block e’s request
without forwarding it to A ′. As a further example, consider that there is no dependency
between the ports of C (i.e., b is independent of d)., Then block e is acknowledged at
the recipient port of C ′ and therefore a and e can be blocked in parallel as desired.

2.6 Concluding Remarks

We have adopted a simple and general framework at the software architecture level stat-
ing which parts of the system should be “frozen” in order to achieve a stable consistent
state and how the “freezing” and the changes are performed. We analysed, formalized,
refined, and extended the framework in order to minimise disruption and to handle
hierarchic systems.

In fact, switching from a component based to a connection based approach, we have
come up with a minimal solution (since it only blocks the connections that will be re-
moved) that is conceptually very simple. On the other hand, for the first time for this
framework, we have concentrated on the time taken by the reconfiguration process. In
particular we have defined an order for the change commands that may reduce, con-
siderably, the disruption of independent parts of the system being reconfigured. The
assumption is, again, that commands may be executed in parallel.

Since a configuration manager executes the commands of a given change specifica-
tion, it can be seen itself as a system of interconnected components, where a component
is a single change command and a connection denotes the dependency between the two
commands it links together. This model gives a precise and complete account on how
a configuration manager may execute a change specification. The model is also par-
ticularly useful for hierarchic systems, showing how the reconfiguration process of the
whole system can be obtained simply by connecting the configuration managers of the
subsystems together, in a way that mirrors the connections between the subsystems.

The work presented in this chapter was done in early 1997. Since then the blocking
approach described in [GK96] has been made part of a complete framework for dy-
namic reconfiguration [MG99]. Its main characteristic is the use of an object-oriented
reconfiguration language, in this case Java with pre-defined methods for querying and
changing the current configuration. For each component type of the application (e.g.,
client, server, and filter, in our examples) there is a class to be used by the reconfigura-
tion manager. The class contains the information needed by the manager to reconfigure
systems containing components of that type. For example, the class contains one vari-
able for each port of the component type. For composite components, the class also
contains one method for each possible reconfiguration. Each method uses the primitive
commands (like unlink) or the methods of the contained components. Each method
corresponds thus to a node configuration manager in our model. In fact, it corresponds
to many managers: the method can adapt the actual reconfiguration to be done to the
current configuration of the composite node, because the method is written in a concrete
programming language and therefore may use query primitives and control structures
(like while-do, if-then, etc.). For example, a method can replace all sub-components
of a filter, no matter of how many passes it is made of, while in our abstract model
there must be a different node configuration manager for each case. Moreover, an ob-
ject oriented reconfiguration language allows common reconfigurations to be assigned
to a common superclass. For example, it is possible to have an abstract class Ring
with a reconfiguration method add which allows the addition of a new node to a ring
topology. Each node would have to belong to a subclass of Ring . However, the funda-

26 The Transaction Approach

mental point to remember is that the idea to mirror the structure of the application at
the configuration management level has been validated in practice.

Our uniform view of a configuration manager as a system like the one it manages
paves the way for meta-reconfiguration, i.e., a configuration manager might be subject
to reconfiguration too. In other words, a change specification can be changed. We think
this might be useful in two situations: failures and validation. If an ongoing reconfigur-
ation fails for some reason, then one may try to find another but equivalent (or similar)
reconfiguration. Another approach is to undo the changes done so far and re-establish
the existing system. In both cases it means that the existing change specification has to
be changed while it is being applied, i.e., the configuration manager which is executing
the changes must be reconfigured dynamically.

The other situation concerns the validation process. A change in a subsystem (like
the removal without replacement of a server) may force some changes to be done in other
parts of the system (like substituting a dependent transaction by an independent one).
Thus the validation of the change specification for a subsystem may force the change
specifications of other subsystems to be changed. On the other hand, this means that
the validation of those systems must be redone which may cause further changes in the
specifications of other subsystems and so on. Again, change specifications may change
dynamically (in this case as they are validated).

Chapter 3

The CHAM Approach

The Chemical Abstract Machine (CHAM) [BB92] is a simple, operational, and general-
purpose model based on the chemical metaphor introduced by the Gamma formalism
[BM96]. The basic idea is to represent the data as a multiset of molecules and the
program as a set of multiset rewriting rules that state how the molecules react with
each other. A molecule is a user-defined term. There is no control mechanism for the
application of rules. The CHAM was first used to specify and analyse the computational
behaviour of systems at the software architecture level by Inverardi and Wolf [IW95]. The
CHAM was also used to perform architecture refinement [IY96] and deadlock detection
[IWY97]. These works describe and study only static architectures: the number and
type of components and connections do not change.

Our contribution is to show how the CHAM can be used as a uniform framework to
specify, besides computations, architectural styles (following the approach of Le Métayer
[Mét98]), different kinds of reconfiguration, and even a restricted form of code mobility.
The flexibility provided by molecules allows one to choose the most adequate repres-
entation for the architecture and reconfiguration at hand. But we also present fixed
syntactic constructions for a CHAM-based ADL and a methodology to specify architec-
tures in a modular way.

The material in this chapter is based on [Wer98b, Wer98c, Wer98a, Wer99].

3.1 The CHAM formalism

The chemical model views computation as a sequence of reactions between data ele-
ments, called molecules. The structure of molecules is defined by the designer. The sys-
tem state is described by a finite multiset of molecules, the solution, written m1, . . . ,mi.
The possible reactions are given by rules of the form

m1, . . . ,mi → m ′1, . . . ,m
′
j

If the current solution contains the molecules given on the left-hand side of a rule,
that rule may be applied, replacing those molecules by the ones on the right-hand side.
Usually a CHAM is presented using rule schemata, the actual rules being instances of
those schemata. There is no explicit control mechanism. If several rules may be applied,
the CHAM chooses one of them non-deterministically. Reactions on disjoint multisets
may occur simultaneously, i.e., in parallel. The solution thus evolves by rewriting steps.
A solution is inert when no reaction rule can be applied.

As a very simple example, consider a CHAM to build ring-shaped architectures. The
initial solution is a multiset of components, each of the form ‘—c—’ stating that it may
be connected to two other components. A molecule of the form ‘—c—c—. . . —c—’ may

28 The CHAM Approach

still grow. When the first component of a linear architecture is linked to the last one, a
ring is obtained: ‘c—c—. . . —c’. The molecules are thus built as given by the grammar

Ring := ‘c’ ‘—’ Ring | ‘c’
Molecule := ‘—’ Ring ‘—’

and rings are formed according to the reaction rules

—x—, —y— → —x—y—
—x— → x

If the initial solution has four components, up to four rings can be built. For example,
the following transformations lead to two rings.

—c—, —c—, —c—, —c— −→ —c—c—, —c—, —c—
−→ —c—c—, c, —c—
−→ —c—c—c—, c
−→ c—c—c, c

Notice that the second transformation (corresponding to an application of the second
reaction rule) could occur in parallel with any of the other transformations.

Rules of the form

m1, . . . ,mi →
only remove molecules from the current solution.

Any solution can be considered as a single molecule using the membrane operator
{|·|}. A solution within a membrane can thus be a subsolution of another solution or
an argument of a molecule operator. For example, if the molecule constructors are the
constant 0 and the unary function s , then

s({|0,s(0) |}),0

is a solution containing two molecules. Membranes encapsulate solutions and thus
force reactions to be local. In other words, the solution inside a membrane evolves
independently of the solution outside the membrane. For example, if a CHAM included
the rule

0 →
then the above solution could be transformed into

s({|s(0) |})

after two (possibly simultaneous) rewriting steps.
The airlock operator / constructs a molecule m/ {|S ′|} from a solution S = m]S ′, where

] is the multiset union operator. In words, it picks a molecule from a solution and puts
the rest of that solution within a membrane. The operator is reversible, which means
that S can again be obtained from m/ {|S ′|}. For example, using twice the airlock operator
it is possible to transform the original solution into

0/{|s({|s(0) /{|0|}|}) |}

Molecules may permeate through membranes if there are explicit rules for that purpose.
For example,

{|p/M|} → p, M

3.2 The Graph Grammar Approach 29

where M is a solution within a membrane, allows any molecule p to leave the membrane
it is within.

Formally, the reaction rules determine a transformation relation −→ between solu-
tions according to the following laws, where S and S ′ are solutions and C[·] is a context,
i.e., a molecule with a hole in which to place another molecule, in particular a solution
within a membrane.

Reaction Law An instance of the right-hand side of a rule can replace the correspond-
ing instance of its left-hand side. If

m1,m2, . . . ,mk → m ′1,m
′
2, . . . ,m

′
l

is a rule and M1, . . . ,Mk,M
′
1, . . . ,M

′
l is an instance of m1, . . . ,mk,m ′1, . . . ,m

′
l then

the solution transformation M1,M2, . . . ,Mk −→M ′1,M
′
2, . . . ,M

′
l takes place.

Chemical Law Reactions can be performed freely within any solution:

S −→ S ′

S] S ′′ −→ S ′] S ′′

Membrane Law A subsolution can evolve freely in any context:

S −→ S ′

C[S] −→ C[S ′]

Airlock Law A molecule can be extracted and reabsorbed into a solution:

m] S←→ m / {|S|}

3.2 The Graph Grammar Approach

We start our exploration with a brief review of Le Métayer’s approach to architectural
style and evolution specification [Mét98].

Architectures are represented by graphs, the mathematical structure that most close-
ly resembles the intuitive “box and line” drawings. Nodes denote the system compon-
ents and arcs represent communication links. A graph is a multiset of relation tuples
R(e1, . . . , en) where R is the name of an n-ary relation and ei are component names. A
binary relation A(e1, e2) represents a directed arc from e1 to e2 labelled with A. A unary
relation N(e) states the role represented by node e in the architecture. The example
presented in [Mét98] is the client-server system described by the graph

ONMLHIJKC c1
CR

&&LLLLLLLL ONMLHIJKS s1

SAyyrrrrrrrr

GFED@ABCX x ONMLHIJKM m
CA

ffLLLLLLLL

SR
99rrrrrrrr

CAxxrrrrrrrr SR

%%LLLLLLLL

ONMLHIJKC c2

CR
88rrrrrrrr ONMLHIJKS s2

SA

eeLLLLLLLL

and, mathematically, by the multiset

C(ci), S(si),M(m), X(x), CR(ci,m), CA(m, ci), SR(m, si), SA(si,m)

with i = 1, 2. Each client (C) sends requests (CR) to a manager (M) that forwards them
(SR) to a server (S). The server’s answer (SA) gets back to the client (CA). New clients
may be created by an external entity (X).

30 The CHAM Approach

This is just a particular instance of a general class of client-server architectures with
exactly one external entity, one manager, and zero or more clients or servers obeying the
above connection pattern. Such an architectural style can be specified by a context-free
graph grammar. It is, as any context-free grammar, a four-tuple 〈N, T, P,O〉 where N is
a set of non-terminal symbols with a distinguished element O being the origin of the
derivation, T is a set of terminal symbols, and P is a set of production rules whose left-
hand sides are non-terminals. However, the right-hand sides of the production rules
are not sequences, but multisets of (non-)terminals. A (non-)terminal is a relation tuple.
The style defined by the grammar is the class of all multisets (i.e., graphs) of terminals
generated by the grammar.

The client-server architecture style is defined by

〈{CS,CS1}, {M,X,C, S, CR,CA, SR, SA}, P, CS〉

where P are the rules

CS ⇒ CS1(m)

CS1(m) ⇒ CR(c,m), CA(m, c), C(c), CS1(m)

CS1(m) ⇒ SR(m, s), SA(s,m), S(s), CS1(m)

CS1(m) ⇒ M(m), X(x)

As expected, the graph presented above can be obtained by this grammar.
The evolution of an architecture is defined by conditional graph rewriting rules. Since

a graph is a multiset, those rules are like the guarded multiset rewriting rules of Gamma
[BM96]. In this particular case of system evolution, the guard of a rule is a proposition
upon the state of the components involved. For the example at hand, [Mét98] assumes
that external entities have a boolean variable newc which is set to true when a client is
to be created. Dually, a client sets its boolean variable leave when it wishes to leave the
system. Client creation and removal can then be described by the rules

X(x),M(m), x.newc = true → X(x ′),M(m), CR(c,m), CA(m, c), C(c)

CR(c,m), CA(m, c), C(c), c.leave = true →
The second rule removes a client and its links, while the first one creates a client and
links it to the existing manager. Notice that it also replaces the original external entity
by a new one. In this way the client creation process (in other words, the internal
computation of an external entity) starts over again, thus with newc set to false. If x
were not removed, the first rule could be immediately reapplied, possibly leading to an
infinite behaviour.

It is obvious that any graph grammar 〈N, T, P,O〉 is a CHAM, where N and T are the
molecules, P the reaction rules, and O the initial solution. Furthermore, deriving a
graph is a special case of obtaining a inert solution: since the graphs that represent
architectures only contain terminals, no rule can be applied. As it is immediate that
conditional graph rewriting rules are basically reaction rules given appropriate molecule
syntax to represent the conditions (see, e.g., [IW95]), it follows that the CHAM formalism
can be used both for the specification of architecture styles and their evolution. Thus
the approach taken in [Mét98], in particular the previous six rules for client-server
architectures, can be adopted directly with just a few syntactic changes, without need
to use two different, albeit very similar, formalisms.

3.3 Ad-hoc Reconfiguration

In the approach just described, the external world is modeled within the system itself.
The entities that interact with the system are represented by one or more components

3.3 Ad-hoc Reconfiguration 31

and the events that lead to changes in the architecture are simulated by computations
of those components. Put differently, the evolution of the (external) structure of the
architecture is based on the evolution of the (internal) state of some components. This
means two things. First, only programmed reconfigurations can be simulated. Second,
a complete specification of the system’s evolution must include a description of each
component’s data and program, and provide the semantics of the interactions between
component and coordinator actions, as done in [Mét98].

We follow instead the Configuration Programming approach, separating structural
from computational aspects and using explicit reconfiguration commands to be added
unpredictably by the user to the solution. Since the reaction rules will state how com-
ponents are linked, the user only has to provide create component (cc) and remove com-
ponent (rc) commands. Architectural style and reconfiguration are specified by two
different CHAMs, the creation CHAM and the evolution CHAM.

3.3.1 Specification

We introduce in the example of the previous section some simplifications in order to omit
details which, while making it more “realistic”, are not relevant to show how architecture
reconfiguration may be specified using the CHAM model. As in the previous chapter,
links represent whole transactions (i.e., sequences of one or more message exchanges)
between components and we assume there is at most one kind of transaction, and thus
one link, between any pair of components. This way arcs do not have to be labelled.
Another change introduced is merely a matter of taste. Since the component roles of the
previous approach correspond to the component types of the Configuration Programming
approach, we adopt the usual typing notation c : T instead of the relational notation T(c).

The structure of molecules is given by the following grammar, which leaves the pre-
cise syntax of component identifiers open.

Molecule := Component | Link | Command
Component := Id ‘:’ Type
Type := ‘C’ | ‘M’ | ‘S’
Link := Id ‘—’ Id
Command := ‘cc(’ Component ‘)’ | ‘rc(’ Id ‘)’

To make the example more interesting we assume that there must always be at least
one server. The CHAM that specifies the client-server architectural style is

cc(m:M) → c:C, c—m, cc(m:M)
cc(m:M) → s:S, m—s, cc(m:M)

s:S, cc(m:M) → s:S, m:M

There are three differences, compared to the original style specification. First, we as-
sume that the manager’s name is given by the user, not generated by the system, and
thus the symbol CS of the original graph grammar is not necessary. Second, the non-
terminal CS1 that keeps track of the manager’s name—so that clients and servers can be
correctly linked to it—is substituted by a (creation) command. With the elimination of
CS, CS1 becomes the origin of the derivation and thus the corresponding cc() command
forms the initial solution. Third, the last rule ensures that the architecture creation
process only stops when at least one server has been created.

Although syntactically there is no difference between this creation CHAM and the
evolution CHAM to be presented next, the distinction can be made just by looking at
the rules. A creation CHAM is used to generate all architectures belonging to a certain
style. This entails two properties of creation CHAMs. First, there are no rc() commands,
because components and links are only added, not removed. Second, components may

32 The CHAM Approach

be created on the right-hand side without a cc() command on the left-hand side, in order
to allow an arbitrary number of components (and their connections) to be generated.

Now we turn to the evolution specification. Besides adding and deleting clients as in
the original example, we also deal with server and manager creation and removal. Each
change must be explicitly invoked by an appropriate command, to be handled by (at
least) one reaction rule of the evolution CHAM.

cc(c:C), m:M → c:C, c—m, m:M
cc(s:S), m:M → s:S, m—s, m:M

rc(c), c:C, c—m →
s ′:S, rc(s), s:S, m—s → s ′:S
m:M, rc(m), cc(m ′:M) → m ′:M

m—s, m ′:M → m ′—s, m ′:M
c—m, m ′:M → c—m ′, m ′:M

The first four rules deal with client and server creation and removal, while the other
rules handle manager substitution, which is indicated by a pair of creation/removal
commands. The last two rules relink the existing clients and servers to the new man-
ager. Notice that in this example we assume different variables to be instantiated with
different identifiers. Otherwise the right-hand sides would be instances of the left-hand
sides. In other words, those two rules could be immediately reapplied (although provok-
ing no change in the architecture) and the solution would never become inert.

This CHAM illustrates ad-hoc reconfiguration because the reconfiguration commands
appear only on the left-hand sides of rules. In other words, the commands are only con-
sumed by the CHAM and thus must have been put into the solution by the user. As
an example of reconfiguration, let us assume that we have an architecture with a single
server (and manager, of course), and we want to add a client and replace the manager.
The initial solution for the evolution CHAM is

m1:M, m1—s1, s1:S, cc(c1:C), rc(m1), cc(m2:M)

and the states of the solution until it becomes inert are

1. m1:M, m1—s1, s1:S, c1:C, c1—m1, rc(m1), cc(m2:M)

2. m2:M, m1—s1, s1:S, c1:C, c1—m1

3. m2:M, m2—s1, s1:S, c1:C, c1—m1

4. m2:M, m2—s1, s1:S, c1:C, c1—m2

3.3.2 Analysis

In general, to make sure that the specification is correct, it is necessary to prove that a
creation CHAM can terminate, i.e., that an inert solution can be reached, and that an
evolution CHAM does terminate for finite reconfigurations. Usually this involves some
assumptions on the initial solution. For our example style we are assuming the initial
solution contains just one molecule of the form cc(m:M). Then it is quite easy to prove
that the creation CHAM may terminate: the third rule consumes the cc() command that
is necessary for any of the rules to be triggered.

Another issue is to prove that the architectures generated by the creation CHAM
are really those that we intended. Towards that end it is necessary to write down the
properties of the architectural style and then, given the initial solution, prove that any
inert solution obeys those properties.

Returning to our example, the properties of the client-server style are:

• there is exactly one manager;

3.3 Ad-hoc Reconfiguration 33

• there are x ≥ 0 clients, each one linked to the manager;

• there are y > 0 servers, each one linked to the manager.

We just prove the first and third proposition; the second is similar to the third. As for
the first, the rules to create clients and servers maintain the number of cc() molecules
in the solution, and the last rule substitutes each one by a manager. Since there is a
single molecule in the initial solution, there is a single manager in each architecture
belonging to this style. The proof for the third statement is as follows. If the solution
is inert, then there is no cc() command because otherwise the first two reaction rules
could be applied. Since there is such a command in the initial solution, it must have
been consumed somehow. By inspection of the rules, this is only possible by the third
reaction rule. However, that rule can only have been applied if there existed a server.
Since no rule decreases the number of servers, it is proven that at least one server must
exist. As for the server links, the only rule that creates servers connects them to the
component whose name is given by the cc() command which is the manager, as observed
in the proof of the first property.

Sometimes it is necessary to prove that a reconfiguration does not “break” the style.
For some properties this can be done inductively: prove that the initial solution of
the evolution CHAM satisfies the property and that each rule keeps it. The first part is
usually not needed since it is assumed that the initial solution is either an inert solution
of the creation CHAM (and thus satisfies the properties as proven before) or it is the inert
solution of a previous reconfiguration (and therefore satisfies the properties as it will be
proven by inspection of the rules). It thus suffices to prove that for each rule L→ R, if it
is applied to a solution S that satisfies the property, then S− L] R also satisfies it.

As an illustration we prove that the client-server reconfiguration CHAM keeps at least
one server. Let y (resp. y ′) be the number of servers immediately before (resp. after) the
application of a rule. One has to prove that y > 0 ⇒ y ′ > 0 for each rule. The second
rule states that y ′ = y+ 1, the fourth rule that y ≥ 2⇒ y ′ = y− 1, and for the remaining
rules y ′ = y. It is obvious that for each one the implication is true.

However, the second part of the third property, namely that each server is linked to
the manager, cannot be proven in this way because it is not an invariant of the system.
In fact, due to rule 5 of the evolution CHAM, the solution does not represent a graph
temporarily: there are links m—s but there is no m! The connectivity property can thus
only be established for inert solutions. The proof goes as follows. First show that there
is always exactly one manager. Next prove that there is always exactly one connection
m—s for each server s. Finally show that for inert solutions, if m:M is the manager
and m ′—s is a server connection, then m = m ′. The first two statements can be proven
inductively, the third results from the fact that in an inert solution the last two rules of
the evolution CHAM cannot be applied.

3.3.3 Dynamic Reconfiguration

Since a CHAM does not have any control mechanism, the exact order in which the
reactions take place is unknown and cannot be predicted. This is no problem if the
reconfiguration takes place when the system is shutdown. However, in dynamic recon-
figuration the changes occur while the system is running. In that case it is of paramount
importance to execute the reconfiguration actions in such a way that the system is kept
consistent and that disruption is minimised, as we have seen in the previous chapter.
We thus assume there is a configuration manager as described in Definition 2.7 on
page 22 capable of executing the reconfiguration commands given in Definition 2.5 on
page 19. Notice that our cc() and rc() commands are high-level create and remove
commands, respectively, that also deal with the links “automatically”.

We separate concerns by using the CHAM just to specify what to do, letting the config-
uration manager decide how to do it. To that end we let the CHAM “trace” its execution,

34 The CHAM Approach

creating a “log” of the changes performed. That log corresponds to the change script that
a user would input directly to the validation process of Figure 2.1 on page 10. In other
words, the CHAM can be seen as a “compiler” of high-level reconfiguration commands
into low-level ones to be executed by the “run-time system”, i.e., the configuration man-
ager.

The molecule syntax is extended with

Command := ‘create ’ Component | ‘remove ’ Id | ‘link ’ Id ‘—’ Id | ‘unlink ’ Id ‘—’ Id

and the evolution CHAM on page 32 becomes

cc(c:C), m:M → c:C, c—m, m:M, create c:C, link c—m
cc(s:S), m:M → s:S, m—s, m:M, create s:S, link m—s

rc(c), c:C, c—m → remove c, unlink c—m
s ′:S, rc(s), s:S, m—s → s ′:S, remove s, unlink m—s
m:M, rc(m), cc(m ′:M) → m ′:M, remove m, create m ′:M

m—s, m ′:M → m ′—s, m ′:M, unlink m—s, link m ′—s
c—m, m ′:M → c—m ′, m ′:M, unlink c—m, link c—m ′

The commands have been added in a systematic way. For example, create m is added
whenever m is a component molecule appearing on the right-hand side but not on the
left-hand side of the original rule.

For the reconfiguration steps shown on page 32, the generated change commands
are:

1. create c1:C, link c1—m1,

2. remove m1, create m2:M,

3. unlink m1—s1, link m2—s1

4. unlink c1—m1, link c1—m2,

As mentioned before, if the commands were executed in this order then temporarily
some arcs in the system graph would not point to any existing component. Moreover,
two commands cancel out: link c1—m1 and unlink c1—m1. Looking at such a script,
it is easy for the validation process to remove opposite commands, and to add the ne-
cessary blocking commands. The configuration manager then reorders the commands
according to Definition 2.6 on page 20. In this case, one possible sequence is

block m1—s1, create c1:C, unlink m1—s1, remove m1,
create m2:M, link c1—m2, link m2—s1

3.4 Self-Organisation

The chemical model is well suited to describe self-organising architectures, where ex-
ternal explicit management is kept to a minimum [MK96b]. In fact, the very essence of
the CHAM model is that molecules react freely with each other until the solution “sta-
bilises”, i.e., becomes inert. Once that state is reached, new reactions may be triggered
by adding new molecules, but the reaction process itself is purely an “internal affair”.
The evolution of the solution proceeds without any intervention from the outside.

Our client-server example illustrates this. Once the commands to substitute the
manager are given, the architecture reorganises itself to maintain the right connections,
without needing any further commands from the user. In this section we provide a more
elaborate example of self-organisation: a n-ary tree architecture where components can

3.4 Self-Organisation 35

be removed without destroying the properties of the tree. Such a topology might be
useful for divide-and-conquer problems, each component splitting the data it gets from
its parent and combining the results produced by its children.

The example is a generalisation of the binary tree architecture presented in [YM92].
Following the Configuration Programming approach, [YM92] only considers structural
properties. In this case, the structural integrity to be kept by the reconfiguration action
is the binary tree shape. Such integrity constraints are divided into node integrity and
system integrity properties. The former are local, the latter global. In this example, being
a tree is a system constraint because no single node can ensure that the graph is acyclic.
On the other hand, it is enough for each node to restrict the number of children to at
most two in order to have a binary tree. Other examples of system integrity constraints
are the number of components in the tree and the number of trees.

The approach taken in [YM92] to handle structural integrity properties is verification.
The properties are expressed as Prolog clauses used to check the architecture after each
change. If the reconfiguration violates at least one of the constraints, it must be undone.
We follow the self-organisation approach of [MK96b]: when a change occurs, the system
components reorganise themselves in order to satisfy the structural constraints.

But first let us specify the n-ary tree architectural style. The reaction rules generate
trees with a maximum branching factor given by the initial solution. A node is represen-
ted by a molecule nac where n is the node’s name, a is the number of its ancestors (i.e.,
its depth), and c is the number of children the node has. A root node has no ancestors
and therefore its depth is zero. Natural numbers are represented as usual, using the
constant zero and the successor function (written as a postfix +). Numbers are com-
pared using substring prefix matching: n ≥ m if n is of the form mx, and n > m if n is of
the form m+ x, in both cases x being matched by a sequence of zero or more +.

Molecule := Node
Nat
Nat

| Node ‘—’ Node | Nat

Nat := Nat ‘+’ | ‘0’

The initial solution contains just the root node and the maximal branching factor:
r00, 0+ +. The creation CHAM is

xac , c+w → xac+, x—y, ya+
0 , c+w

b+ →
The first rule creates a new node and attaches it to an existing node that has not yet
exceeded the children limit. The second rule allows the solution to become inert by
eliminating the branch factor.

The initial solution of the evolution CHAM contains the branching factor again and
the current architecture. When a node fails, a command to remove it is added to the
solution, and the architecture reconfigures itself according to the rules

rc(x), x—y, x0c+, y0+c ′ → rc(x), y—x, x0+c , y0c ′+
rc(x), y—x, x—z, yac ′ , x

a+
c+ , za++

c ′′ → rc(x), y—x, y—z, yac ′+, xa+
c , za+

c ′′

rc(x), y—x, yac+, xa+
0 → yac

b, x—y, x—z, xab+w, ya+
c → b, x—y, y—z, xabw, ya+

c+

x—y, xac , yac ′ → x—y, xac , ya+
c ′

x—y, xac , ya++
c ′ → x—y, xac , ya+

c ′

The first rule handles the case of the root node: it is swapped with one of its children,
which thus becomes the new root. The former root node now is a middle node or a
leaf node and the second or third rule applies, respectively. The second rule links
the children of the middle node directly to its parent. The node hence becomes a leaf

36 The CHAM Approach

node and we get to the third rule which effectively removes the node from the tree,
updating the children counter of the parent. During this process some nodes may
have more than b children, where b is the branching factor. The fourth rule ensures
the correct number by demoting the exceeding children to grandchildren. The last two
rules propagate the correct depth to children of nodes that have been promoted or
demoted. The simplicity and conceptual elegance of these rules should be compared
with the parameterised recursive rule of [YM92] which uses four different kinds of path
expressions and a marking command.

Some comments about this example are in order. The notation has been chosen
to be as compact as possible, showing only the relevant data. Furthermore, using
superscripts for depth and subscripts for children makes both of them stand out. Thus
it is easier to see how a node changes from the left to the right side of a rule. A more
conventional notation is obtained by translating every molecule of the form xac into two
molecules “depth(x, a), children(x, c)”, and by transforming x—y into “linked(x, y)”.

The specification can be simplified by omitting the depth of each node, as in the
original example [YM92]. In fact, all that is necessary is to be able to distinguish the
root node from the others. This can be done just with an extra molecule “root(x)”. The
first rule becomes

rc(x), root(x), x—y, xc+, yc ′ → rc(x), root(y), y—x, xc, yc ′+

the last two rules are not necessary anymore, and the superscripts of the remaining ones
disappear. However, we chose to have this additional difficulty because it introduces
further self-organisation.

Besides illustrating self-organisation and allowing comparison of our approach with
a previous one, the example shows how structural and cardinality constraints on archi-
tectures can be specified. This is also useful for other kinds of topologies.

3.5 A Language

So far, our examples and those of others [IW95, IY96, IWY97] are written in an ad-
hoc fashion: each uses its own syntax which may be not very uniform, the topology is
sometimes not explicit, components do not have a recognisable interface, and all of the
architecture is specified with a single CHAM. This last aspect was improved in [IWY98],
where the authors propose each component to be specified by its own CHAM. Each
component specification uses meta-variables to stand for those components or links to
which it will be connected. The architecture is then the union of all CHAMs together with
functions mapping the meta-variables to the actual symbols. As the authors remark,
the architecture cannot be changed, since the mappings are fixed by construction.

Even so the CHAM cannot be considered an ADL, as also noticed in [Med97]. In
this section we try to remedy the situation. We propose a concrete syntax for some
architectural and computational abstractions and we provide a methodology to combine
the description of components into an (hierarchic) architecture. Our goal is to show that
with purely methodological means, without extending or changing the CHAM model,
it is possible to specify the computational, structural, and interaction aspects of an
architecture in a systematic way.

Our language is very simple for the moment. The rationale is to include further
constructs only as necessary, when it is deemed essential for the description of dynamic
architectures. Moreover, by committing just to a few design choices, it may serve as a
least common ground between different existing ADLs.

There are only components and unidirectional links. The latter can be seen as wires:
when there is a value on one end, it gets transferred to the other end. Unlike ACME
[MGW97], we do not require two kinds of elements (components and connectors) nor

3.5 A Language 37

links only between different kinds of elements. This gives us freedom to describe archi-
tectures à la DARWIN [MK96a], which has no connectors, or C2 [OT98], which allows
connectors to be linked to connectors.

A component is a molecule of the form name:type={|state|}, where name and type

are two identifiers, and state is a solution describing the component’s current state.
Notice that it is encapsulated within a membrane since the state is private to each
component. The state may include a set of variables, a set of ports, and, if it is a
composite component, an architecture. Variables and ports are name-value pairs. Ports
form a component’s interface and hence may be seen as public variables: their values
may be sent to and received from the environment. The value of a port can thus be
changed by computation or communication. The interface itself may vary, i.e., ports may
be added or deleted from a component. A variable is a molecule of the form name=value,
while a port is of the form name•value. When ports are within the state solution they
are not visible to the environment and therefore communication cannot occur through
that port. It is up to the component, through its computations, to “export” ports to the
outside and “import” them back again, thus signalling when it is ready to read or send
a value and when it is processing or computing a port’s value, respectively.

There is a CHAM specifying the fixed elements of the language: identifiers, pre-
defined types, connections, and message passing. The grammar of the CHAM describes
the syntax of types, while the reaction rules describe the operations. For the remainder
of this chapter we need the following definitions.

Name := Id [‘.’ Name]
Id := Letter+ [Nat]
Letter := ‘a’ | . . . | ‘Z’
Nat := ‘0’ | Pos
NatExpr := Nat | Nat mod Pos
Pos := ‘1’ [Pos]
NatList := ‘nil’ | Nat ‘·’ NatList | ‘append’ ‘(’ NatList ‘,’ NatList ‘)’
Link := Name ‘—’ Name

We also need rules to describe the modulo and ‘append’ operations. The modulo
is computed by reducing n mod m until n is not greater than m. Positive integers are
written in unary notation and comparison of numbers is done with substring matching.
The first rule below is for the case where the dividend is zero, while the next three rules
handle positive dividends which are greater, equal, or smaller than the divisor.

0 mod x → 0
x1y mod x → 1y mod x
x mod x → 0

x mod x1y → x

append(n·l,l ′) → n·append(l,l ′)
append(nil,l) → l

Regarding communication along a link, a message (i.e., molecule) M is sent from port
p to port q if they are connected, p has M, and q is ready to get it.

p•M, p—q, q• → p•, p—q, q•M

Each component type is specified by a distinct CHAM. The context-free grammar de-
scribes the actual ports, variables, and components that it contains, while the rewriting
rules specify the computations and reconfigurations performed within components of
that type. The grammar for a component of type Type (abbreviated ‘T’) looks like:

38 The CHAM Approach

Type := Id ‘:’ ‘T’ ‘=’ {|[StateT (‘,’ StateT)∗]|}
StateT := InitT | PortT | VarT | CompT | Link
InitT := . . .
PortT := Id ‘•’ MsgType | . . .
VarT := Id ‘=’ VarType | . . .
CompT := T1 | T2 | . . .
Ad-hocT := . . .

The third production provides the available constructors for components of type ‘T’.
Every newly created component must be of the form t:T={|I|} where I is an initial solution
generated from InitT. Often I is a single molecule and there are reaction rules that
transform it into the initial set of variables and ports, and the initial architecture (if ‘T’
is a composite component type).

The fourth production describes the available ports. The message type associated to
each port may be described by additional productions. The fifth production is similar,
but for variables.

The last two productions are only meaningful for composite components. If t:T={|S|} is
such a component, these productions specify what types of component may occur in S
and what molecules the user may add to S at any time. If ‘T’ is not a composite compon-
ent type then Link may not appear on the right-hand side of the second production.

The reaction rules associated to component type ‘T’ describe its computations, in-
teractions, and the reconfigurations that may occur within it. Hence, each component
includes its own configuration manager for the subsystem it encapsulates.

We suggest that the information about a component’s state and its computations
is kept strictly to the necessary for the reconfiguration process, because the chemical
model (as any term rewriting system) is not the most adequate to describe arbitrary
computations (with sequencing, iteration, and branching). We therefore advocate to
specify only those computations which change the ports’ values, since programmed
reconfiguration is based on the components’ interfaces. The rules basically state when
ports are made visible to the outside, thus constraining the interaction pattern of the
component. These must be specified in such a way that whenever a port is exported, it
is prefixed by the component’s name, so that later the port can be imported back again.

If a component of type ‘T’ includes a component c of type ‘T1’, then the rules may only
include molecules generated by InitT1 , PortT1 , and Ad-hocT1 . Other information, like the
variables of c or the components it contains, are not accessible.

To make the description of the whole architecture uniform, we introduce a top-level
component, called ‘System’ or similar, which has no ports. The total specification is
then the union of all CHAMs.

As an introductory example we use a very simple system with multiple clients and a
single server. The next two sections provide more elaborate examples.

A client has an output port ‘req’ to send requests of type Query and an input port
‘rep’ to get replies of type Answer. The actual types are irrelevant for our purposes.
Clients are not composite components and they have no variables.

Client := Id ‘:’ ‘C’ ‘=’ {|[StateC (‘,’ StateC)∗]|}
StateC := InitC | PortC

PortC := ‘req’ ‘•’ Query | ‘rep’ ‘•’ Answer
InitC := ‘init(C)’

Initially, the client has generated some request.

init(C) → req•Q, rep•

The client interacts with its environment exporting the ‘req’ port when it has a query
and importing it again after the query has been sent.

3.5 A Language 39

c:C={|req•Q/S|} → c.req•Q, c:C=S
c.req•, c:C=S → c:C={|req•/S|}

The reply port has the opposite behaviour.

c:C={|rep•/S|} → c.rep•, c:C=S
c.rep•A, c:C=S → c:C={|rep•A/S|}

A new query is generated based on the answer to the previous one.

rep•A, req• → rep•, req•Q

When the client wants to finish processing, it just processes the answer without gener-
ating a new query.

rep•A → rep•

The server has for each client c a pair of ports ‘req.c’ and ‘rep.c’ to get the requests
and send the replies, respectively. These ports are always visible and they are added
to (removed from) the server whenever c is added to (removed from) the architecture.
Although it is not relevant for reconfiguration, for illustration purposes we assume the
server caches the last query processed. Initially the cache is empty.

Server := Id ‘:’ ‘S’ ‘=’ {|[StateS (‘,’ StateS)∗]|}
StateS := PortS | InitS | VarS

PortS := req.Id•Query | rep.Id•Answer
VarS := ‘cache’ ‘=’ [Query ‘/’ Answer]
InitS := ‘cache=’

The server has a single rule to answer a query and update the cache.

s.req.c•Q, s.rep.c•, s:S={|cache=Q ′/A ′|} → s.req.c•, s.rep.c•A, s:S={|cache=Q/A|}

The overall system contains a single server with fixed name. The user may create
and remove clients.

Client-Server := Id ‘:’ ‘CS’ ‘=’ {|[StateCS (‘,’ StateCS)∗]|}
StateCS := InitCS | CompCS | Link | Ad-hocCS

CompCS := Client | Server
Ad-hocCS := ‘cc(’ Id ‘)’ | ‘rc(’ Id ‘)’
InitCS := ‘s:S={|init(S)|}’

The user creates a particular client-server system with a molecule of the form

cs:CS={|s:S={|init(S)|}|}

and then adds commands to create and remove clients.
When a molecule ‘cc(c)’ is added to the solution, the following rule is triggered to add

the component and to link it to two new ports of the server.

cc(c) → c:C={|init(C)|}, c.req—s.req.c, s.req.c•,s.rep.c—c.rep, s.rep.c•

When removing a client, the links and the respective server ports are removed again.
It is important however to do it in the right moment, when no request is pending. The
system configuration manager must thus look at the client’s interface and wait for the
ports to have no messages and to be inside the client. Looking at the client’s computa-
tion rules it can be seen that in that state no new query can be generated. If the ports
were outside, it would mean that a request had been sent but the reply had not been
received yet.

rc(c), c:C={|rep•/req•/S|}, c.req—s.req.c, s.req.c•, s.rep.c—c.rep, s.rep.c• →

40 The CHAM Approach

3.6 Programmed Reconfiguration

To illustrate programmed reconfiguration we show how the lazy pipeline described in
[MK96a] can be specified with a CHAM. The pipeline is a composite component with
two communication ports called ‘in’ and ‘out’. Internally, the pipeline consists of a filter
and another pipeline. A filter has three ports: an input port ‘prev’ and two output ports
‘next’ and ‘out’. The connections to the enclosing and enclosed pipelines are shown in
the following diagram.

Pipeline

Filter Pipeline

vin vprev fnext vin
outf
@
@
@
@@

outf
�
�
�

��
outf

Although we use the example also to illustrate hierarchic architectures, its main char-
acteristic is that pipelines are only created on demand, in particular, when a message
is sent to its ‘in’ port. The example is used in [MK96a] to illustrate the use of the dyn
keyword of the DARWIN architecture description language. We show how it is possible
to obtain the same effect with the CHAM. To show a complete example, we use the lazy
pipeline to implement Erasthotenes’ prime number sieve. We use natural numbers: zero
marks the end of input.

The syntax of the filter is given by the following grammar.

Filter := Id ‘:’ ‘F’ ‘=’ {|[StateF (‘,’ StateF)∗]|}
StateF := PortF | InitF | VarF

PortF := ‘prev’ ‘•’ [Pos] | ‘next’ ‘•’ [Pos] | ‘out’ ‘•’ [Pos]
VarF := ‘state’ ‘=’ (‘new’ | ‘ready’ | ‘check’) | ‘prime’ ‘=’ Pos | ‘test’ ‘=’ NatExpr
InitF := ‘init(F)’

Initially, the ports are inside the filter and have no values.

init(F) → prev•, next•, out•, state=new

The computations performed by the filter are as follows. First it exports the ‘prev’
port and imports it again only when there is some input. For simplicity we assume in
this example that variables n, p, x, and y only match against positive numbers.

f:F=prev•/S → f.prev•, f:F=S
f.prev•n, f:F=S → f:F=prev•n/S

If it is the first input, it must be a new prime number. It is stored in variable ‘prime’ and
sent to the ‘out’ port, which behaves in the opposite way of ‘prev’.

state=new, prev•n, out• → state=ready, prime=n, prev•, out•n
f:F=out•n/S → f.out•n, f:F=S
f.out•, f:F=S → f:F=out•/S

If the number n is not the first input, then it must be checked whether it is a multiple of
the stored prime number p, i.e., if n mod p is zero. In that case the number n is ignored.
Otherwise, it may be a prime number, and thus it is sent to the next filter through port
‘next’ which behaves like ‘out’.

3.7 A Mixed Example 41

state=ready, prev•n, prime=p → state=check, prev•n, prime=p, test=n mod p
state=check, prev•n, test=0 → state=ready, prev•

state=check, prev•n, next•, test=1x → state=ready, prev•, next•n
f:F=next•n/S → f.next•n, f:F=S
f.next•, f:F=S → f:F=next•/S

We now turn to the pipeline.

Pipeline := Id ‘:’ ‘P’ ‘=’ {|[StateP (‘,’ StateP)∗]|}
StateP := PortP | VarP | InitP | CompP | Link
PortP := ‘in’ ‘•’ [Pos] | ‘out’ ‘•’ [Pos]
VarP := ‘dyn’ ‘=’ Name ‘/’ Molecule | ‘pipeline’ ‘=’ (‘yes’ | ‘no’)
CompP := Filter | Pipeline
InitP := ‘init(P)’

Initially the pipeline contains its ports, a filter partially connected, and the indication
that the filter’s ‘next’ port dynamically creates a new pipeline.

init(P) → in•, out•, f:F={|init(F)|}, in—f.prev, f.out—out,
pipeline=no, dyn=f.next/{|pipeline=yes, f.next—p.in, p.out—out|}

When the filter sends its first message through port ‘next’, a new pipeline and its
connections are created by the following rule which allows to attach an arbitrary solution
to a port and add that solution to the system once the first message is received by or
sent from that port. The solution may contain arbitrary reconfiguration commands, new
components and connections. It thus generalises DARWIN’s dyn construct.

p•msg, dyn=p/{|S|} → p•msg, S

We must of course make sure that the solution evolves only when “freed” from its
membrane. In our case, only conflicting information about the existence of a pipeline
will create a new one.

pipeline=no, pipeline=yes → pipeline=yes, p:P={|init(P)|}

We have thus programmed reconfiguration and the recursive structure of the archi-
tecture is immediately apparent from the grammar and from the existence of ‘init(P)’ on
both sides of rules.

3.7 A Mixed Example

This section presents a single, compact example to illustrate how the various approaches
might be represented using the CHAM formalism. As several kinds of evolution are
mingled, the CHAM to be presented is not very uniform, nor the simplest possible.

The chosen example is a client-server system where the server is a printing system
consisting of a spooler and a set of printers. Each client makes a single request to print
a document. Requests are queued in FIFO order by the spooler. The spooler selects
randomly an available printer to print the next document. Printers may break down
while printing. If no printer is working then any new client requests are immediately
rejected.

The chosen architecture consists of zero or more clients, one name server, one “in-
hibitor” and one composite component containing a spooler and zero or more printers.
If there are no (working) printers, the name server is linked to the “inhibitor” otherwise
it is linked to to the printing system. Whenever a new client arrives, it is automatically
connected to the name server, whose name is known and whose job is to relink the cli-
ent to the component the name server is linked to. The “inhibitor” just rejects any client

42 The CHAM Approach

request. The printing system accepts and queues any incoming request. Clients auto-
matically leave the system after getting a (positive or negative) reply. Printers must be
explicitly removed (when broken) and introduced (e.g., after repair or purchase). When
the last working printer breaks down, the name server is unlinked from the printing
system and linked to the “inhibitor”. Inversely, if no printer is working and a new one is
added, the name server is linked back to the printing system.

We start with the name server. It has two ports but they are not used for communic-
ation.

NameServer := Id ‘:’ ‘N’ ‘=’ {|[StateN (‘,’ StateN)∗]|}
StateN := PortN

PortN := ‘cl’ ‘•’ | ‘sv’ ‘•’

Hence a name server is always created as n:N={||}. All it does is simply to relink a client
to the current server (either the inhibitor or the printing system) via a bidirectional
connection.

c—n.cl, n.sv—s → c—s, s—c, n.sv—s

The client has a single port ‘rr’ to accept requests and send replies. Initially the port
is inside the client and its value is the number of pages to print.

Client := Id ‘:’ ‘C’ ‘=’ {|[StateC (‘,’ StateC)∗]|}
StateC := PortC | InitC

PortC := ‘rr’ ‘•’ (Pos | ‘accepted’ | ‘rejected’)
InitC := ‘rr’ ‘•’ Pos

The following three rules describe the behavior of a client. The first one links it to
the name server (thereby exporting the port to signal it is ready to communicate and
in order to avoid duplicate connections) and the other two remove the client and its
connection after getting a reply.

c:C={|rr•p|}, n:N=S → c.rr•p, c:C={||}, n:N=S, c.rr—n.cl
c.rr•rejected, c:C={||}, c.rr—s, s—c.rr →
c.rr•accepted, c:C={||} c.rr—s, s—c.rr →

The inhibitor also has an input/output port.

Inhibit := Id ‘:’ ‘I’ ‘=’ {|[StateI (‘,’ StateI)∗]|}
StateI := PortI | InitI

PortI := ‘rr’ ‘•’ [Pos | ‘rejected’]
InitI := ‘rr•’

The port is first exported and then it replies to any incoming request with a rejection.

i:I={|rr•|} → i.rr•, i:I={||}

i.rr•1n → i.rr•rejected

A printer has two public ports to show to the print server the state and the number
of pages that remain to print.

Printer := Id ‘:’ ‘P’ ‘=’ {|[StateP (‘,’ StateP)∗]|}
StateP := PortP | InitP

PortP := ‘pages’ ‘•’ [Nat] | ‘state’ ‘•’ (‘ok’ | ‘broken’)
InitP := ‘init(P)’

Initially the printer is working and there are no pages to print.

init(P) → state•ok, pages•0

3.7 A Mixed Example 43

The printer starts by exporting the ports.

p:P={|pages•0, state•ok|} → p.pages•0, p.state•ok, p:P={||}

Each printer outputs a document one page at a time. When reaching the end, it becomes
available again. However, while printing a page, the printer may break down.

p.pages•1, p.state•ok → p.pages•0, p.state•ok
p.pages•11n, p.state•ok → p.pages•1n, p.state•ok
p.pages•1n, p.state•ok → p.pages•1n, p.state•broken

The print server has a single port to communicate with clients. It has a counter to
keep track of how many printers are working. It also contains variables to store the
queue of requests, and the commands to connect and disconnect from the name server.
Users may create and remove printers.

PrintServer := Id ‘:’ ‘S’ ‘=’ {|[StateS (‘,’ StateS)∗]|}
StateS := PortS | InitS | VarS | CompS | Link | Ad-hocS

PortS := ‘rr’ ‘•’ (Pos | ‘accepted’ | Rule)
VarS := ‘working’ ‘=’ Nat | ‘queue’ ‘=’ NatList | (‘link’ | ‘unlink’) ‘=’ Rule
Rule := Solution ‘7→’ Solution
InitS := ‘init(S,’ Nat ‘,’ Id ‘,’ Id ‘,’ Id ‘)’
CompS := Printer
Ad-hocS := ‘cc(’ Id ‘)’ | ‘rc(’ Id ‘)’

To create a print server it is necessary to specify the number of printers it contains
initially. It is also necessary to give the ports of the print server, the name server and
the inhibitor. This allows to build in advance the rules necessary to (dis)connect the
print server and the name server.

init(S, 0, s, n, i) → rr•, queue=nil, working=0,
unlink={|n—s|}7→{|n—i|}, link={|n—i|} 7→{|n—s|}

init(S, 11x, s, n, i) → init(S, 1x, s, n, i), cc(p)
init(S, 1, s, n, i) → init(S, 0, s, n, i), cc(p)

Any incoming request is put at the end of the spooler queue and replied with an
acceptance. The spooler removes requests from the beginning of the queue as long as
there is an available printer.

rr•1n, queue=q → rr•accepted, queue=append(q, 1n·nil)
p.pages•0, p.state•ok, queue=n·q → p.pages•n, p.state•ok, queue=q

When a printer breaks down, the counter is decremented. If it is the last working
printer, then the name server must get linked to the “inhibitor”. To that end, the print-
ing system sends a message representing the reaction rule that replaces the existing
connection by the new one.

p.pages•1n, p.state•broken, working=11n → p.pages•0, p.state•broken, working=1n

p.pages•1n, p.state•broken, working=1,
rr•, unlink=r

→ p.pages•0, p.state•broken, working=0,
rr•r, unlink=r

Broken printers only “disappear” from the architecture when they are explicitly taken
away for repair, and new printers must also be added explicitly. This is done by dropping
the molecules given in Ad-hocS into the subsolution representing the printing system.
If there were no working printers, the addition of a new one removes the connection
between the name server and the inhibitor and creates a connection to the printing
system.

44 The CHAM Approach

rc(p), p.pages•0, p.state•broken, p:P=S →
cc(p), working=0, rr•, link=r → p:P={|init(P)|}, working=1, rr•r, link=r

cc(p), working=1n → p:P={|init(P)|}, working=11n

Since the ‘rr’ port is used both to receive input from the clients as well as send
reconfiguration rules to the outside, it must be able to cross the membrane freely.

p.rr•msg, p:P=S ↔ p:P={|rr•msg / S|}

The whole system has the following syntax, allowing the user to add clients.

System := Id ‘:’ ‘Sys’ ‘=’ {|[StateSys (‘,’ StateSys)∗]|}
StateSys := InitSys | CompSys | Link | Ad-hocSys

InitSys := ‘Init(Sys,’ Nat ‘)’
CompSys := Client | NameServer | PrintServer | Inhibit
Ad-hocSys := Id:C={|InitC|}

Initially the inhibitor, the name server, and the print server are created with fixed
names. The name server is linked to the inhibitor. The number of printers is given by
the user. When the first one is created, the name server will be connected to the print
server.

init(S, n) → i:I={|rr•|}, n:N={||}, s:S={|init(P, n, s.rr, n.sv, i.rr)|}, n.sv—i.rr

A message representing a reaction is “executed” when it is in a context that satisfies
the left-hand side of the reaction. The following general rule expresses this. It can be
seen as a special kind of CHAM meta-interpreter.

S, p•{|S|} 7→ {|S ′|} → S ′, p•

To see how this CHAM works let us work through a concrete example, seeing how
the solution that describes the architecture and the state of each component evolves.
The initial solution states that the system has one printer.

sys:Sys={|init(Sys, 1)|}

The constructor generates the initial components.

sys:Sys={|i:I={|rr•|}, n:N={||}, n—i, s:S={|init(S, 1, s.rr, n.sv, i.rr)|}|}

All computations and reconfigurations occur within ‘sys’. Therefore we henceforth only
present the encapsulated solution to make the example easier to follow.

The print server’s constructor starts generating its ports, variables and the enclosed
printer (with a random name), while the inhibitor exports its port.

i.rr•, i:I={||}, n:N={||}, n.sv—i.rr, s:S={|init(S, 0, s.rr, n.sv, i.rr), cc(x)|}

While the print server continues the initialisation phase, the user adds a client with
a request to print a three page document. The client is added directly (not through a
creation command) because of production Ad-hocSys.

c:C={|rr•111|}, i.rr•, i:I={||}, n:N={||}, n.sv—i.rr,
s:S={|rr•, queue=nil, unlink={|n.sv—s.rr|} 7→{|n.sv—i.rr|}, link={|n.sv—i.rr|} 7→{|n.sv—s.rr|},

working=0, cc(x)|}

The client is linked to the name server and the print server creates the printer and
prepares to send the reconfiguration rule.

c.rr•111, c:C={||}, c.rr—n.cl, i.rr•, i:I={||}, n:N={||}, n.sv—i.rr,
s:S={|rr•{|n.sv—i.rr|} 7→{|n.sv—s.rr|}, queue=nil, unlink={|n.sv—s.rr|} 7→{|n.sv—i.rr|},

link={|n.sv—i.rr|} 7→{|n.sv—s.rr|}, working=1, x:P={|init(P)|}|}

3.7 A Mixed Example 45

The client is relinked to the name server and the rule is exported. The printer is initial-
ised. Henceforth we omit the ‘link’ and ‘unlink’ variables because their values do not
change.

c.rr•111, c:C={||}, c.rr—i.rr, i.rr—c.rr, i.rr•, i:I={||}, n:N={||}, n.sv—i.rr,
s.rr•{|n.sv—i.rr|}7→{|n.sv—s.rr|}, s:S={|queue=nil, working=1, x:P={|state•ok, pages•0|}|}

Using the general communication rule, the client’s request is passed to the inhibitor.
The reconfiguration rule is applied, and the printer makes its state public.

c.rr•, c:C={||}, c.rr—i.rr, i.rr—c.rr, i.rr•111, i:I={||}, n:N={||}, n.sv—s.rr,
s.rr•, s:S={|queue=nil, working=1, x.state•ok, x.pages•0, x:P={||}|}

The inhibitor rejects the request, sends back the reply to the client and the latter goes
away. Meanwhile the user adds a new client, which gets linked to the print server. In
the following sequence we omit the print server because its state does not change.

c.rr•, c:C={||}, c.rr—i.rr, i.rr—c.rr, i.rr•reject, i:I={||}, n:N={||}, n.sv—s.rr, d:C={|rr•11|}

c.rr•reject, c:C={||}, c.rr—i.rr, i.rr—c.rr, i.rr•, i:I={||}, n:N={||}, n.sv—s.rr, d.rr•11, d:C={||},
d.rr—n.cl

i.rr•, i:I={||}, n:N={||}, n.sv—s.rr, d.rr•11, d:C={||}, d.rr—s.rr, s.rr—d.rr

The request is passed to the print server port.

i.rr•, i:I={||}, n:N={||}, n.sv—s.rr, d.rr•, d:C={||}, d.rr—s.rr, s.rr—d.rr,
s.rr•11, s:S={|queue=nil, working=1, x.state•ok, x.pages•0, x:P={||}|}

We do not further use the inhibitor and the name server in our example and hence omit
them henceforth. The request enters the printing system,

d.rr•, d:C={||}, d.rr—s.rr, s.rr—d.rr,
s:S={|rr•11, queue=nil, working=1, x.state•ok, x.pages•0, x:P={||}|}

is accepted and queued,

d.rr•, d:C={||}, d.rr—s.rr, s.rr—d.rr,
s:S={|rr•accept, queue=append(nil,11·nil), working=1, x.state•ok, x.pages•0, x:P={||}|}

and is processed while the reply is sent back to the client, which then goes away.

d.rr•, d:C={||}, d.rr—s.rr, s.rr—d.rr,
s.rr•accepted, s:S={|queue=11·nil, working=1, x.state•ok, x.pages•0, x:P={||}|}

d.rr•accepted, d:C={||}, d.rr—s.rr, s.rr—d.rr,
s.rr•, s:S={|queue=nil, working=1, x.state•ok, x.pages•11, x:P={||}|}

s.rr•, s:S={|queue=nil, working=1, x.state•ok, x.pages•1, x:P={||}|}

The printer breaks down while trying to print the second page.

s.rr•, s:S={|queue=nil, working=1, x.state•broken, x.pages•1, x:P={||}|}

The user adds a command to remove it and the print server copies the rule stored in the
‘unlink’ variable (shown previously) to the port.

s:S={|rr•, queue=nil, working=1, rc(x), x.state•broken, x.pages•1, x:P={||}|}

s:S={|rr•{|n.sv—s.rr|}7→{|n.sv—i.rr|}, queue=nil, working=0, rc(x), x.state•broken,
x.pages•0, x:P={||}|}

46 The CHAM Approach

s.rr•{|n.sv—s.rr|} 7→{|n.sv—i.rr|}, s:S={|queue=nil, working=0|}

The rule would now be applied to disconnect the name server from the print server and
to connect it back to the inhibitor, and the user would have to add create commands to
have working printers. We would thus get the same situation as at the beginning.

Notice that when the first working printer was created in the initialisation of the
system, the name server is not immediately (i.e., in the same step) relinked to the print
server. Thus the first client had its request rejected although there was an idle printer.
This is quite realistic for this architecture: there is a separate component to reject
requests and hence it is natural that it takes some time to propagate the new state of
the printing system. This deals with one of the issues raised in [Ore98]: the behavioural
view of an architecture should reflect the fact that in reality reconfigurations are not
performed atomically by the operating system. Therefore the intermediate states of a
system during change may be somehow inconsistent. In our example, inconsistency
means that the topology of the architecture (i.e., which component the name server is
linked to) does not always reflect the state of the printing component (i.e., whether it
has working printers or not). However, after the change has taken place, topology and
system state are consistent again.

To summarise, the example has illustrated

self-organisation the clients are automatically linked to and unlinked from the correct
component: either the “inhibitor” or the printing system;

ad-hoc reconfiguration printers are explicitly removed and created by reconfiguration
commands that are added unpredictably to the solution;

programmed reconfiguration the connection between the name server is switched from
the “inhibitor” to the printing system and vice-versa depending on the number of
working printers;

code mobility the programmed reconfiguration is achieved by sending the “program”
(in this case a single rule) from within the printing system to the outside;

interaction computations affect the way the architecture changes (e.g., in programmed
reconfiguration) and reconfigurations trigger computations (e.g., the addition of a
new client);

parallel reconfiguration changes within the printing system (e.g., printer removal) and
outside it (e.g., client creation) can occur simultaneously;

non-atomic changes the name server connection is not changed atomically with the
creation of the first working printer or with the breaking of the last one.

3.8 Concluding Remarks

Inverardi and others [IW95, IY96, IWY97] have shown that the Chemical Abstract Ma-
chine [BB92] is a useful tool to describe and study the computational behaviour of a
system with a static architecture. In this chapter we extended the work in three direc-
tions. First, to handle not a single architecture but whole classes of architectures, by
specifying a style as a non-deterministic self-organised reconfiguration process starting
with an “empty” architecture. Second, to cope with dynamic architectures; in particu-
lar, we dealt with self-organised, ad-hoc, and programmed reconfiguration, global and
local structural constraints, and a restricted form of code mobility, by encoding rules
(but not rule schemata) as molecules. Third, we have made a first attempt at a minimal
CHAM-based architecture description language. Based on our preliminary exploration,

3.8 Concluding Remarks 47

we conclude that the CHAM may be used for the specification of software architecture
style and reconfiguration due to following characteristics of the chemical model.

simplicity There is a single data structure (multiset of terms) and a single program-
ming construct (“if-then” rewrite rules), both of which are familiar and intuitive
concepts. Also, there are only two constructs for modularisation (membranes and
airlocks), allowing the description of hierarchical architectures with encapsulated
state. Furthermore, although data is local to each composite component, rules are
global, allowing the designer to describe computations and reconfigurations that
are common to several (composite) components. For example, a single rule was
used to describe message passing among arbitrary components.

suitability The model’s view of “computation as the global evolution of a collection of
atomic values interacting freely” [BM96] is naturally suited to describe the evolu-
tion of self-organising architectures. Also, the combination of reaction rules (the
interactions) and initial solution of molecules (the atomic values) can be used to
specify both system and node integrity properties [YM92]. Reaction rules are in-
herently operational and parallel in nature, and are triggered upon the presence of
some particular molecules in the solution, given on the left-hand side of rules. This
means that the CHAM describes modifications and constraints, and that it is par-
ticularly useful for architectures which are highly dynamic (e.g., if there are infinite
distinct configurations, something an approach like [ADG98] cannot handle) and
whose reconfiguration is self-organised or ad-hoc and depends on local properties.

flexibility The definition of the molecules is left to the designer. This has a twofold
advantage. First, as much or as little detail can be included as necessary for the
application at hand (e.g., clients interact with the spooler through explicit con-
nections, and messages, while the communication between the print server and
printers is implicit through their current state). Second, a molecule can repres-
ent an element of the architecture (i.e., a composite component or a connection),
a reconfiguration command or reaction rule, or auxiliary data (like counters). As
for components, it is possible to represent their structural and computational as-
pects. The former include the connections a component has, the latter describe the
component’s state. As for reconfiguration commands, they may be high-level (like
the ‘cc’ command which also creates new links) or low-level ones (like the ‘create’
command). With all these options one can encode and compare several models
of reconfiguration described in the literature within a uniform framework. With
the CHAM, the diverse approaches are easily recognisable according to where mo-
lecules that represent reconfigurations (like ‘cc’, ‘dyn=. . . /. . . ’, and ‘{|. . . |}7→{|. . . |}’)
appear in the reaction rules: in programmed reconfiguration they appear on both
sides, in ad-hoc reconfiguration they appear only in left-hand sides, and in self-
organisation they do not appear at all.

The small number of constructs provided by the CHAM model also has disadvant-
ages. Since molecules are entirely built from the constants and operators defined by the
user, architectures which need common data types (like booleans and integers) and op-
erations (like sum and comparison) are a bit tedious and lengthy to specify, and not very
readable. Flexibility may be problematic too. As seen in previous sections, each CHAM
introduces its own syntax and assumptions. This requires additional explanations and
does not allow reuse of specifications. Moreover, the CHAM lacked the syntactic con-
structs to serve as an ADL, i.e., to represent architectures in a modular way with explicit
connections between component interfaces. We have shown that it is possible to achieve
that goal without resorting to additional formalisms: we chose a fixed representation for
the most important concepts (like component and connection) and imposed some con-
straints on the grammars used to describe the molecules’ syntax. Our position is thus

48 The CHAM Approach

that the CHAM may be used not only as a theoretical framework but also as a practical
specification language, and the chapter presented one such proto-ADL. By including
only a very small set of constructs we wish to contribute to a wider discussion on what
are the minimal foundations for dynamic architectures and their description languages
on which higher-level abstractions can be built.

There are many possibilities for future work. One of them is to investigate the means
to provide support for partial mechanical analysis of complex properties and architec-
tures. There are several potential independent lines of action.

• A CHAM is similar to term rewriting system (TRS) with an associative and com-
mutative operator: multiset union. It might be possible to use or adapt techniques
developed for TRS to prove termination of reconfiguration and uniqueness of the
resulting architecture.

• The CHAM can be encoded in rewriting logic [Mes96] and thus tools for that frame-
work, like Maude [CELM96] and ELAN [BKK+96], could be used to test architec-
ture specifications written in CHAM. Another possibility is to adapt and expand
sequential and parallel implementations of Gamma, the original chemical model
[Cre91, BCM88].

• A third kind of approach could be based on temporal logic and model-checking as
described in [CFM98, CI99].

• If the style is described by a context-free grammar, the algorithm of [Mét98] can be
applied to check whether a given reconfiguration graph grammar keeps the given
style. It remains to be seen if the method can be adapted to the general CHAM
model or if a new algorithm can be developed.

Another avenue for future work is to extend the proposed language with constructs
that make specifications easier to write. For example, PoliS [CFM98] and its successor
MobiS [Mas99] allow to tag molecules on the left-hand side of rules to indicate they are
to be only read, not consumed, thus avoiding the need to repeat them on the right-hand
side. They also allow rules to describe local computations of values, thus providing a
way to use common data types (like integers) directly, without resorting to additional
rules. The languages include further primitives to handle mobility, like an operator to
consume or produce a molecule in the enclosing solution instead of the “current” one.
It will be interesting to investigate which of these constructs cannot be described using
the pure CHAM.

We are of course aware that the chemical model is not suited for every kind of style
or reconfiguration. Since a reaction depends on the presence of some molecules, re-
configurations that depend on “negative” or global conditions (e.g., “if every client is not
connected to the printing system, then. . . ”) may be impossible or very difficult to spe-
cify, leading to CHAMs that are cumbersome to write and hard to understand. We also
expect several global integrity constraints to be not as easy to express as the branching
factor or the depth of a tree. However, we hope that our exploration has reinforced the
suggestion that “the CHAM model might be one useful tool in the software architect’s
chest of useful tools” [IW95].

Chapter 4

The COMMUNITY Approach

COMMUNITY is a parallel program design language initially developed by José Fiadeiro
and Tom Maibaum [FM95] to show how programs fit into Goguen’s categorical approach
to General Systems Theory. It is an action based version of UNITY [CM88], but it also
draws elements from IP [FF96]. Since then, the language and its framework have been
extended to provide a formal platform for architectural design of open, reactive, recon-
figurable systems [FM96, Fia96, FM97, FL97, WF98b, WF98a, Lop99, LF99, WF99].

We gradually present the syntax and semantics of COMMUNITY and show how a func-
tion mapping the vocabulary of two programs is able to capture superposition [Kat93].
That function is called a program morphism. A configuration is then a graph with
nodes labelled by programs and arcs labelled by morphisms. Each configuration can be
transformed into a single, semantically equivalent, program that represents the whole
system. The transformation operation is given by a universal categorical construction
called colimit. A connector is a particular case of configuration and we present several
fundamental connectors (like message passing). A transient connector has an associ-
ated condition to state when it is active. An architecture is then a configuration built
from (transient) connectors and individual programs. Hence a static graph is able to
represent reconfigurations due to transient interactions.

To represent more general reconfigurations we use labelled graph rewriting. To stay
within a uniform framework, we adopt the algebraic approach to graph transforma-
tion [CMR+96a]. To cater for run-time reconfiguration, we add to the node labels the
usual representation of state as pairs of variables and values, and graph rewriting rules
become conditional. Dynamic reconfiguration is then the interleaving of rewritings per-
formed on the architecture and computations performed on the colimit.

Finally, we add the notion of architectural style, given by a fixed graph. An archi-
tecture conforms to a style if there is a structure preserving mapping from the former
to the latter. The style’s purpose is to constrain the possible connections between com-
ponents, allowing the use of COTS (connectors off the shelf). The categorical framework
guarantees that if the initial architecture and each rewriting rule conforms to a given
style, so does the resulting architecture.

The mathematical concepts needed for this approach are defined in Chapter A on
page 109.

4.1 Example

The running example to be used in this chapter is inspired in the airport luggage dis-
tribution system used to illustrate MOBILE UNITY [RMP97]. One or more carts move
continuously on a U units long circular track. A cart advances one unit at each step.
All carts move in the same direction.

50 The COMMUNITY Approach

Along the track there are stations. There is at most one station per unit. Each station
corresponds to a check-in counter or to a gate. Carts take bags from check-in stations
to gate stations. All bags from a given check-in go to the same gate. A cart transports
at most one bag at a time. When it is empty, the cart picks a bag up from the nearest
check-in.

Carts must not bump into each other. This could happen if a cart is moving and the
cart in front of it is stopped at a station loading or unloading a bag.

As an example of an ad-hoc reconfiguration we consider that management decides to
equip each cart with two counters to compute how many bags are processed on average
for each completed lap. The rationale is to check how efficient is the track layout, i.e.,
the distribution of the stations along the circuit.

4.2 Types and Expressions

This section presents the necessary concepts for COMMUNITY programs to represent
and manipulate data: types, operators, variables, and the expressions that can be built
from them. It also shows how variables from different programs can be related and
hence expressions can be translated.

4.2.1 Syntax

COMMUNITY is independent of the actual data types used. Therefore it assumes there
are pre-defined types and functions given by a fixed signature in the usual algebraic
sense [EM85].

Definition 4.1. An algebraic signature is a tuple 〈S, F〉 where

• S is a set of sort symbols,

• F is an S∗ × S-indexed family of sets of function symbols.

All these sets are finite and mutually disjoint.

The functions are defined by a set of equational [EM85] or first-order [MVS85] ax-
ioms.

Definition 4.2. An algebraic data type specification is a tuple 〈S, F,Φ〉 where

• 〈S, F〉 is an algebraic signature,

• Φ is a set of axioms.

Having fixed the types, we may proceed to expressions. We start with the definition
of variables, which must be typed.

Definition 4.3. A set of variables is a set X =
⋃
s∈S Xs such that sets Xs are mutually

disjoint.

COMMUNITY has three kinds of expression: terms, defined from functions and vari-
ables as usual, set expressions, each denoting a set of terms of the same type, and
propositions, which have a truth value. To make the formalisation easier, the languages
to be introduced are minimal. Other constructs (like set intersection and logical dis-
junction) can be defined as abbreviations.

Definition 4.4. Let X be a set of variables. The language Termss(X) of terms of sort s is
defined by

ts := v | c | f(ts1
, . . . , tsn)

4.2 Types and Expressions 51

where v ∈ Xs, c ∈ F〈〉,s, and f ∈ F〈s1,...,sn〉,s. The language Setss(X) of set expressions of
sort s is defined by

es := {ts, . . . , ts} | s | (es \ es)

where {ts, . . . , ts} is possibly empty. The language Props(X) of propositions is defined by

φ := es ⊆ es | (φ∧ φ) | (¬φ)

An expression is a term, a set expression, or a proposition.

The concrete syntax to be used in this chapter and that will be implemented by the
COMMUNITY Workbench [WNF99] is defined as follows.

Notation 4.5. An identifier is a sequence of letters, digits and underscores, starting
with a letter.

Id := Letter (Letter | Digit | ‘ ’)∗

Letter := ‘a’ | . . . | ‘z’ | ‘A’ | . . . | ‘Z’
Digit := ‘0’ | . . . | ‘9’

The following reserved words may not be used as identifiers:

bool do false head in init int out prog skip tail true

Notation 4.6. There are only three pre-defined types: integers and booleans, with the
usual constants and operations, and lists. Propositions are boolean expressions. A
value for a list is written [l1, l2, . . .] and thus [] is the empty list. The operations ‘head’
and ‘tail’ perform as usual, and ‘+’ represents list concatenation.

The following grammar shows the ASCII and mathematical versions of the operators.
We use only the latter in this chapter.

Expression := Disjunction (‘=>’ | ‘⇒’ Disjunction)∗

Disjunction := Conjunction (‘|’ | ‘∨’ Conjunction)∗

Conjunction := Relation (‘&’ | ‘∧’ Relation)∗

Relation := Addition (RelOp Addition)∗

RelOp := ‘=’ | ‘/=’ | ‘6=’ | ‘<’ | ‘⊂’ | ‘>’ | ‘⊃’ | ‘<=’ | ‘≤’ | ‘⊆’ | ‘>=’ | ‘≥’ | ‘⊇’
Addition := Multiplication ((‘+’ | ‘-’ | ‘∪’ | ‘\’) Multiplication)∗

Multiplication := Opposite ((‘*’ | ‘/’ | ‘mod’ | ‘∩’) Opposite)∗

Opposite := (‘-’ | ‘˜’ | ‘¬’)∗ Primary
Primary := Id | Integer | Boolean | List | Set | ‘(’ Expression ‘)’
Integer := Digit+

Boolean := ‘true’ | ‘false’
List := ‘[’ [Expression (‘,’ Expression)∗] ‘]’ | (‘head’ | ‘tail’) ‘(’ Expression ‘)’
Set := Type | ‘{’ [Expression (‘,’ Expression)∗] ‘}’ | ‘∅’
Type := ‘int’ | ‘bool’ | ‘list’ ‘(’ Type ‘)’

Booleans may be compared only with the (in)equality operators: expressions like
false < true are syntactically wrong. All binary operators are left-associative.

4.2.2 Semantics

Not only the syntax of expressions, but the semantics also must be independent of
the chosen abstract data types. Therefore we assume a fixed algebra that satisfies the
properties of the operators.

52 The COMMUNITY Approach

Definition 4.7. An algebra A assigns a set sA to each sort s ∈ S, and a total function
fA : s1A

× · · · × snA
→ sA to each function symbol f ∈ F〈s1,...,sn〉,s such that the axioms Φ

are satisfied.

The semantics of an expression can thus be given in the usual way, provided values
are assigned to the occurring variables.

Definition 4.8. A valuation for a set of variables X is an S-indexed family of functions
Vs : Xs → sA.

Definition 4.9. Given a valuation V for variables X, the denotation of a term t ∈ Terms(X),
written [[t]]V, is given as follows:

• [[v]]V = Vs(v)

• [[c]]V = cA

• [[f(t1, . . . , tn)]]V = fA([[t1]]V, . . . , [[tn]]V)

for any v ∈ Xs, c ∈ F〈〉,s, f ∈ F〈s1,...,sn〉,s and ti ∈ Termssi
(X). The denotation [[e]]V of an

expression e ∈ Sets(X) is

• [[{t1, . . . , tn}]]V = {[[t1]]V, . . . , [[tn]]V}

• [[s]]V = sA

• [[(e \ e ′)]]V = [[e]]V \ [[e ′]]V

with ti ∈ Termss(X) and e, e ′ ∈ Sets(X). A proposition φ ∈ Props(X) is true, written V |= φ,
in the following cases:

• V |= e ⊆ e ′ if and only if [[e]]V ⊆ [[e ′]]V;

• V |= (φ∧ φ ′) if and only if V |= φ and V |= φ ′;

• V |= (¬φ) if and only if V 6|= φ.

The notion of validity is the usual one.

Definition 4.10. A proposition φ ∈ Props(X) is valid, written |=X φ, if V |= φ for any
valuation V for X.

4.2.3 Configuration

Different sets of variables may be related by a sort-preserving mapping.

Definition 4.11. Let X and X ′ be two sets of variables. A variable morphism σ : X → X ′

is a function such that σ(Xs) ⊆ X ′s.

A variable morphism σ : X→ X ′ induces an obvious translation of the languages built
over X into those over X ′.

Notation 4.12. Let x be an expression over X. Then σ(x) is the expression over X ′

obtained by replacing each variable v of x by σ(v).

The following result is needed in the next section.

Proposition 4.1. Sets of variables and their morphisms form a finitely cocomplete cat-
egory.

4.3 Signatures 53

Proof. It is immediate that the functional composition of variable morphisms is a vari-
able morphism. The remaining properties come from Set. In particular, the pushout of
{σi : X0 → Xi} (with i = 1, 2) is the same as the union of the pushouts of {σi : X0s → Xis}
for each sort s. ✓

In general, given a morphism and a “model” for its codomain, we wish to be able to
construct a reduct, i.e., a model for its domain, thus providing the semantic basis of the
morphism. The next definition applies this idea to variable morphisms.

Definition 4.13. Given a variable morphism σ : X → X ′ and a valuation V ′ for X ′, the
σ-reduct of V ′ is the valuation V for X such that for any v ∈ X one has V(v) = V ′(σ(v)).

Since the value of an expression depends only on the values of its variables, it is
obvious that it is not changed by reducts.

Lemma 4.2. Let V be the σ-reduct of V ′, with σ : X → X ′. Then [[e]]V = [[σ(e)]]V ′ for any
e ∈ Terms(X) ∪ Sets(X), and V |= φ if and only if V ′ |= σ(φ) for any φ ∈ Props(X).

It results that morphisms do not affect the validity of formulas.

Lemma 4.3. Given a variable morphism σ : X→ X ′, if |=X φ then |=X ′ σ(φ).

4.3 Signatures

The “vocabulary” of a program is given by its signature. It defines, together with the
abstract data types, what expressions can be written in the body of the program to
control and perform computations. Moreover, the signature is visible to the environment
and provides the means to establish interactions.

This section shows how signatures are specified, what is their meaning, and how the
signature of the system can be obtained from the signatures of the components.

4.3.1 Syntax

A program signature is a set of variables and a set of action names. Each variable is
either for input—its value is provided by the environment and cannot be changed by the
program—or for output—its value is initialised by the program and modified only by its
actions. In other words, input variables are read-only and thus not under the control of
the program, while output variables can be read and written, and the program has full
control over their values.

The signature also states for each action the set of output variables it modifies, called
the action’s domain. Inversely, the domain of an output variable is the set of actions
that change it. Each program also includes a so called idle action which is always
executable and which performs nothing, i.e., it does not change any of the program’s
output variables. It corresponds to a computation step performed by the environment
and hence allows to see any computation as an infinite sequence of actions, as is usual
for reactive languages [MP91].

Definition 4.14. A program signature is a tuple 〈I,O,A〉 where

• I is a set of variables called input variables,

• O is a set of variables called output variables,

• A =
⋃
d⊆OAd is a set, whose elements are called actions, with a distinguished

element ⊥ ∈ A∅ called the idle action.

54 The COMMUNITY Approach

The sets O, I and Ad are finite and mutually disjoint. The domain of an action a ∈ A is
the set d ⊆ O such that a ∈ Ad.

Notation 4.15. The program variables are V =
⋃
s∈S Vs =

⋃
s∈S(Os ∪ Is). The sort of

variable v is denoted by sort(v). The domain of action a is denoted by D(a). Inversely,
for each o ∈ O the set of actions that can change o is D(o) = {a ∈ A | o ∈ D(a)}.

Notation 4.16. An action’s domain can be considered its type, and therefore we write
concrete signatures in the form

〈{i1 : sort(i1), . . .}, {o1 : sort(o1), . . .}, {a1 : D(a1), . . .}〉

4.3.2 Semantics

The semantics of a program is given by a labelled transition system where transitions
are labelled by actions and states are labelled by valuations for the program’s variables.

Definition 4.17. An interpretation for a program signature is a labelled transition sys-
tem with LT = A and LW the collection of valuations for V.

Notation 4.18. We write Vw for lblW(w).

The above definition allows many transition systems to be interpretations of the ex-
ecution of some program. However, not all of them are meaningful. In particular, we
are only interested in those that obey the domains of actions: if the action executing
at some step does not include the output variable o in its domain, then the value of o
remains the same.

Definition 4.19. A model for a program signature is an interpretation such that for any
o ∈ O and any a ∈ LT \D(o), if Vw

a−→ Vw ′ then Vw(o) = Vw ′(o).

4.3.3 Configuration

This section shows how the signature ψ of the program P representing the whole system
can be obtained from the signatures ψ1,...,n of the programs P1,...,n representing the
components.

Making use of the categorical framework, the system’s signature will be the colimit
of the diagram showing the configuration of the components’ signatures. From the
definition of colimit, there must be a morphism from each ψi to ψ. The definition of
a signature morphism σi : ψi → ψ must therefore capture the intuition that, Pi being
a component (or part or “sub-program”) of P, ψi is included in ψ. Put differently, ψ
is obtained from the addition of the variables and actions of the various ψi and there-
fore signature morphisms capture a notion of superposition, Pi being the underlying
programs and P the “transformed” one.

To show inclusion, superposition is achieved by a mapping from Pi’s vocabulary into
that of P. In the initial definitions of COMMUNITY [FM97, FL97], a signature morphism
mapped each variable and action of the component into one variable or action of the
system such that the type and domain of variables and actions were preserved. For this
work we have kept the basic intuition but introduced a small although fundamental
change [WF98a].

In a reconfiguration setting, a program may synchronise each of its actions with dif-
ferent actions from different programs at different times. To allow this, a morphism may

4.3 Signatures 55

associate an action a of a component Pi with a set of actions {a1, . . . , am} of the system P.
The intuition is that those actions correspond to the behaviour of a when synchronising
with other actions of the other components Pj 6=i of P. The morphism is quite general:
the set {a1, . . . , am} may be empty. In that case, action a has been effectively removed
from P. This contradicts the intuition that every action of the component should also be
in the system, but it is necessary to handle configurations with conflicting requirements
(see Example 4.2 on page 58). A further constraint is necessary to be able to build a
system signature from any configuration of component signatures (Proposition 4.6 on
page 58): internal synchronisation is not possible. This means that two distinct actions
of a component may not be mapped to the same action of the system. Mathematically,
their image sets must be disjoint.

The definitions and proofs become easier if the mapping of actions is done by a func-
tion in the opposite way, i.e., if a mapping a 7→ {a1, . . . , am} becomes a set of mappings
a ← [a1, . . . , a ←[am. However, in examples and informal discussions we use the “set
version” of the action mapping.

We now state the complete requirements for a signature morphism to capture a su-
perposition relation between the underlying signature of the component and the trans-
formed signature of the system.

1. Each variable of the component is mapped to a variable of the system of the same
type.

2. Component output variables are mapped to system output variables.

3. Each action of the system is mapped to an action of the component.

4. The idle action of the system is mapped to the idle action of the component.

5. The domain of variables is preserved, i.e., all system actions that modify a given
variable must correspond to component actions that change the corresponding
component variable, if it exists.

6. The domain of actions is preserved, i.e., if a component action modifies a given
component output variable, then the corresponding system actions modify the cor-
responding system output variable.

The second requirement states that the variables under control of the component are
also under control of the system. The inverse is not true: input variables of a component
Pi which are under the control of another component Pj become output variables of any
system P containing Pi and Pj. The fifth condition states that the domain of an output
variable cannot be extended by system actions that are unrelated to the component
actions that modify the variable. This enforces that a program’s output variables are
only under its control, even if the program is combined with other programs into a larger
one. It corresponds to the requirement in UNITY that new actions may only modify the
superposed variables, they cannot contain assignments to the underlying variables. The
sixth requirement states that the domain of a component action is not restricted by the
system, i.e., all corresponding system actions do not change less variables.

Definition 4.20. Given program signatures ψ = 〈I,O,A〉 and ψ ′ = 〈I ′, O ′, A ′〉, a signa-
ture morphism σ : ψ → ψ ′ consists of a variable morphism σv : V → V ′ and a function
σa : A ′ → A such that

1. σv(O) ⊆ O ′

2. σa(⊥ ′) = ⊥

3. ∀o ∈ O σa(D ′(σv(o))) ⊆ D(o)

56 The COMMUNITY Approach

4. ∀a ′ ∈ A ′ σv(D(σa(a
′))) ⊆ D ′(a ′)

Our first result is that signatures and their morphisms constitute a category. This
basically asserts that morphisms can be composed. In other words, superposition is
transitive (and reflexive, of course).

Proposition 4.4. Program signatures and signature morphisms constitute a category Sig.

Proof. We only have to show that the composition σ;σ ′ = 〈σv;σ ′v, σ ′a;σa〉 is well-defined,
i.e., it returns a signature morphism, because the remaining properties come from Pro-
position 4.1 on page 52 and Set. Let σ : ψ1 → ψ2 and σ ′ : ψ2 → ψ3 be two signature
morphisms.

1. σv(O1) ⊆ O2 ∧ σ ′v(O2) ⊆ O3 ⇒ σ ′v(σv(O1)) ⊆ O3

2. σ ′a(⊥3) = ⊥2 ∧ σa(⊥2) = ⊥1 ⇒ σa(σ
′
a(⊥3)) = ⊥1

3. From σv(o1) ∈ O2 and ∀o2 ∈ O2 σ ′a(D3(σ ′v(o2))) ⊆ D2(o2) we obtain

∀o1 ∈ O1 σa(σ ′a(D3(σ ′v(σv(o1))))) ⊆ σa(D2(σv(o1))) ⊆ D1(o1)

4. From σ ′a(a3) ∈ A2 and ∀a2 ∈ A2 σv(D1(σa(a2))) ⊆ D2(a2) we obtain

∀a3 ∈ A3 σ ′v(σv(D1(σa(σ ′a(a3))))) ⊆ σ ′v(D2(σ ′a(a3))) ⊆ D3(a3)

✓

Notation 4.21. In the following, the indices v and a are omitted.

Given an interpretation for the signature of a system P, morphisms σi : Pi → P allow
us to obtain interpretations for its components Pi. Basically, the interpretations have the
same worlds, and every transition Vw

a−→ Vw ′ in the interpretation for P is transformed

into a transition Viw
σi(a)−→ Viw ′ for each Pi, where for any world w, Viw is the σi-reduct of

Vw.

Definition 4.22. Given a signature morphism σ : ψ → ψ ′ and an interpretation I ′ for
ψ ′, the σ-reduct is the interpretation I for ψ such that

1. I and I ′ have the same underlying graph,

2. for any world w, Vw is the σ-reduct of V ′w,

3. for any transition t, lbl(t) = σ(lbl ′(t)).

Since signature morphisms preserve action domains, reducts preserve models. This
shows that the “part-of” intuition given at the syntactic level by the morphism has a
semantic basis, given by the reduct.

Proposition 4.5. If σ : ψ → ψ ′ is a signature morphism then the σ-reduct of every model
of ψ ′ is a model of ψ.

Proof. We take as hypothesis the antecedent of the condition for being a model (Defini-
tion 4.19 on page 54):

∀o ∈ O ∀a ∈ LT \D(o) Vw1

a−→ Vw2

Due to item 1 of the definition of σ-reduct, I ′ must have a corresponding transition

V ′w1

a ′−→ V ′w2
with a = σ(a ′). We prove a ′ ∈ L ′T \D ′(σ(o)) by absurd. Assume a ′ ∈ D ′(σ(o)).

4.3 Signatures 57

Then σ(a ′) ∈ σ(D ′(σ(a))) and therefore a ∈ D(o) contradicting our assumption a /∈ D(o).
So we have

∀o ∈ O ∀a ∈ LT \D(o) ∃a ′ ∈ L ′T \D ′(σ(o)) V ′w1

a ′−→ V ′w2

By assumption, I ′ is a model and thus

∀o ∈ O ∀a ∈ LT \D(o) V ′w1
(σ(o)) = V ′w2

(σ(o))

Due to item 2 in the σ-reduct definition, we can apply Definition 4.13 on page 53,
obtaining as wished

∀o ∈ O ∀a ∈ LT \D(o) Vw1
(o) = Vw2

(o)

✓

So far we have only considered the relationship between components and the system.
We now turn to the main goal of this section: how to build the signature of the system
given the signatures of the components. The basic idea is that the interactions between
programs are specified by a diagram in Sig, and the colimit returns the signature of
the system. In the following, we show how the superposition relation given by signature
morphisms can be used to specify interactions and how the colimits indeed capture the
restrictions on variables and actions imposed by the interactions.

In the simplest case, there are no interactions and thus the colimit returns the paral-
lel composition of the components. In Category Theory, all relationships between objects
must be made explicit through morphisms. In the particular case of COMMUNITY pro-
grams, it means for example that two variables (or actions) of two unrelated programs
are different, even if they have the same name. Therefore the variables of the system are
the disjoint union of the components’ variables. Regarding actions, the parallel compos-
ition contains all possible combinations of actions from the components, since there is
no restriction on their co-occurrence. Mathematically, the actions of the colimit are the
cartesian product of the actions of the components, thus providing not an interleaving
but a concurrent semantics for parallel composition.

Example 4.1. Consider the following two components without input variables, written
using Notation 4.16 on page 54:

• ψ1 = 〈∅, {x : int}, {⊥ : ∅, a : {x}}〉

• ψ2 = 〈∅, {x : int, y : int}, {⊥ : ∅, a : {x}, b : {y}}〉

The colimit is given by the diagram

ψ1

x7→x1⊥← [〈⊥1,⊥2〉,⊥← [〈⊥1,a2〉,⊥← [〈⊥1,b〉

a← [〈a1,⊥2〉,a← [〈a1,a2〉,a← [〈a1,b〉 $$IIIIIIIIIIIIII ψ2

x 7→x2,y7→y ⊥← [〈⊥1,⊥2〉,⊥← [〈a1,⊥2〉
a← [〈⊥1,a2〉,a← [〈a1,a2〉

b← [〈⊥1,b〉,b← [〈a1,b〉zzuuuuuuuuuuuuuu

ψ

with ψ = 〈∅, {x1 : int, x2 : int, y : int}, {〈⊥1,⊥2〉 : ∅, 〈⊥1, a2〉 : {x2}, 〈⊥1, b〉 : {y}, 〈a1,⊥2〉 :
{x1}, 〈a1, a2〉 : {x1, x2}, 〈a1, b〉 : {x1, y}}〉

Interactions between programs are established through action synchronisation and
memory sharing. This is achieved by relating the relevant action and variable names of
the interacting programs through morphisms from a third, “mediating” program—called
channel—that represents the common vocabulary. For example, to state that action a1
of program P1 is the same as (i.e., synchronises with) action a2 of P2, the channel C
contains just an action a and two morphisms σi : C→ Pi that map a to ai.

The colimit is then the parallel composition restricted to the sharing specified by
the diagram. If an input variable of one component is shared with an output variable
of another one, it becomes an output variable in the system. Concerning actions, we
eliminate from the cartesian product all actions 〈a1, . . . , ai, . . . , aj, . . . , an〉 such that

58 The COMMUNITY Approach

1. ai and aj are not synchronised but ai is synchronised with (at least) one action of
the j-th component,

2. ai modifies a variable that is shared with an output variable of the j-th component,
but aj does not modify it.

The first condition enforces the synchronisations given by the diagram, the second re-
quirement states that if two output variables are shared, the actions in their domains
must be synchronised.

Example 4.2. Due to the second condition, sharing of variables can have side-effects on
actions. Consider that the signatures of the previous example are to share all variables.
We get the following colimit.

〈{x : int, y : int}, ∅, {⊥ : ∅}〉

⊥← [⊥,⊥← [a
x7→x,y7→x

vvllllllllllllllllll

x 7→x,y7→y⊥← [⊥,⊥← [a,⊥← [b

**TTTTTTTTTTTTTTTTTTTTTT

〈∅, {x : int}, {⊥ : ∅, a : {x}}〉

x7→x
⊥← [〈⊥1,⊥2〉

((RRRRRRRRRRRRRRRRRR
〈∅, {x : int, y : int}, {⊥ : ∅, a : {x}, b : {y}}〉

x7→z
⊥← [〈⊥1,⊥2〉

ttjjjjjjjjjjjjjjjjjjjjjj

〈∅, {x : int}, {〈⊥1,⊥2〉 : ∅}〉

Notice that although no synchronisation is explicitly imposed on the actions, they
all disappear. The intuitive reason is that the variables of ψ2 become shared indirectly
through the variable of ψ1. To satisfy the constraints on the domains, the actions of ψ2
must be synchronised, but internal synchronisation is not possible, and therefore they
cannot be mapped to any action of the system.

Mathematically, it can be checked that, except for the idle action, no action of the
colimit of the previous example satisfies the second condition above. For instance,
〈⊥1, a2〉 is eliminated because ⊥1 does not modify x1 which has become shared with the
domain of a2. Likewise for 〈a1, a2〉, where a2 does not change y which is shared with the
domain of a1, the variable x1.

It remains to prove that any configuration of signatures has a semantics.

Proposition 4.6. Sig is finitely cocomplete.

Proof. The initial object is 〈∅, ∅, {⊥}〉. As for pushouts, consider the diagram

ψ0
σ1

~~||||||||
σ2

 BBBBBBBB

ψ1
µ1 //

µ ′1 BBBBBBBB ψ

µ

���
�
� ψ2

µ2oo

µ ′2~~}}}}}}}}

ψ ′

The proof that {µi : ψi → ψ} is a pushout of {σi : ψ0 → ψi} has the following steps:

1. Define ψ and µi and show their correctness.

2. Show that σ1;µ1 = σ2;µ2.

3. For any other pushout candidate {µ ′i : ψi → ψ ′}, show there is a unique µ : ψ→ ψ ′

such that µi;µ = µ ′i.

4.3 Signatures 59

For variables, we take {µi : Vi → V} the pushout over Set (Proposition 4.1 on page 52),
and define O =

⋃
i=1,2 µi(Oi) and thus µi(Oi) ⊆ O as required for signature morph-

isms. It remains to show that µ(O ′) ⊆ O because the existence and uniqueness of µ are
guaranteed by Set:

µ(O) = µ(
⋃
i=1,2 µi(Oi)) definition of O

=
⋃
i=1,2 µ(µi(Oi))

=
⋃
i=1,2 µ

′
i(Oi)) µi form a pushout

⊆ O ′ µ ′i are signature morphisms

We proceed now with the proof for actions.

1. We first define the set of shared output variables as SO = {〈o1, o2〉 ∈ O1×O2 | µ1(o1) =
µ2(o2)}. The elements of ψ are then:

• A = {〈a1, a2〉 ∈ A1 × A2 | σ1(a1) = σ2(a2) ∧ ∀〈o1, o2〉 ∈ SO o1 ∈ D1(a1) ⇐⇒ o2 ∈
D2(a2)}

• ⊥ = 〈⊥1,⊥2〉
• D(〈a1, a2〉) =

⋃
i=1,2 µi(Di(ai))

• µi = πi

Now we show that µi are indeed signature morphisms.

• µi(⊥) = ⊥i by definition

• We prove the preservation of variable domains only for i = 1, the proof for i = 2

being similar.

µ1(D(µ1(o1))) ⊆ D1(o1)

a1 ∈ µ1(D(µ1(o1))) ⇒ a1 ∈ D1(o1)
〈a1, a2〉 ∈ D(µ1(o1)) ⇒ a1 ∈ D1(o1)
µ1(o1) ∈ D(〈a1, a2〉) ⇒ o1 ∈ D1(a1)

µ1(o1) ∈
⋃
i=1,2

µi(Di(ai)) ⇒ o1 ∈ D1(a1)

case 1:

µ1(o1) ∈ µ1(D1(a1))⇒ ∃o ′1 ∈ D1(a1) µ1(o1) = µ1(o
′
1)⇒ ∃o ′1 ∈ D1(a1) ∃o2 ∈ O2 µ1(o1) = µ1(o

′
1) = µ2(o2)⇒ ∃o ′1 ∈ D1(a1) ∃o2 ∈ O2 〈o ′1, o2〉 ∈ SO∧ 〈o1, o2〉 ∈ SO⇒ ∃o ′1 ∈ D1(a1) ∃o2 ∈ O2 o2 ∈ D2(a2) ∧ 〈o1, o2〉 ∈ SO⇒ o1 ∈ D1(a1)

case 2:

µ1(o1) ∈ µ2(D2(a2))⇒ ∃o2 ∈ D2(a2) µ1(o1) = µ2(o2)⇒ ∃o2 ∈ D2(a2) 〈o1, o2〉 ∈ SO⇒ o1 ∈ D1(a1)

• The preservation of action domains is also only proved for µ1:
µ1(D1(µ1(〈a1, a2〉))) = µ1(D1(a1)) ⊆

⋃
i=1,2 µi(Di(ai)) = D(〈a1, a2〉)

60 The COMMUNITY Approach

2. The commutativity of the diagram stems from the definition of A: σ1(µ1(〈a1, a2〉)) =
σ1(a1) = σ2(a2) = σ2(µ2(〈a1, a2〉))

3. The uniqueness of µ is due to µi being projections: µ1(µ(a ′)) = µ ′1(a
′) ∧ µ2(µ(a ′)) =

µ ′2(a
′)⇒ µ(a ′) = 〈µ ′1(a ′), µ ′2(a ′)〉

To prove the existence of µ it is necessary to show that for any a ′ ∈ A ′, µ(a ′) =
〈µ ′1(a ′), µ ′2(a ′)〉 ∈ A:

(a) σ1(µ ′1(a
′)) = σ2(µ

′
2(a
′)) by definition of µ ′i

(b) We prove ∀〈o1, o2〉 ∈ SO o1 ∈ D1(a1) ⇐⇒ o2 ∈ D2(a2)} only in one direction,
the other being similar.

o1 ∈ D1(µ ′1(a ′)) ⇒ µ ′1(o1) ∈ µ ′1(D1(µ ′1(a ′))) ⊆ D ′(a ′)⇒ µ(µ1(o1)) = µ(µ2(o2)) = µ ′2(o2) ∈ D ′(a ′)⇒ a ′ ∈ D ′(µ ′2(o2))⇒ µ ′2(a
′) ∈ µ ′2(D ′(µ ′2(o2))) ⊆ D2(o2)⇒ o2 ∈ D2(µ ′2(a))

It remains to show that µ is a signature morphism.

• µ(⊥ ′) = 〈µ ′1(⊥ ′), µ ′2(⊥ ′)〉 = 〈⊥1,⊥2〉 = ⊥
• Let o ∈ O. We know ∃i ∈ {1, 2} ∃oi ∈ Oi µi(oi) = o and therefore assume a fixed
o1 such that µ1(o1) = o.

µ ′1(D
′(µ ′1(o1))) ⊆ D1(o1)

o1 ∈ D1(µ ′1(D ′(µ ′1(o1))))
µ1(o1) ∈ µ1(D1(µ ′1(D ′(µ ′1(o1)))))

µ1(o1) ∈ µ1(D1(µ ′1(D ′(µ ′1(o1))))) ∪ µ2(D2(µ ′2(D ′(µ ′1(o1)))))
µ1(o1) ∈ D(〈µ ′1(D ′(µ ′1(o1))), µ ′2(D ′(µ ′1(o1)))〉)
〈µ ′1(D ′(µ ′1(o1))), µ ′2(D ′(µ ′1(o1)))〉 ∈ D(µ1(o1))

{〈µ ′1(D ′(µ ′1(o1))), µ ′2(D ′(µ ′1(o1)))〉} ⊆ D(µ1(o1))

µ(D ′(µ ′1(o1))) ⊆ D(µ1(o1))

µ(D ′(µ(µ1(o1)))) ⊆ D(µ1(o1))

µ(D ′(µ(o))) ⊆ D(o)

• For the preservation of action domains we apply directly the definition of D.

µ(D(µ(a ′))) = µ(D(〈µ ′1(a ′), µ ′2(a ′)〉))
= µ(µ1(D1(µ

′
1(a
′))) ∪ µ2(D2(µ ′2(a ′))))

= µ ′1(D1(µ
′
1(a
′))) ∪ µ ′2(D2(µ ′2(a ′)))

⊆ D ′(a ′) ∪D ′(a ′)

✓

4.4 Programs

A program defines the initial values of its output variables and also when and how the
actions modify them.

4.4 Programs 61

4.4.1 Syntax

An action is a guarded set (not a sequence!) of non-deterministic assignments, one for
each variable in the action’s domain. The right hand side of an assignment is an expres-
sion that denotes a set of values. This is useful to support underspecification [LF99].
At each step, one of the actions is selected and, if its guard is true, its assignments are
executed simultaneously. This is done by first evaluating all the expressions and then,
for each set obtained, assigning non-deterministically one of the values to the attribute
on the left-hand side. The guard of an idle action is always true. Actions only state how
output variables are modified. Their initial values are provided non-deterministically by
a constraint.

Definition 4.23. A program 〈ψ,β〉 is a program signature ψ with a program body β =
〈ic, E,G〉 where

1. ic ∈ Props(O) is the initialisation condition,

2. E : A×O⇀ Sets(V) assigns to every a ∈ A and to every o ∈ D(a) a set expression of
sort sort(o) and is undefined in all other cases;

3. G : A→ Props(V) assigns a guard to every action such that |=V G(⊥).

Notation 4.24. The concrete syntax for programs is given by the following grammar.

Program := ‘prog’ Id [InVars] [OutVars] [Init] [Actions]
InVars := ‘in’ Vars
OutVars := ‘out’ Vars
Vars := VarList (‘;’ VarList)∗

VarList := Id (‘,’ Id)∗ ‘:’ Type
Init := ‘init’ Expression
Actions := ‘do’ Action (‘[]’ Action)∗

Action := Id ‘:’ [Expression ‘->’ | ‘→’] ActionBody
ActionBody := ‘skip’ | Assignment (‘||’ Assignment)∗

Assignment := Id (‘:=’ | ‘:∈’) Expression

When the initialisation condition or a guard is omitted, it is assumed to be true. We
abbreviate v :∈ {t} as v := t. The command skip shows that the action has empty
domain. We omit the idle action.

Example 4.3. The program that controls a cart is

prog Cart
in idest, ibag : int
out loc, odest, obag : int
init 0 ≤ loc ≤ U-1 ∧ odest = -1 ∧ obag = 0
do move: loc 6= odest → loc := loc +U 1
[] get: odest = -1 → obag := ibag ‖ odest := idest
[] put: loc = odest → obag := 0 ‖ odest := -1

Bags are represented by integers, the absence of a bag being denoted by zero. Locations
are represented by integers from zero to the track length minus one. Initially, the des-
tination of the cart is an impossible location so that the cart keeps moving until it gets
a bag and a valid gate location through action ‘get’. When it reaches its destination,
the cart unloads the bag through action ‘put’. Notice that since input variables may
be changed arbitrarily by the environment, the cart must copy their values to output
variables to make sure the correct bag is unloaded at the correct gate.

62 The COMMUNITY Approach

Example 4.4. To be able to compute how many bags are processed per lap on average,
we add two counters initialised to zero. We memorise the current position so that we
know when a lap has been completed. The bag counter is incremented when a bag is
fetched from the check-in.

prog Cart Stat
in idest, ibag : int
out loc, odest, obag, sloc, laps, bags : int
init 0 ≤ loc ≤ U-1 ∧ odest = -1 ∧ obag = 0 ∧ sloc = loc ∧ laps = 0 ∧ bags = 0
do move: loc 6= odest ∧ loc +U 1 6= sloc → loc := loc +U 1
[] lap: loc 6= odest ∧ loc +U 1 = sloc → loc := loc +U 1 ‖ laps := laps + 1
[] get: odest = -1 → obag := ibag ‖ odest := idest ‖ bags := bags + 1
[] put: loc = odest → obag := 0 ‖ odest := -1

Example 4.5. A check-in counter starts with a non-empty queue of bags, and loads one
by one onto passing carts.

prog Check In
out loc, bag, dest : int; next : bool; q : list(int)
init 0 ≤ loc ≤ U-1 ∧ q 6= [] ∧ next
do new: q 6= [] ∧ next → bag := head(q) ‖ q := tail(q) ‖ next := false
[] put: ¬next → next := true

Variable ‘next’ is used to impose sequentiality among the actions. To build a system
for our example, the ‘put’ action must be synchronised with a cart’s ‘get’ action and
variables ‘bag’ and ‘dest’ must be shared with ‘ibag’ and ‘idest’, respectively.

Example 4.6. A gate starts with an empty queue of bags and adds each new bag to the
front.

prog Gate
in bag : int
out loc : int; q : list(int)
init 0 ≤ loc ≤ U-1 ∧ q = []
do get: q := [bag] + q

In an architecture for our example, action ‘get’ must be synchronised with a cart’s ‘put’
action, and variable ‘bag’ must be shared with ‘obag’.

As stated in the previous section, a channel contains the features that are shared
between the programs it is linked to, thus establishing a symmetrical and partial rela-
tionship between the vocabularies of those programs. To be more precise, a channel is
just a degenerate program that provides the basic interaction mechanisms (synchron-
isation and memory sharing) between given programs and thus adds no variables or
computations of its own.

Definition 4.25. A channel is a program with true initialisation, no local variables, and
all actions have true guards.

Notation 4.26. A channel is simply abbreviated as 〈I | A〉 because it is always of the
form

prog P

in I

init true
do []

a∈A

a: true → skip

4.4 Programs 63

4.4.2 Semantics

A model of a program makes precise the intuitive semantics outlined at the start of the
previous section:

• the initial world satisfies the initialisation condition;

• a transition through action a can occur in world w if the action’s guard is true in
w;

• if the assignment o :∈ E(a, o) is executed in some world w, the value of o in the next
world is some element of the set obtained by evaluating E(a, o) in w.

The last condition ensures that assignments are executed simultaneously (since all
right-hand sides are evaluated in the same world) and that they are non-deterministic
(if E(a, o) contains at least two elements).

Definition 4.27. A model for a program is a model for its signature such that

1. Vw0
|= ic,

2. for any a ∈ A, if Vw
a−→ Vw ′ then Vw |= G(a),

3. for any o ∈ O and any a ∈ D(o), if Vw
a−→ Vw ′ then Vw ′(o) ∈ [[E(a, o)]]Vw .

Notice that according to this definition an action is never executed if it includes an
assignment o :∈ ∅.

4.4.3 Configuration

Consider two programs P and P ′ such that there is a morphism from P’s signature to
the one of P ′. For the superposition relation to be kept, the body of P ′ may not change
in any way the actions of P nor the initialisation condition for P’s variables. It may only
add variables and actions (or assignments to existing actions). However, we wish to
allow the user to refine programs too, by restricting the guards, the sets on right-hand
sides of assignments, and the constraints on initial values. Summing up, P is refined
by P ′ if P’s vocabulary is included in the one of P ′ and if P ′ does not relax the behaviour
imposed by the initialisation condition and actions of P, i.e., if

• the initialization condition is not weakened,

• the guards are not weakened,

• the assignments are not less deterministic.

Definition 4.28. A program morphism σ : 〈ψ,β〉 → 〈ψ ′, β ′〉 is a signature morphism
σ : ψ→ ψ ′ such that

1. |=V ′ ic
′ ⇒ σ(ic),

2. for any a ′ ∈ A ′, |=V ′ G
′(a ′)⇒ σ(G(σ(a ′))),

3. for any a ′ ∈ A ′ and any o ∈ D(σ(a ′)), |=V ′ E
′(a ′, σ(o)) ⊆ σ(E(σ(a ′), o)).

Notation 4.29. We use the following conventions to avoid cluttering a diagram with all
the morphisms’ mappings.

64 The COMMUNITY Approach

• Action mappings are given in the same direction as variable mappings (and as the
morphism), using set notation when necessary:

prog P
do x: skip

x7→{y,z} //
prog Q
do y: skip
[] z: skip

means y7→x, z7→x

• If an action is the result of synchronising other actions, its name is the concaten-
ation of the names of those actions. Thus, by default, an action a is mapped to all
actions that contain the name a; and a variable is mapped to one with the same
name:

prog P
in i : int
do a: skip

//

prog Q
out i, j : int
do ab: skip
[] ac: skip

means i7→i, a 7→{ab, ac}

• The mappings are omitted when they can be unambiguously determined:

prog P
in i : int
out j : int; b : bool

//

prog Q
in x : bool
out y : bool; k : int

means i 7→k, j 7→k, b 7→y

Example 4.7. It is obvious that the program of Example 4.3 on page 61 is a sub-program
of the one in Example 4.4 on page 62, i.e., that morphism

Cart
move7→{move,lap} // Cart Stat

obeys the conditions of Definition 4.28 on the preceding page.

The category of signatures extends to programs.

Proposition 4.7. Programs and their morphisms constitute a category Prog.

Proof. Let σ1 : ψ1 → ψ2 and σ2 : ψ2 → ψ3 be two signature morphisms. It is obvious
that the identity for signature morphisms is also an identity for program morphisms. It
remains to show that composition is well-defined.

1. The steps of the proof are as follows.

(a) |=V2
ic2 ⇒ σ1(ic1) definition of σ1

(b) |=V3
σ2(ic2 ⇒ σ1(ic1)) Lemma 4.3 on page 53

(c) |=V3
σ2(ic2)⇒ σ2(σ1(ic1))) Notation 4.12 on page 52

(d) |=V3
ic3 ⇒ σ2(ic2) definition of σ2

(e) |=V3
ic3 ⇒ σ2(σ1(ic1)) from (c) and (d)

2. Using the same technique we get:

(a) |=V3
E3(a3, σ2(σ1(o1))) ⊆ σ2(E2(σ2(a3), σ1(o1))) σ1(o1) ∈ O2

(b) |=V2
E2(σ2(a3), σ1(o1)) ⊆ σ1(E1(σ1(σ2(a3)), o1)) σ2(a3) ∈ A2

(c) |=V3
E3(a3, σ2(σ1(o1))) ⊆ σ2(σ1(E1(σ1(σ2(a3)), o1)))

4.4 Programs 65

3. (a) |=V3
G3(a3)⇒ σ2(G2(σ2(a3))) a3 ∈ A3

(b) |=V2
G2(σ2(a3))⇒ σ1(G1(σ1(σ2(a3)))) σ2(a3) ∈ A2

(c) |=V3
σ2(G2(σ2(a3)))⇒ σ2(σ1(G1(σ1(σ2(a3)))))

(d) |=V3
G3(a3)⇒ σ2(σ1(G1(σ1(σ2(a3))))) ✓

The next result shows that the definition of program morphism indeed captures a
notion of refinement.

Proposition 4.8. If σ : P → P ′ is a program morphism then the reduct of every model of P ′

is a model of P.

Proof. Assume I ′ is a model for P ′ and let I be the σ-reduct of I ′.

1. (a) V ′w0
|= ic ′ assumption

(b) V ′w0
|= ic ′ ⇒ σ(ic) Definition 4.28 on page 63 and Definition 4.10 on page 52

(c) V ′w0
|= σ(ic)

(d) Vw0
|= ic Lemma 4.2 on page 53

2. Using Definition 4.22 on page 56 we have

(a) Vw1

a−→ Vw2
hypothesis

(b) V ′w1

a ′−→ V ′w2
with a = σ(a ′) and Vwi

a σ-reduct of V ′wi

(c) V ′w1
|= G ′(a ′) assumption

(d) V ′w1
|= σ(G(σ(a ′))) σ definition

(e) Vw1
|= G(a) Lemma 4.2 on page 53

3. Let o ∈ O and a ∈ D(o).

(a) Vw1

a−→ Vw2
hypothesis

(b) V ′w1

a ′−→ V ′w2
as above

(c) V ′w2
(σ(o)) ∈ [[E ′(a ′, σ(o))]]V ′w1

a ′ ∈ D(σ(o)) and assumption

(d) V ′w2
(σ(o)) ∈ [[σ(E(σ(a ′), o))]]V ′w1

σ definition and Definition 4.9 on page 52

(e) Vw2
(o) ∈ [[E(a, o)]]Vw1

Definition 4.13 on page 53 and Lemma 4.2 on page 53

The justification for the third step is the following chain of implications using
Definition 4.20 on page 55: a ∈ D(o) ⇒ σ(a ′) ∈ D(o) ⇒ o ∈ D(σ(a ′)) ⇒ σ(o) ∈
σ(D(σ(a ′)))⇒ σ(o) ∈ D ′(a ′)⇒ a ′ ∈ D ′(σ(o)). ✓

The colimit of a diagram of programs is easy to compute once the colimit over signa-
tures is calculated: the initialisation condition is the conjunction of all the initialisation
conditions in the diagram, and for each action 〈a1, . . . , an〉 of the colimit, its guard is the
conjunction of the guards of all ai and its assignments are the union of the assignments
of all ai. If several ai assign to a shared variable, the right-hand side is the intersection
of the respective right-hand sides.

66 The COMMUNITY Approach

Example 4.8. The colimit of

prog C
in loc : int
do move: skip
[] get: skip

�������������������� move7→{nolap, lap}

''OOOOOOOOOOO

Cart

prog Stat
out loc, sloc, laps, bags : int
init sloc = loc ∧ laps = 0 ∧ bags = 0
do lap: loc +U 1 = sloc→ laps := laps + 1 ‖ loc :∈ int
[] nolap: loc +U 1 6= sloc → loc :∈ int
[] get: bags := bags + 1

is the Cart Stat program of Example 4.4 on page 62.

Proposition 4.9. Category Prog is finitely cocomplete.

Proof. The pushout of σi : 〈ψ0, β0〉 → 〈ψi, βi〉 with i = 1, 2 is {µi : 〈ψi, βi〉 → 〈ψ,β〉} with
{µi : ψi → ψ} the pushout over signatures as given in the proof of Proposition 4.6 on
page 58 and β defined by

1. ic =
∧
i=1,2

µi(ici)

2. for any a ∈ A, G(a) =
∧
i=1,2

µi(Gi(µi(a)))

3. for any a ∈ A, ∀o ∈ D(a) E(a, o) =
⋂

{µi(Ei(µi(a), oi)) | i ∈ {1, 2} ∧ µi(oi) = o}

For the last definition to be meaningful, we must have o ∈ D(a) ⇒ oi ∈ Di(µi(a)) for
i = 1, 2. Due to the characterisation of o and signature pushout, it is equivalent to
µi(oi) ∈

⋃
j=1,2 µj(Dj(aj)) ⇒ oi ∈ Di(ai) with a = 〈a1, a2〉. This has been shown in the

proof of Proposition 4.6 on page 58.
To prove it is a pushout it is enough to prove that µ1, µ2, and µ are program morph-

isms, if µ ′1 and µ ′2 are. From the definition of β it is immediate that µ1 and µ2 satisfy the
conditions of Definition 4.28 on page 63. As for µ the proofs are as follows:

1. (a) |=V ′ ic
′ ⇒ µ ′1(ic1) and |=V ′ ic

′ ⇒ µ ′1(ic1) definition of µ ′i
(b) |=V ′ ic

′ ⇒ ∧
i=1,2 µ

′
i(ici)

(c) |=V ′ ic
′ ⇒ ∧

i=1,2 µ(µi(ici)) µi are pushout of variables

(d) |=V ′ ic
′ ⇒ µ(

∧
i=1,2 µi(ici)) µ is a substitution

(e) |=V ′ ic
′ ⇒ µ(ic) definition of ic

2. Using the same reasoning one has the following steps.

(a) |=V ′ G
′(a ′)⇒ ∧

i=1,2 µ
′
i(Gi(µ

′
i(a
′)))

(b) |=V ′ G
′(a ′)⇒ ∧

i=1,2 µ(µi(Gi(µi(µ(a ′)))))

(c) |=V ′ G
′(a ′)⇒ µ(

∧
i=1,2 µi(Gi(µi(µ(a ′)))))

(d) |=V ′ G
′(a ′)⇒ µ(G(µ(a ′)))

3. Let o ∈ D(µ(a ′)).

4.4 Programs 67

(a) E ′(a ′, µ(o)) = {E ′(a ′, µ(µi(oi))) | i ∈ {1, 2} ∧ µi(oi) = o}

(b) E ′(a ′, µ(o)) = {E ′(a ′, µ ′i(oi)) | i ∈ {1, 2} ∧ µi(oi) = o}

(c) E ′(a ′, µ(o)) =
⋂

{E ′(a ′, µ ′i(oi)) | i ∈ {1, 2} ∧ µi(oi) = o}

(d) E ′(a ′, µ(o)) ⊆
⋂

{µ ′i(Ei(µ
′
i(a
′), oi)) | i ∈ {1, 2} ∧ µi(oi) = o}

(e) E ′(a ′, µ(o)) ⊆
⋂

{µ(µi(Ei(µi(µ(a ′)), oi))) | i ∈ {1, 2} ∧ µi(oi) = o}

(f) E ′(a ′, µ(o)) ⊆ µ(
⋂

{µi(Ei(µi(µ(a ′)), oi)) | i ∈ {1, 2} ∧ µi(oi) = o})

(g) E ′(a ′, µ(o)) ⊆ µ(E(µ(a ′), o))

The definition of program morphism can be applied in the fourth step because each
possible oi is in the condition of item 3 in Definition 4.28 on page 63:

(a) o ∈ D(µ(a ′))

(b) µi(oi) ∈
⋃
j=1,2 µj(Dj(µj(µ(a ′)))) definition of D

(c) oi ∈ Di(µi(µ(a ′))) see proof of Proposition 4.6 on page 58

(d) oi ∈ Di(µ ′i(a ′)) ✓

As we have seen in Example 4.2 on page 58, sharing of output variables might have
unexpected side-effects on the actions that are available. These problems can only
happen if there is no morphism between the programs sharing the variable because su-
perposition preserves the domain of a variable (i.e., the set of actions that manipulate
it). We want to rule out those diagrams. This restriction forces interactions between
programs to be synchronous communication of values (from output variables to input
variables), a very general mode of interaction that is suitable for the modular develop-
ment of reusable components, as needed for architectural design.

We take advantage of the graphical nature of diagrams to present a simple and in-
tuitive definition that has a straightforward efficient implementation. The fundamental
idea is trivial: if there is an undirected path (through the morphisms) between two out-
put variables, they are shared. If there is no directed path between them, there is no
superposition relation between the corresponding programs and therefore the condition
is violated.

We begin by extracting from the diagram of programs the relevant information about
sharing of variables. Since we work only with directed graphs, to forget the direction of
arrows in a path, each mapping between two variables must generate a pair of opposite
arcs between them.

Definition 4.30. The data view for a diagram in Prog is a graph labelled over LN = {i,o}

and LA = {d,u} with one node for each variable of each program in the diagram, and
one arc labelled “d” from node n to n ′ if and only if there is a morphism in the diagram
mapping the variable corresponding to n to the one that corresponds to n ′. For each
arc labelled “d” there is exactly one arc labelled “u” in the opposite direction. A node is
labelled “i” if and only if it corresponds to an input variable.

Notation 4.31. A node in the data view is written o•〈Pj, ojk〉 or i•〈Pj, ijk〉 to show both the
label as well as the variable to which it corresponds. Since the label can be determined
from the kind of the variable, we omit it in some examples. Inversely, when the variables
corresponding to the nodes are not relevant, we only show the labels.

Now we check only the paths between output variables. Their arcs must be equally
labelled. If the label is “d” then there is a morphism from the source of the path to the
target. If the label is “u” the morphism is in the opposite direction.

Definition 4.32. A diagram in Prog is well-formed if in its data view whenever there is
a path between a pair of distinct nodes labelled “o”, there is a path with all arcs with the
same label.

68 The COMMUNITY Approach

Example 4.9. The diagram in Example 4.8 on page 65 is not well-formed. Its data view
is

i•〈Cart, idest〉 i•〈Cart, ibag〉 o•〈Cart,odest〉 o•〈Cart,obag〉 o•〈Cart, loc〉

u
��

o•〈Stat, sloc〉 o•〈Stat, laps〉 o•〈Stat,bags〉 o•〈Stat, loc〉
u

// i•〈C, loc〉

d

OO

doo

This graph does not satisfy the required condition: there is a path

o• u // i• d // o•

but no

o• d // i• d // o•
or

o• u // i• u // o• .

As we see, the condition is quite strong, as it rules out diagrams that can be mean-
ingful. However, we should emphasize again that the rationale is for each value to be
generated only in one place. Since values are generated by computations on output vari-
ables, it means that each output variable and its domain (i.e., its associated “methods”)
are defined in one program only, which may be then “inherited” by others.

We further restrict the kind of diagrams we are interested in, since architectures are
obtained in a very particular way: through the application of connectors (Section 4.6
on page 72) and through the replacement of components by more specialized ones (Sec-
tion 4.8 on page 96).

First we observe that, although finite cocompleteness allows any program to establish
interactions between other programs, for the diagram to be well-formed in general the
mediating program may not contain output variables, because otherwise the data view
would contain the subgraph

o•
u
// o•

doo d // o•
u
oo .

We therefore require that interactions are only specified by programs especially designed
for that purpose, namely channels (Definition 4.25 on page 62).

The configurations we consider are then well-formed diagrams where each program
is either isolated, or connected through n channels to exactly n other programs (i.e.,
channels establish interactions pairwise), or a specialisation of one or more programs.

Definition 4.33. A configuration is a well-formed diagram in Prog where each node
either has outdegree less than two or else is labelled with a channel and has indegree
zero and outdegree two.

Example 4.10. Let Ci be channels and Pi programs that are not channels. Then

C1

 BBBBBBBB

~~}}}}}}}}
C2

ttiiiiiiiiiiiiiiiiiiiiiii

 AAAAAAAA

P1 P2

��

C3

~~}}}}}}}}}}}}}}}}}}}
P3

P4

��
P5

4.5 Program Instances 69

is a configuration if it is well-formed, but

C1

~~||||||||

 AAAAAAAA

**UUUUUUUUUUUUUUUUUUUUUUU P1

~~}}}}}}}

 AAAAAAA

C2

 BBBBBBBB
// P2

~~}}}}}}}}
P3

P4

is not a configuration because C1 has outdegree 3, P1 is not a channel, and C2 has
indegree 1.

It is efficient to check whether a given diagram is a configuration. Notice that, due
to the restriction on the outdegree of programs, in the data view each output variable
has at most one outgoing arc, and thus it is easy to see whether there is a directed path
between two of them. Moreover, the find-union algorithm [CLR90] can compute effi-
ciently the connectivity of variables, since the actual non-directed paths are irrelevant.

4.5 Program Instances

A program instance provides a snapshot of the state of a program.

4.5.1 Syntax

A program instance is defined as a program together with a function that assigns to
each output variable a term (over some fixed set of so called logical variables) of the
same sort. Two explanations are in order.

First, the function may return an arbitrary term, not just a ground term. Although
in the running system the value of each program variable is given by a ground term,
we need logical variables to be able to write reconfiguration rules whose left-hand sides
match against programs with possibly infinite distinct combinations of values for their
variables.

The second point worth noticing is that terms are not assigned to input variables.
This contrasts with our first approach [FWM99] and there are several reasons. The
pragmatic one is that an input variable is often an output variable in some other com-
ponent, and therefore there is no need to duplicate the specification of its value. The
conceptual reason is that in this way we only represent the state that is under direct
control of the component. The absence of the input variables’ values makes clear that
they may change at any moment. There is also a technical reason. Reconfigurations
change the connectors between components. This entails that an input variable may
become shared with a different output variable from a different component. If input
variables would have explicitly represented state, the reconfiguration rule would have
to change their state. However, that is not possible within the algebraic graph rewrite
framework (see Section 4.8 on page 96).

Definition 4.34. Given a fixed set LV of variables, called logical variables, a program
instance 〈P, ε〉 is a program P with an environment ε : O → Terms(LV) such that ε(Os) ⊆
Termss(LV).

A channel instance is the same as a channel. Therefore we only use the term “chan-
nel”.

Example 4.11. The logical variables needed for our examples are LV = {ln, bn, in : int;
rn : bool; qn : list(int)} with n ∈ N. We write x0 simply as x.

70 The COMMUNITY Approach

Notation 4.35. We represent program instances in tabular form:

P

o1 ε(o1)
o2 ε(o2)
...

...

If P has no output variables, ε is empty and we write simply P .

Example 4.12. The program instance

Cart Stat
loc l

odest −1
obag 0

sloc l+U 1
laps i+ 1
bags b

represents a cart that has completed at least one lap and will complete another one with
the next move.

We extend ε to any expression using only output variables, and introduce a function
that returns the variables actually used by ε.

Notation 4.36. If e is an expression over O, then ε(e) ∈ Terms(LV) is obtained by repla-
cing in e each o by ε(o). We write Vars(〈P, ε〉) for the minimal subset of LV such that for
any o ∈ O, ε(o) ∈ Terms(Vars(〈P, ε〉)).

4.5.2 Semantics

A program instance represents all states (reachable from the initial state) of all models
of the program that can match the terms given by the instance.

Definition 4.37. A model for a program instance 〈P, ε〉 is a triple 〈I, w,V〉 where w is a
world of the model I for P and V is a valuation for LV, such that there is a path in I from
w0 to w and for any o ∈ O one has [[ε(o)]]V = Vw(o).

4.5.3 Configuration

A morphism between program instances is a program morphism that preserves state.

Definition 4.38. A program instance morphism σ : 〈P, ε〉 → 〈P ′, ε ′〉 is a program morph-
ism σ : P → P ′ such that for any o ∈ O one has |=LV ε(o) = ε ′(σ(o)).

Example 4.13. Using the program instance of Example 4.12, the Example 4.7 on page 64
may be extended to

Cart
loc l

odest −1
obag l− l

move 7→{move,lap}//

Cart Stat
loc l

odest −1
obag 0

sloc l+U 1
laps i+ 1
bags b

4.5 Program Instances 71

Again, a morphism induces a reduction on the models.

Proposition 4.10. Given a program instance morphism σ : 〈P, ε〉 → 〈P ′, ε ′〉 and a model
〈I ′, w ′,V ′〉 for 〈P ′, ε ′〉, the σ-reduct 〈I, w ′,V ′〉, where I is the σ-reduct of I ′, is a model of
〈P, ε〉.

Proof. Since I and I ′ have the same underlying graph, we only have to prove that
[[ε(o)]]V ′ = Vw ′(o) holds for any o ∈ O. Using the definitions of program instance morph-
ism, validity, and σ-reduct of valuations we have [[ε(o)]]V ′ = [[ε ′(σ(o))]]V ′ = V ′w ′(σ(o)) =
Vw ′(o). ✓

As expected,

Proposition 4.11. Program instances and their morphisms form a category Inst.

Proof. Morphisms have identity and are compositional because equality of terms is re-
flexive and transitive, respectively. ✓

Notation 4.39. Given a diagram D in Inst, we write Vars(D) for the union of Vars(〈P, ε〉)
taken for each program instance in D.

Every diagram in Inst can be transformed into a diagram in the category of programs
and program morphisms just by omitting the environment function.

Proposition 4.12. IP : Inst → Prog with IPN(〈P, ε〉) = P and IPA the identity map is a
functor.

Proof. Immediate from Definition A.15 on page 111 with FA(f) = f. ✓

Contrary to the previous categories, Inst is not finitely cocomplete.

Example 4.14. Applying IP to the following diagram we obtain the one in Example 4.8
on page 65.

C

��~~~~~~~~~ move7→{nolap, lap}

!!BBBBBBBB

Cart
loc 0

odest −1
obag 0

Stat
loc l

sloc l+U 1
laps i+ 1
bags b

Because of the ‘Cart’ instance, the pushout would have to assign zero to ‘loc’, but the
‘Stat’ instance does not impose any specific value to the location and the instance
morphism to the pushout would have to preserve those possibilities. Summing up,
6|=LV 0 = l and therefore this diagram has no pushout.

We thus need to extend the notion of well-formedness.

Definition 4.40. A diagram D in Inst is well-formed if IP(D) is.

In a well-formed diagram output variables are not shared, only “inherited”. Hence
two different output variables have no conflicting state. Therefore any well-formed pro-
gram instance diagram has a colimit, given by the colimit of the underlying program
diagram together with the union of the environments given by the instances.

Proposition 4.13. Every finite well-formed Inst-diagram has colimit.

72 The COMMUNITY Approach

Proof. Let D be such a diagram. If {µi : Pi → P} is the colimit of IP(D) then {µi : 〈Pi, εi〉→
〈P, ε〉} is the colimit of D with ε(o) = εi(oi) for some µi(oi) = o.

Assume there is a Pj 6= Pi such that µj(oj) = o. Due to the property of colimits in Set,
there is a program Pk and a variable vk ∈ Vk such that σki(vk) = oi and σkj(vk) = oj (i.e.,
oi and oj are shared through vk). Thus in the data view we have

o•〈Pj, oj〉
u //〈Pk, vk〉
d
oo

d //o•〈Pi, oi〉
u

oo .

Due to well-formedness, there is a path

o•〈Pi, oi〉
d∗ // o•〈Pj, oj〉

(or in the opposite direction). Thus there is by composition a morphism σij : Pi → Pj with
σij(oi) = oj. So in D we have εi(oi) = εj(σij(oi)) = εj(oj) and thus ε(o) does not depend
on the chosen i.

We have proven that the µi are program instance morphisms and hence the colimit
is well-defined. To prove that it is a colimit indeed, consider any other colimit candidate
{µ ′i : 〈Pi, εi〉→ 〈P ′, ε ′〉}. It suffices to prove that the unique program morphism µ : P → P ′

is also a program instance morphism. Consider any o ∈ O. Then there is a oi such that
µi(oi) = o and we have ε(o) = ε(µi(oi)) = εi(oi) = ε ′i(µ

′
i(oi)) = ε ′(µ(µi(oi))) = ε ′(µ(o)). ✓

It remains to extend the notion of configuration in the obvious way.

Definition 4.41. A configuration instance is a diagram D in Inst such that IP(D) is a
configuration.

4.6 Connectors

Channels only allow us to express simple and static interactions between programs,
namely synchronous communication of values, through sharing of input with output
variables and sharing of actions. To express more complex or transient interactions,
we use connectors. The next subsection provides the basic definitions, Section 4.6.2 on
page 75 provides a list of connectors to be used in our example, and finally we show
how the connectors can capture temporary interactions in a systematic way and how
the categorical framework provides a way to define new connectors from existing ones.

4.6.1 Definitions

A connector consists of a glue and one ore more roles. The roles constrain what com-
ponents the connector can be applied to—thus acting like “formal parameters” of the
connector—and the glue provides the interaction—thus being the “body” of the con-
nector. There is no superposition relation between a role and the glue or vice-versa.
Some elements of the roles (e.g., variables, actions, etc., depending on the language
used to describe roles) only restrict what components can be matched by the role and
are not needed for the interaction, while the glue introduces new elements not present
in the roles to specify the coordination between the computations of the interacting pro-
grams. To sum up, we need mediators to state which elements of the roles are relevant
for the glue.

In a categorical framework, the connectors that can be built depend on the categories
used to represent glues, roles, and the mediators, and on the relationships between
those categories. It is possible to use three different categories for the three parts of
a connector (e.g., [FL97] proposes roles to be specifications written in temporal logic,

4.6 Connectors 73

mediators to be program signatures, and glues to be programs). However, to relate the
roles via the mediators to the glue it is necessary to give the connector as a diagram,
which is necessarily in a single category. Therefore, there must exist functors which
translate the three categories into a common one. For our work, we consider that
category to be Prog or Inst and thus assume the original specification of the connector
to have been already translated into one of them. We therefore adopt and adapt only the
basic definitions of [FL97].

Definition 4.42. An n-ary connector (with n > 0) is a configuration of the form

G

C1

ρ1

��

γ1

55lllllllllllllll . . . Ci

γi

OO

ρi

��

. . . Cn

γn

iiRRRRRRRRRRRRRRR

ρn

��
R1 . . . Ri . . . Rn

Programs G and Ri are called glue and roles, respectively. Morphisms γi and ρi are
called glue and role morphisms, respectively. A connector instance is a diagram D in Inst
such that IP(D) is a connector.

This definition, together with Definition 4.33 on page 68 and Definition 4.40 on
page 71, entails

1. each program Ci is a channel;

2. a connector (instance) is well-formed.

The first property just reflects our expectations as to how mediators are represented
in COMMUNITY, making apparent that mediators are different from the usual roles and
glues. The second one prevents a connector (instance) from introducing any problems
concerning the sharing of variables when it becomes part of a larger diagram represent-
ing the architecture.

The categorical framework not only makes the relationships between the three parts
of a connector explicit—each channel and pair of morphisms 〈γi, ρi〉 states which part
of the vocabulary of the i-th role is used by the glue for the interaction—it also allows
one to make precise when and how an n-ary connector can be applied to compon-
ents P1, . . . , Pm, namely when morphisms ιij : Ri → Pj exist. This corresponds to the
intuition that the “actual arguments”—the components—must instantiate the “formal
parameters”—the roles. Morphisms ιij thus capture refinement, while morphisms γi
and ρi denote superposition. It is possible to have two different morphism definitions to
distinguish them [Lop99], but in the end there must be a diagram with a single kind of
morphism on which colimits can be computed. For that purpose we use again diagrams
in Prog or Inst.

Definition 4.43. An applied n-ary connector (instance) is a configuration (instance) of
the form

G

C1

ρ1

��

γ1

55lllllllllllllll . . . Ci

γi

OO

ρi

��

. . . Cn

γn

iiSSSSSSSSSSSSSSS

ρn

��
R1

ι11

��

. . . Ri

ιij

��

. . . Rn

ιnm

��
P1 . . . Pj . . . Pm

74 The COMMUNITY Approach

with 0 < m ≤ n.

Two different roles may be refined by the same program and therefore we can have
m < n.

The definition requires explicitly the diagram to be a configuration for two reasons.
First, a role cannot be applied to more than one program. Second, without the require-
ment, the diagram might not be well-formed, although the connector by definition is.
We present two simple examples of such cases.

Example 4.15. The following two data views correspond to invalid applications of con-
nectors because they lead to shared output variables. The first achieves that by instan-
tiating both roles with the same program.

i•〈C1, i〉
d

zzttttttttt
d

$$HHHHHHHHH i•〈C2, i〉
d

zzvvvvvvvvv
d

$$JJJJJJJJJ

o•〈R1, o1〉
u

::ttttttttt

d

++XXXXXXXXXXXXXXXXXXXXXXXXXX i•〈G, i1〉
u

ddHHHHHHHHH
i•〈G, i2〉

u

::vvvvvvvvv
o•〈R2, o2〉

u

ddJJJJJJJJJ

d

ssffffffffffffffffffffffffff

o•〈P, o〉
u

kkXXXXXXXXXXXXXXXXXXXXXXXXXX
u

33ffffffffffffffffffffffffff

The second obtains the same effect through superposition of an input variable of the
role on an output variable of the component. The problem arises from the fact that the
input variable corresponds to an output variable of the glue.

o•〈P, o〉
u
// i•〈R, i〉

doo
u
// i•〈C, i〉

doo d // o•〈G, o〉
u

oo

Notation 4.44. We use {G
γi←− Ci

ρi−→ Ri}n to denote an n-ary connector and {G
γi←−

Ci
ρi−→ Ri

ιij−→ Pj}n,m for its application. We omit n and m when they are irrelevant.

If we take a black-box view of connector application it becomes apparent that a con-
nector is an extension of a channel for more complex interactions that require additional
computations and conditions, provided by the glue’s actions through their assignments
and guards. In fact, from the point of view of the user who is only interested in applying
pre-defined connectors, not in changing their source code, a connector looks like an
n-ary channel.

Notation 4.45. We name connectors after their glues. The black-box view of an applied
connector is a labelled graph obtained from the diagram of the applied connector where
the connector is collapsed into a single node labelled with its name, i.e., the name of the
glue:

G

ι11

wwnnnnnnnnnnnnnnn

ιij

��

ιnm

((PPPPPPPPPPPPPPP

P1 . . . Pj . . . Pm

We emphasize that the black-box view is not a diagram in the categorical sense, but
simply a graph that provides a convenient short-hand notation for configurations of
multiple connectors and components.

The semantics of an (applied) connector (instance) is given by the colimit of the re-
spective diagram. Moreover, the semantics of the applied version is a specialisation of

4.6 Connectors 75

the semantics of the unapplied version. This means that the system obtained through
application of connectors to components indeed enforces the interactions established by
the connectors.

Proposition 4.14. Given an applied connector D = {G
γi←− Ci

ρi−→ Ri
ιij−→ Pj}, there is a

program morphism from the colimit of {G
γi←− Ci ρi−→ Ri} to the colimit of D.

Proof. The colimit of {G
γi←− Ci ρi−→ Ri} is a colimit of D ′ = {G

γi←− Ci ρi−→ Ri
id−→ Ri} and D

specialises D ′. The statement is then a consequence of Proposition A.6 on page 115. ✓

4.6.2 Catalog

We now present the connectors necessary for the remaining of this chapter and take the
opportunity to show how some of the interactions proposed by MOBILE UNITY [RMP97,
MR98] can be cast in our framework.

Synchronisation

We begin with the connector that allows us to synchronise two actions of different pro-
grams. A channel would suffice for this purpose, but it is not able to capture the
general case of transient synchronisation. Having already a connector for the simpler
case makes the presentation more uniform.

Definition 4.46. The synchronisation connector is

〈 | a〉 //

��

prog Sync
do ab: skip

〈 | b〉oo

��
prog Action
do a: skip

prog Action
do b: skip

Example 4.16. If we wish to count how often a cart unloads a bag, we monitor its ‘put’
action with a counter, i.e., we synchronise ‘put’ with an action that is always enabled
and hence does not restrict the occurrence of the monitored action.

〈 | a〉 //

��

prog Sync
do ab: skip

〈 | b〉oo

��
prog Action
do a: skip

a7→put

��

prog Action
do b: skip

a 7→inc
��

Cart

prog Counter
out c : int
init c = 0
do inc: c := c + 1

The colimit of this applied connector is

76 The COMMUNITY Approach

prog CountingCart
in idest, ibag : int
out loc, odest, obag, c : int
init 0 ≤ loc ≤ U-1 ∧ odest = -1 ∧ obag = 0 ∧ c = 0
do move: loc 6= odest → loc := loc +U 1
[] get: odest = -1 → obag := ibag ‖ odest := idest
[] put: loc = odest → obag := 0 ‖ odest := -1 ‖ c := c + 1

Due to the colimit semantics of a connector, for the synchronised action to occur,
both guards of the original actions must be true. Hence, when two actions synchronise
either both execute simultaneously or none is executed.

This contrasts with the approach taken by MOBILE UNITY which allows two kinds of
synchronisation: coexecution and coselection [MR96]. The former corresponds to the
notion exposed above, while the latter forces the two actions to be selected simultan-
eously but if one of them is inhibited or its guard is false then only the other action
executes. This extends the basic semantics of UNITY where only one action can be se-
lected at a time. Therefore, we do not handle coselection. Moreover, our intuitive notion
of synchronisation corresponds to coexecution.

Subsumption

The logical analogy to synchronisation is equivalence. However, to avoid a cart c1 col-
liding with the cart c2 right in front of it we only need implication: if c1 moves, so must
c2, but the opposite is not necessary. The analogy with implication also extends to the
counter-positive: if c2 cannot move, e.g., because it is (un)loading a bag, then neither
can c1. We call this “one-way” synchronisation action subsumption. For our example,
the movement of c1 subsumes the movement of c2. As for the connector, it simply adds
to the synchronisation connector the ability to let the subsumed action occur freely.
This is only possible because our signature morphisms allow an action to ramify into a
set of actions. In this case, the movement action of c2 ramifies in two: one for the case
in which it must co-occur with the movement of c1, the other when it can occur freely.

Definition 4.47. The action subsumption connector is

〈 | a〉 //

��

prog Subsume
do ab: skip
[] b: skip

〈 | b〉oo

��
prog Subsumer
do a: skip

prog Subsumed
do b: skip

Notice that although the two roles are isomorphic, the binary connector is not sym-
metric because the glue treats the two actions differently. This is clearly indicated in
the glue: ‘b’ may be executed alone at any time, while ‘a’ must co-occur with ‘b’. Hence,
action ‘a’ is the one that we want to connect to the ‘move’ action of c1, while action ‘b’ is
associated to the movement of c2, as shown next.

Example 4.17. The applied connector is

4.6 Connectors 77

〈 | a〉 //

��

prog Subsume
do ab: skip
[] b: skip

〈 | b〉oo

��
prog Subsumer
do a: skip

a7→move
��

prog Subsumed
do b: skip

a 7→move
��

Cart Cart

with colimit

prog CollisionFreeCarts
in idest1, ibag1, idest2, ibag2 : int
out loc1, odest1, obag1, loc2, odest2, obag2 : int
init

∧
i=1,2 0 ≤ loci ≤ U-1 ∧ odesti = -1 ∧ obagi = 0

do move1move2: loc1 6= odest1 ∧ loc2 6= odest2→ loc1 := loc1 +U 1 ‖ loc2 := loc2 +U 1
[] move2: loc2 6= odest2 → loc2 := loc2 +U 1
[] get1: odest1 = -1 → obag1 := ibag1 ‖ odest1 := idest1
[] put1: loc1 = odest1 → obag1 := 0 ‖ odest1 := -1
[] get2: odest2 = -1 → obag2 := ibag2 ‖ odest2 := idest2
[] put2: loc2 = odest2 → obag2 := 0 ‖ odest2 := -1
[] get1get2: odest1 = -1 ∧ odest2 = -1→ obag1 := ibag1 ‖ odest1 := idest1 ‖ obag2 := ibag2 ‖ odest2 := idest2
[] get1put2: odest1 = -1 ∧ loc2 = odest2→ obag1 := ibag1 ‖ odest1 := idest1 ‖ obag2 := 0 ‖ odest2 := -1
[] put1get2: loc1 = odest1 ∧ odest2 = -1→ obag1 := 0 ‖ odest1 := -1 ‖ obag2 := ibag2 ‖ odest2 := idest2
[] put1put2: loc1 = odest1 ∧ loc2 = odest2→ obag1 := 0 ‖ odest1 := -1 ‖ obag2 := 0 ‖ odest2 := -1

Ramification

A generalisation of the previous connectors is to allow an action to synchronise with two
actions of two different programs. The importance of this connector becomes apparent
in Section 4.6.3 on page 85, where it is shown to be a primitive from which other
connectors can be built.

Definition 4.48. The action ramification connector is

prog Ramify
do ab: skip
[] ac: skip

〈 | a〉

66llllllllllll

��

〈 | b〉

OO

��

〈 | c〉

hhQQQQQQQQQQQQ

��
prog Action
do a: skip

prog Branch
do b: skip

prog Branch
do c: skip

78 The COMMUNITY Approach

Inhibition

In MOBILE UNITY, inhibition is a language primitive. In our framework it is simply a
particular connector.

To inhibit an action we must let its guard become false. Due to the semantics of
colimit, this can be done without changing the guard directly. It suffices to synchronise
the action with one that has a false guard.

Definition 4.49. The inhibition connector is

〈 | a〉 //

��

prog Inhibit
do a: false → skip

prog Action
do a: skip

Asynchronous Communication

In MOBILE UNITY communication is achieved through variable sharing. The interaction
x ≈ y when C engage I disengage Fx ‖ Fy states the sharing condition C, the shared
initial value I of both variables, and the final value Fx and Fy of each variable. The
operational semantics states that whenever a program changes x, y gets the same value,
and vice-versa. As we have seen in Section 4.4.3 on page 63, this approach violates
the locality principle that a variable under the control of one program should not be
changed by another. Furthermore, as pointed out in [MR96], several restrictions have to
be imposed in order to avoid problems like, e.g., simultaneous assignments of different
values to shared variables.

We also feel that communication is a more appropriate concept than sharing for the
setting we are considering, namely mobile agents that engage into transient interac-
tions. In the framework of COMMUNITY programs, communication can be seen as some
kind of sharing of local and input variables, which keeps the locality principle. We say
“some kind” because we cannot use the same mechanism as in the static case, in which
sharing means to map two different variables of the components into a single one of
the system obtained by the colimit. In the mobile case the same output variable may
be shared with different input variables at different times, and vice-versa. If we were
to apply the usual construction, all those variables would become a single one in the
resulting system, which is clearly unintended. Technically, the diagram would not be
well-formed.

Therefore we obtain the same effect as transient sharing using a communication
perspective. To be more precise, we assume a sender wants to transmit a message
M, which is a set of output variables. If a receiver wants to get the message, it must
provide input variables M ′ which correspond in number and type to those of M. The
sender produces the values, stores them in M, and waits for the message to be read
by the receiver. Since COMMUNITY programs are not sequential, “waiting” has to be
understood in a restricted sense. We only assume the sender does not produce another
message before the previous one has been read (i.e., messages are not lost); it may
however be executing other unrelated actions. To put it in another way, after producing
M, the sender is expecting an acknowledge to produce the new values for the variables
in M. For that purpose, we assume sender has an action ‘put’ which must be executed
before the new message is produced. Similarly, program receiver must be informed
when a new message has arrived, so that it may start processing it. For that purpose we

4.6 Connectors 79

assume that a receiver has a single action ‘get’ which is the first action to be executed
upon the receipt of a new message. That action may simply use M ′ directly or it may
copy it to output variables of the receiver.

To sum up, communication is established via one single action for each program,
similar in spirit to pointed processes in the π-calculus, or to ports in distributed sys-
tems: the action ‘put’ of sender is blocking (in the restricted sense mentioned above)
until M is transmitted, and similarly action ‘get’ of the receiver is inhibited while no new
values have been transferred to M ′. As expected, it is up for the glue of the interac-
tion connector to transfer the values from M to M ′ and to impose this asynchronous
communication policy.

The solution is to explicitly model the message transmission as the parallel assign-
ment of the message variables, which we abbreviate as M ′ := M. For this to be possible,
the output variables M of the sender must be input variables of the glue, and the input
variables M ′ of the receiver must be output variables of the glue. The glue’s actions
are also symmetrical to those of the sender and receiver: there is a ‘get’ action to be
synchronised with the action ‘put’ of the sender, thus performing the transmission in
parallel with the notification of the sender, and there is a ‘put’ action to be synchronised
with the ‘get’ action of the receiver.

To make sure that the connector forwards the message to the receiver only after
getting it from the sender we use the same technique as in Example 4.5 on page 62, a
boolean variable to impose sequentiality. This decouples the sender’s action from the
receiver’s, thus imposing the asynchronicity.

The connector presented next only transmits a single variable. It can be trivially
generalised to messages as a set of variables (see also Example 4.26 on page 87).

Definition 4.50. The asynchronous communication, or message passing, connector to
transmit a single variable of sort t is

prog Msg
in i : t
out ready : bool; o : t
init ready
do get: ready → o := i ‖ ready := false
[] put: ¬ready → ready := true

〈i : t | a〉
a 7→get

55lllllllllll

��

〈o : t | a〉

a 7→put
OO

��
prog Sender
out o : t
do put: skip

prog Receiver
in i : t
do get: skip

Example 4.18. To unload a bag (t = int) we apply the above connector as follows

prog Sender
out o : int
do put: skip

o7→obag
��

〈i : int | a〉
a 7→get//oo Msg 〈o : int | a〉

put← [aoo //
prog Receiver
in i : int
do get: skip

i7→bag
��

Cart Gate
obtaining as a colimit

80 The COMMUNITY Approach

prog Unloading
in idest, ibag : int
out ready : bool; loc, odest, obag, gloc, bag : int; q : list(int)
init ready ∧ 0 ≤ loc ≤ U-1 ∧ odest = -1 ∧ obag = 0 ∧ 0 ≤ gloc ≤ U-1 ∧ q = []
do move: loc 6= odest → loc := loc +U 1
[] cart get: odest = -1 → obag := ibag ‖ odest := idest
[] put: loc = odest ∧ ready→ obag := 0 ‖ odest := -1 ‖ bag := obag ‖ ready := false
[] gate get: ¬ready → q := [bag] + q ‖ ready := true
[] move gate get: . . .
[] cart get gate get: . . .

If a receiver gets messages from different senders s = 1, . . . , n, there are several pos-
sible assignments M ′ := Ms. Due to the locality principle, and to have well-formed
diagrams, all assignments to a variable must be in a single program. Therefore for each
kind of message a receiver might get, there is a single connector connecting it to all pos-
sible senders. On the other hand, a message might be sent to one of different receivers
r = 1, . . . ,m. Therefore there will be several possible assignments M ′r := M associated
with the same ‘put’ action of the sender of message M. So there must be a single con-
nector to link a sender with all its possible recipients. To sum up, for each kind of
message there is a single connector acting like a data bus: at each step it transmits a
message from one sender to one receiver.

Definition 4.51. The message bus connector for point-to-point transmission of a vari-
able of sort t between n senders and m receivers is

Sender . . . Sender

〈i : t | a〉

OO

a7→{get1,r }
i7→i1 ''OOOOOOOOOOO

. . . 〈i : t | a〉

OO

{getn,r }← [a

in← [iwwooooooooooo

prog MsgBusn,m
in is : t
out readyr : bool; or : t
init

∧
readyr

do gets,r: readyr→ or := is ‖ readyr := false
[] putr: ¬readyr → readyr := true

〈o : t | a〉

��

a7→put1
o7→o1

77ooooooooooo
. . . 〈o : t | a〉

��

putm← [a
om← [o

ggOOOOOOOOOOO

Receiver . . . Receiver

with s = 1, . . . , n and r = 1, . . . ,m.

Allen and colleagues [AGI98] also use a single connector to provide communication
between different parties. In particular they represent as a connector the whole run-time
infrastructure of the High Level Architecture for Distributed Simulation, a component
integration standard used by the US Department of Defense to support interoperability
of simulations provided by different vendors.

4.6 Connectors 81

4.6.3 Operations

Garlan [Gar98] argues for principled ways of modifying connectors. His position is
briefly summarized as follows. It is not always possible to adapt components to work
with the existing connectors. Even in those cases where it is feasible, a better alternative
might be to modify the connectors because usually there are fewer connector types than
components types. Moreover, most Architecture Description Languages either provide
a fixed set of connectors or only allow the creation of new ones from scratch, hence
requiring from the designer a deep knowledge of the particular formalism and tools at
hand. Conceptually, operations on connectors allow one to factor out common prop-
erties for reuse and to better understand the relationships between different connector
types. The notation and semantics of such connector operators are of course among the
main issues to be dealt with.

We feel that Category Theory is well suited to represent connectors and their con-
struction at an abstract level independent of the formalism used to write specific con-
nectors, thus revealing their fundamental properties. In this section we present four
connector transformation operations. They are specified on roles since those form the
interface of a connector, i.e., they are the only parts of the connector available to the
user. This means that the user can form new connectors even from those to which he
has no access to the implementation.

Role Refinement

The connectors presented in the previous section are general-purpose. To tailor them for
a specific application, it is necessary to replace the generic roles by specialized ones that
can effectively act as “formal parameters” for the application at hand. Role replacement
is done in the same way as applying a connector to components: there must be a
morphism from the generic role to the specialized one. The old role is canceled, and the
new role morphism is the composition of the old one with the specialisation morphism.

Definition 4.52. Given an n-ary connector and a program morphism σ : Rk → R for
0 < k ≤ n, the role refinement operation yields the connector

G

C1

ρ1

��

γ1

55lllllllllllllll . . . Ck

γk

OO

ρk;σ

��

. . . Cn

γn

iiSSSSSSSSSSSSSSS

ρn

��
R1 . . . R . . . Rn

Example 4.19. A unary connector

G C
γoo ρ // R

can be refined with R ′

G C
γoo ρ // R

σ // R ′

becoming the new connector

G C
γoo ρ;σ // R ′

82 The COMMUNITY Approach

Example 4.20. The message passing connector can be applied in many ways to the pro-
grams for carts, check-in counters, and gates since roles ‘Sender’ and ‘Receiver’ do not
impose any special constraint. Any signature morphism will do and result in a well-
formed diagram. For example, here is a valid but completely meaningless application
that sends the gate’s location as a bag to the cart.

〈i : int | a〉

��

a 7→get
// Msg 〈o : int | a〉

��

put← [a
oo

Sender

o7→locput 7→get
��

Receiver

i7→ibagget 7→move
��

Gate Cart

What we want is to allow only the three communications that take place in our
example: a bag and a destination are transferred from a check-in counter to the cart
and then the bag from the cart to the gate. We only show the connector needed to load
a bag onto a cart and how to obtain it from the generic connector.

〈i : int | a〉

��

a7→get
// Msg 〈o:int | a〉

��

put← [a
oo

Sender

o7→bag
��

Receiver

i7→ibag

��
prog Check In Role
out bag : int; next : bool
init next
do produce: next→ bag :∈ int

‖ next := false
[] put: ¬next → next := true

prog Cart Role
in ibag : int
out obag : int
init obag = 0
do get: obag := ibag
[] put: obag := 0

⇓
〈i : int | a〉

i7→baga7→put
��

a 7→get
// Msg 〈o:int | a〉

o7→ibaga 7→get
��

put← [a
oo

Check In Role Cart Role

Notice that the given attributes and actions in the roles are indeed enough to dis-
criminate among carts, check-in counters, and gates, thus guaranteeing that the roles
are not applied to the wrong components.

Role Encapsulation

To prevent a role from being further refined, the second operation we consider, when
executed repeatedly, decreases the arity of a connector by encapsulating some of its
roles, making the result part of the glue. In categorical terms, the glue of the new
connector is the colimit of the diagram consisting of the old glue plus the encapsulated
roles and the channels connected to them.

4.6 Connectors 83

Definition 4.53. Given an n-ary connector the role encapsulation operation yields the
connector of arity n− 1

G∗

C1

ρ1

��

γ1;σ

33ggggggggggggggggggggggggg . . . Ck−1

γk−1;σ

::uuuuuuu

ρk−1

��

Ck+1

γk+1;σ

ddIIIIIII

ρk+1

��

. . . Cn

γn;σ

kkWWWWWWWWWWWWWWWWWWWWWWWWW

ρn

��
R1 . . . Rk−1 Rk+1 . . . Rn

with σ : G→ G∗ and G∗ the colimit object of G
γk←− Ck ρk−→ Rk.

Example 4.21. As an illustration, encapsulating the second role of a binary connector
results in a unary connector.

1. original connector: R1 C1
ρ1oo γ1 //G C2

ρ2 //γ2oo R2

2. colimit calculation: R1 C1
ρ1oo γ1 // G

σ
 AAAAAAAA C2

ρ2 //γ2oo

��

R2

}}||||||||

G∗

3. role encapsulation: R1 C1
ρ1oo γ1;σ //G∗

This operation, combined with the previous one, shows how certain connectors are
related.

Example 4.22. We can obtain from the action ramification connector both the action
subsumption and the synchronisation connectors, through refinement and then encap-
sulation of one of the ‘Branch’ roles. The refinement determines the obtained connector.
From

prog Ramify
do ab: skip
[] ac: skip

〈 | a〉

88rrrrrrrrrr

��

〈 | b〉

OO

��

〈 | c〉

ffLLLLLLLLLL

��
prog Action
do a: skip

prog Branch
do b: skip

prog Branch
do c: skip

��
prog Always
do a: skip

84 The COMMUNITY Approach

we get

prog Ramify
do ab: skip
[] a: skip

〈 | a〉

99rrrrrrrrrr

��

〈 | b〉

OO

��
prog Action
do a: skip

prog Branch
do b: skip

and from

prog Ramify
do ab: skip
[] ac: skip

〈 | a〉

88rrrrrrrrrr

��

〈 | b〉

OO

��

〈 | c〉

ggOOOOOOOOOOOO

��
prog Action
do a: skip

prog Branch
do b: skip

prog Branch
do c: skip

��
prog Never
do a: false → skip

we obtain

prog Ramify
do ab: skip
[] a: false → skip

〈 | a〉

77oooooooooooo

��

〈 | b〉

OO

��
prog Action
do a: skip

prog Branch
do b: skip

Notice that the synchronisation connector obtained is not syntactically equal to the
one presented in Definition 4.46 on page 75, but it is equivalent since the sub-action ‘a’
of the glue is never executed and thus does not influence when the action of the left role
occurs.

Example 4.23. If we apply the same technique to the synchronisation connector we ob-

4.6 Connectors 85

tain the generic inhibition connector of Definition 4.49 on page 78.

〈 | a〉

��

// prog Sync
do ab: skip

〈 | b〉oo

��
prog Action
do a: skip

prog Action
do b: skip

��
prog Never
do a: false → skip

⇓
prog Action
do a: skip

〈 | a〉oo // prog Sync
do a: false → skip

Role Overlay

The third operation allows to combine several connectors into a single one if they have
some roles in common, i.e., if there is an isomorphism between those roles. Intuitively,
the new connector is obtained as follows. First, take the diagrams of the original con-
nectors and overlay them on the common roles. Then, remove the other roles and the
corresponding channels. The glue of the new connector is the colimit of the remaining
diagram. The new channel between the new glue and a common role is the colimit of
the old channels.

Definition 4.54. Given an n-ary connector with role Ri and an m-ary connector with
role R ′k such that ιi : Ri → R∗ and ι ′k : R ′k → R∗ are isomorphisms for some program R∗,
the role overlay operation yields the (n+m− 1)-ary connector

R1 . . . Ri−1 Ri+1 . . . Rn

C1

ρ1

OO

γ1;σG

++VVVVVVVVVVVVVVVVVVVVVVVVV . . . Ci−1

ρi−1

OO

γi−1;σG

""FFFFFFFF Ci+1

ρi+1

OO

γi+1;σG

||yyyyyyyy
. . . Cn

ρn

OO

γn;σG

sshhhhhhhhhhhhhhhhhhhhhhhhh

R∗ C∗
ρ∗oo γ∗ // G∗

C ′1

ρ1

��

γ1;σG ′

44hhhhhhhhhhhhhhhhhhhhhhhhh . . . C ′k−1

γk−1;σG ′

<<yyyyyyyy

ρ ′k−1

��

C ′k+1

γk+1;σG ′

bbEEEEEEEE

ρ ′k+1

��

. . . C ′m

γ ′m;σG ′

kkVVVVVVVVVVVVVVVVVVVVVVVVV

ρ ′m
��

R ′1 . . . R ′k−1 R ′k+1
. . . R ′m

where {σX : X→ G∗ | X ∈ {G,G ′, Ci, C
′
k, Ri, R

′
k, R
∗}} is the colimit of

G
γi←− Ci ρi−→ Ri

ιi−→ R∗
ι ′k←− R ′k ρ ′k←− C ′k γ ′k−→ G ′,

86 The COMMUNITY Approach

χi : Ci → C∗ and χ ′k : C ′k → C∗ is the coproduct of Ci and C ′k, γ
∗ = ρ∗;σR∗ , and ρ∗ makes

Ci

ρi

��

χi

// C∗

ρ∗

��

C ′k

ρ ′k
��

χ ′k

oo

Ri
ιi // R∗ R ′k

ι ′koo

commute.

Example 4.24. As an illustration, consider the overlay of two binary connectors (i.e.,
m = n = 2) on one common role. In particular, i = 2 and k = 1.

C1

ρ1}}zzzzzzz

γ1 !!CCCCCCC C2

γ2}}|||||||

ρ2 !!DDDDDDD χ2

// C∗

ρ∗

��

C ′1

ρ ′1}}zzzzzzz

γ ′1 !!DDDDDDDχ ′1

oo C ′2

γ ′2}}zzzzzzz

ρ ′2 !!DDDDDDD

R1 G

σG

++VVVVVVVVVVVVVVVVVVVVVVV R2
ι2 // R∗

σR∗

��

R ′1
ι ′1oo G ′

σG ′
sshhhhhhhhhhhhhhhhhhhhhhh R ′2

G∗

⇓
C ′2

γ ′2;σG ′

yytttttttttt

ρ ′2 // R ′2

R1 C1
ρ1oo γ1;σG // G∗ C∗

ρ∗;σR∗oo ρ∗ // R

As the example makes clear, R∗ and G∗ are cocone objects of Ci and C ′k and therefore
ρ∗ and γ∗ exist and are unique.

Example 4.25. This operation provides a second way of showing that synchronisation is
not a primitive connector within our catalog. We can indeed obtain full synchronisation
of actions ‘a’ and ‘b’ by making ‘a’ subsume ‘b’ and vice-versa. This is achieved by
overlaying two copies of the basic connector in a symmetric way: the first (resp. second)
role of one copy corresponds to the second (resp. first) role of the other copy. The
diagram is

〈 | a〉 //

��

prog Subsume
do ab: skip
[] b: skip

〈 | b〉oo

��
prog Action
do x: skip

prog Action
do y: skip

〈 | b〉 //

OO

prog Subsume
do ab: skip
[] b: skip

〈 | a〉oo

OO

and the resulting connector is

4.6 Connectors 87

〈 | ab,a,b〉
ab 7→xy

a,b7→∅ //

ab 7→x a,b 7→∅
��

prog Sync
do xy: skip

〈 | ab,a,b〉
xy ← [ab

∅ ← [a,boo

ab 7→y a,b7→∅
��

prog Action
do x: skip

prog Action
do y: skip

Again, the result is not equal to the original one, but the extra actions in the channels
are superfluous as they do not establish any extra links between roles and glue.

Example 4.26. To obtain a connector that transmits two variables of the same sort t,
we take two copies of the message passing connector, refine their roles with the same
programs but using different morphisms, and then overlay them obtaining the diagram

〈i | a〉
a7→get

//

i7→o1

��

prog Msg
in i : t
out ready : bool; o : t
init ready
do get: ready→ o := i ‖ ready := false
[] put: ¬ready → ready := true

〈o | a〉
put← [a

oo

o7→i1

��
prog Sender
out o1, o2 : t
do put: skip

prog Receiver
in i1, i2 : t
do get: skip

〈i | a〉
a7→get //

i7→o2

OO
prog Msg
in i : t
out ready : bool; o : t
init ready
do get: ready→ o := i ‖ ready := false
[] put: ¬ready → ready := true

〈o | a〉
put← [aoo

o7→i2

OO

with the resulting connector

prog Msg
in i1, i2 : t
out ready1, ready2 : bool; o1, o2 : t
init ready1 ∧ ready2
do get: ready1 ∧ ready2→ o1 := i1 ‖ o2 := i2

‖ ready1 := false ‖ ready2 := false
[] put: ¬ready1 ∧ ¬ready2→ ready1 := true ‖ ready2 := true

〈i1,i2 | a1a2, a1, a2〉

a1a2 7→get

a1,a2 7→∅ 77nnnnnnnnnnnnnnnn

i17→o1
i27→o2

a1a2 7→put
a1,a27→∅
��

〈o1, o2 | a1a2, a1, a2〉

put← [a1a2 ∅ ← [a1,a2

OO

o1 7→i1
o2 7→i2

a1a2 7→get
a1,a27→∅

��
prog Sender
out o1, o2 : t
do put: skip

prog Receiver
in i1, i2 : t
do get: skip

88 The COMMUNITY Approach

Since the two ‘ready’ variables are initialised and modified in the same way, and
because the extra channel actions are superfluous, an equivalent connector is

〈i1, i2 | a〉
a7→get

//

i17→o1 i2 7→o2

��

prog Msg
in i1, i2 : t
out ready : bool; o1, o2 : t
init ready
do get: ready→ o1 := i1 ‖ o2 := i2

‖ ready := false
[] put: ¬ready → ready := true

〈o1, o2 | a〉
put← [a
oo

o1 7→i1 o27→i2

��
prog Sender
out o1, o2 : t
do put: skip

prog Receiver
in i1, i2 : t
do get: skip

Transient Connectors

So far none of the connectors presented handles transient interactions, the bread and
butter of our example. To do so, we introduce transient connectors, which is a short-
hand notation to specify connectors that are active only when a certain condition holds.
That condition may depend not only on the state of the interacting components but also
on the state of others which, although not taking part in the interaction, provide the
context for it to happen.

Definition 4.55. An m-ary transient connector is a triple 〈C, {Ri}n<i≤m, ac〉 where C is a
n-ary connector with n ≤ m, Ri are programs called roles, and ac ∈ Props(

⋃
j=1,...,m Vj)

is called the application condition, where Vj are the variables of the j-th role. The sets
V1,...,m must be mutually disjoint.

Notice that the definition imposes the variables of the roles to be distinct. Otherwise
it is not possible to know to which ones the application condition refers.

To illustrate the need for additional programs that only provide the interaction con-
text, we present an alternate way of preventing collisions: a cart must stop while there
is a cart in the next track unit.

Example 4.27. A transient inhibition connector to prevent two carts from colliding is
〈Inhibit,Front Cart,floc = bloc +U 1〉 with

prog Back Cart
out bloc : int
do move: bloc := bloc +U 1

〈 | a〉 //oo prog Inhibit
do a: false → skip

and

prog Front Cart
out floc : int
do move: floc := floc +U 1

We can now present our last operation, which provides the semantics of a transient
connector by transforming it into a “regular” connector. The key ideas are:

4.6 Connectors 89

1. the actions of the glue are only valid when the application condition is true,

2. each action of a role is divided into two sub-actions, one occurring when the con-
nector is inactive (i.e., ac is false), the other in the opposite case.

The latter sub-action is already included in the glue, so we must only add a new ac-
tion for the former case. The glue of the resulting connector must of course declare
all variables that occur in ac (since the condition is now internalised in the glue’s ac-
tion guards), and the channels and their morphisms must show from which role each
variable and each new action of the glue comes.

Definition 4.56. The denotation of a transient connector 〈C, {Ri}n<i≤m, ac〉 is given by a
connector obtained as follows:

1. strengthen the glue’s guards with ac;

2. for each role action a that takes part in the interaction (i.e., is synchronized with a
glue action), add a: ¬ac → skip to the glue;

3. add the roles Ri and the empty channels Ci (with i = n+ 1, . . . ,m);

4. add as necessary ac’s variables to the glue’s input variables,

5. and to the necessary channels;

6. augment the morphisms accordingly.

Example 4.28. We apply the prescribed steps to the transient connector in the previous
example:

1. strengthen the glue’s actions with ac;

〈 | a〉 //

��

prog Inhibit
do a: false ∧ floc = bloc +U 1 → skip

prog Back Cart
out bloc : int
do move: bloc := bloc +U 1

2. for each role action a that takes part in the interaction (i.e., is synchronized with a
glue action), add a: ¬ac → skip to the glue;

〈 | a〉 //

��

prog Inhibit
do a: false ∧ floc = bloc +U 1 → skip
[] move: floc 6= bloc +U 1 → skip

Back Cart

3. add the roles Ri and the empty channels Ci (with i = n+ 1, . . . ,m);

〈 | a〉 //

��

Inhibit 〈 | 〉oo

��

Back Cart
prog Front Cart
out floc : int
do move: floc := floc +U 1

90 The COMMUNITY Approach

4. add as necessary ac’s variables to the glue’s input variables,

〈 | a〉 //

��

prog Inhibit
in bloc, floc : int
do a: false ∧ floc = bloc +U 1 → skip
[] move: floc 6= bloc +U 1 → skip

〈 | 〉oo

��
Back Cart Front Cart

5. and to the necessary channels;

〈bloc : int | a〉 //

��

Inhibit 〈floc : int | 〉oo

��
Back Cart Front Cart

6. augment the morphisms accordingly.

〈bloc : int | a〉
a7→{a,move} //

��

Inhibit 〈floc : int | 〉oo

��
Back Cart Front Cart

Due to our notation conventions, the last step seems to do almost nothing in this
case.

It is important to compare the original connector with the generated one to appreciate
what is being gained. The most obvious difference is that the application condition is
specified outside the connector, more precisely, outside the glue of the connector. This
triggers some simplifications. With regular connectors, the glue, the channels, and
their morphisms have to contain all the relevant variables from the roles because the
application condition is inside the glue. This is not necessary with transient connectors
because the condition is stated directly in terms of the variables of the roles. This
means that, apart from making sure that attributes in different roles have different
names, writing connectors becomes simpler (and thus less error-prone).

The second disadvantage is that the condition, being coded into the guards of the
glue’s actions in order to show explicitly when they can be executed, can only be changed
if one has access to the implementation of the glue. In other words, without transient
connectors it is not possible to provide libraries of pre-defined connectors to be (re)used
for many applications or in different situations.

Example 4.29. The connector that we use to avoid collisions is obtained from the ac-
tion subsumption connector in Definition 4.47 on page 76, refining its roles for carts,
and then adding the condition on the proximity of the carts’ locations, similarly to Ex-
ample 4.27 on page 88. The transient connector is 〈NoCrash, ∅,floc = bloc +U 1〉 with

〈 | a〉 //

��

prog NoCrash
do ab: skip
[] b: skip

〈 | b〉oo

��
prog Back Cart
out bloc : int
do move: bloc := bloc +U 1

prog Front Cart
out floc : int
do move: floc := floc +U 1

4.6 Connectors 91

The resulting connector is

prog NoCrash
in bloc, floc : int
do ab: floc = bloc +U 1 → skip
[] b: floc = bloc +U 1 → skip
[] bmove: floc 6= bloc +U 1 → skip
[] fmove: floc 6= bloc +U 1 → skip

〈bloc : int | a〉

a7→{ab,bmove}
66mmmmmmmmmmmm

��

〈floc : int | b〉

{ab,b,fmove}← [b

OO

��
Back Cart Front Cart

Example 4.30. Consider that senders and receivers communicate only when co-located.
Therefore different pairs of sender/receiver interact under different conditions, and
there is no automatic transformation mechanism as for the previous connectors in this
section. Each guard of the glue in Definition 4.51 on page 80 must be individually
changed. We must also add a variable to each sender and receiver to represent its
location (of some arbitrary type lt).

prog Sender
in sl: lt
out o: t
do put: skip

. . .

prog Sender
in sl: lt
out o: t
do put: skip

〈sl: lt; o: t | a〉

OO

a7→{get1,1 ,. . . ,get1,m }

sl7→sl1 , o 7→i1 ((PPPPPPPPPPPP
. . . 〈sl: lt; o: t | a〉

OO

{getn,1 ,. . . ,getn,m }← [a

sln← [sl, in← [ovvnnnnnnnnnnnn

prog LocMsgBusn,m
in sls : lt; is : t
out readyr : bool; rlr : lt; or : t
init

∧
readyr

do gets,r: readyr ∧ sls = rlr→ or := is ‖ readyr := false
[] putr: ¬readyr → readyr := true

〈rl: lt; i: t | a〉

��

rl 7→rl1 , i7→o1
a7→put1

66nnnnnnnnnnnn
. . . 〈rl: lt; i: t | a〉

��

rlm← [rl, om← [i

putm← [a
hhPPPPPPPPPPPP

prog Receiver
in rl: lt; i: t
do get: skip

. . .
prog Receiver
in rl: lt; i: t
do get: skip

with s = 1, . . . , n and r = 1, . . . ,m.

Example 4.31. The connector ‘Unloadn,m’ to let n carts unload bags at m gates is the
connector in the previous example with each sender role refined by a cart program and
each receiver role refined by a gate and with lt = t = int.

92 The COMMUNITY Approach

The connector that allows m carts to get bags and their destinations from n check-in
counters is obtained from ‘LocMsgBusn,m’ using the same technique as in Example 4.26
on page 87. Furthermore, each sender role is refined with a check-in program and each
receiver role with a cart. Finally, t = lt = int.

Check In . . . Check In

〈o1, o2, sl: int | a〉

o1 7→bag, o2 7→dest, sl 7→loca 7→put

OO

a7→{get1,r }
sl7→sl1 , o1 7→i1,1 , o2 7→i2,1

((PPPPPPPPPPPP
. . . 〈o1, o2, sl: int | a〉

o1 7→bag, o2 7→dest, sl 7→loc a7→put

OO

{getn,r }← [a

sln← [sl,i1,n← [o1 ,i2,n← [o2

wwnnnnnnnnnnnn

prog Loadn,m
in i1,n, i2,n, sln : int
out readyr : bool; o1,m, o2,m, rlm : int
init

∧
readyr

do gets,r: readyr ∧ sls = rlr→ o1,r := i1,s ‖ o2,r := i2,s
‖ readyr := false

[] putr: ¬readyr → readyr := true

〈i1, i2, rl: int | a〉

i1 7→ibag, i2 7→idest, rl 7→loca7→get
��

a7→put1

rl 7→rl1 , i1 7→i1,1 , i2 7→i2,1

77nnnnnnnnnnnn
. . . 〈i1, i2, rl: int | a〉

i1 7→ibag, i2 7→idest, rl 7→loc a7→get
��

putm← [a

rl1← [rl, i1,m← [i1 , i2,m← [i2

hhPPPPPPPPPPPP

Cart . . . Cart

with s = 1, . . . , n and r = 1, . . . ,m.

4.7 Architectures

An architecture is a configuration where components interact through connectors, not
individual channels. Moreover, all connectors appearing in the architecture are applied;
there must not be any “dangling” roles. The definition is extended to program and
connector instances, as usual. Being a configuration (instance), it follows that any
architecture (instance) has a semantics given by its colimit.

Definition 4.57. An architecture is a configuration made of a multiset of programs and
a multiset of connectors, such that each role is refined by some program. An architecture
instance is a diagram D in Inst such that IP(D) is an architecture. The system (instance)
described by an architecture (instance) is given by its colimit.

It should be noted that to check whether an architecture is indeed well-formed it is
not enough to check that it is formed by applied connectors, which must be well-formed
by Definition 4.43 on page 73, because the condition on paths between output variables
in the data view is a global restriction.

Example 4.32. The following diagram is not an architecture, although each unary con-

4.7 Architectures 93

nector is correctly applied.

〈x : int | a〉

�� ''OOOOOOOOO
〈x : int | a〉

wwooooooooo

��
prog G1
out x : int
do a: x := 3

prog R
in x : int
do a: skip

%%JJJJJJJJ

prog R
in x : int
do a: skip

��

prog G2
out x : int
do a: x := 5

prog P
in x : int
do a: skip

Example 4.33. The architecture of a luggage distribution system with three carts (Ex-
ample 4.3 on page 61), three check-in counters (Example 4.5 on page 62), and two gates
(Example 4.6 on page 62) is given by the following black-box view of the application of
the connectors of Example 4.29 on page 90 and Example 4.30 on page 91.

Check In NoCrash
floc 7→loc //

bloc7→loc

((PPPPPPPPPPPP Cart Gate

Check In Load3,3

66nnnnnnnnnnnn
//

((PPPPPPPPPPPP

hhRRRRRRRRRRRRR
oo

vvlllllllllllll
Cart Unload3,2

66mmmmmmmmmmmm

((QQQQQQQQQQQQ

hhQQQQQQQQQQQQ
oo

vvmmmmmmmmmmmm

Check In NoCrash
bloc7→loc

//

floc 7→loc

66nnnnnnnnnnnn
Cart NoCrash

loc← [floc
oo

loc← [bloc

aaBBBBBBBBBBBBBBBBBBB

Gate

The omitted mappings are identities.

The only interesting architecture instance for system specification is the one that
provides the initial values for each variable. For that purpose, each output variable is
associated to a ground term such that the initialisation condition is satisfied.

Definition 4.58. An initial architecture instance is an architecture instance such that
for each program instance 〈P, ε〉, ε : O→ Terms(∅) and |=∅ ε(ic).

4.7.1 Style

In the previous chapter—more precisely in Section 3.2 on page 29—we viewed an archi-
tectural style as a language, the architectures conforming to the style being the words
of that language. As such, a style was specified by a grammar that generated archi-
tectures. This view can be straightforwardly adapted to architectures of COMMUNITY

programs using the algebraic approach to graph grammars presented in Section A.3 on
page 116: a style is a graph grammar that generates diagrams in Prog from a given
start diagram (representing the start symbol of the grammar). As mentioned in the last
chapter, taking a slightly different perspective, we may view a style as the set of all
possible reconfigurations of the start diagram, making the specification of styles and re-
configurations similar. We present the algebraic approach to reconfiguration in the next
section. Hence, there is no point in pursuing again this “style as language” approach
here.

Instead, we take a declarative view of a style as a type. To be more precise, since
an architecture is given by a graph, a style is a graph of types, and checking that

94 The COMMUNITY Approach

an architecture conforms to a style amounts to find a graph morphism mapping the
former to the latter. A similar technique has been used in practice to check whether an
implementation drifted from the design architecture [GAK99].

In the previous approach it is necessary to prove explicitly that the reconfiguration
rules do not generate architectures that do not belong to the style, while in the typing ap-
proach this is automatically enforced. On the other hand, the graph grammar approach
to style is more expressive than the typed graph approach. For example, it allows to im-
pose constraints on the number of components. However, we believe that typed graphs
are sufficient, simpler, and more straightforward in many occasions, namely when only
the kinds of interactions between the components have to be restrained.

This is achieved by restricting the ways the connectors can be applied to compon-
ents. In general, a role may be instantiated by different components, and it may be even
the case that the same component can instantiate the same role in different ways. But
normally those cases are rather pathological and we want to rule them out of the mean-
ingful architectures. Furthermore, there may be “functional dependencies” between the
roles. For example, each role of a binary connector may be instantiated with programs
P1,2,3 but we want to impose the constraint “if the first role is applied to program Pi,
then the second role is refined with P4−i”. Sometimes such restrictions can be obtained
by fine-tuning the roles until they can be refined only by the intended programs with
the intended morphisms. However, even if possible, it may not be desirable to do so be-
cause the obtained connectors are less reusable, less understandable, and the process
is error-prone, requiring validation.

It is easier to describe the constraints using typed graphs. This leads to a declarative
notion of architecture style: it is a diagram AS stating how the connectors and compon-
ents are to be used. For the mentioned example, AS would contain three copies of the
binary connector applied to the the pairs of programs P1/P3, P2/P2 and P3/P1. Every ar-
chitecture written by the user must then come equipped with a morphism to AS proving
that it obeys the restrictions imposed by the style.

Definition 4.59. An architectural style AS is a diagram in Prog using only the existing
connectors and components. An architecture (instance) D conforming to a style AS, also
called AS-architecture (instance), is a pair 〈D, tD〉 with tD a labelled graph morphism
from D (resp. IP(D)) to AS.

The morphism tD guarantees that the typing is meaningful, e.g., a cart in the ar-
chitecture will not be typed by a gate in the style. If 〈D, tD〉 is an architecture instance
conforming to a style AS, then the following diagram in Graph commutes.

GProg GInst
IP
oo

∆AS

δAS

OO

∆D
tDoo

δD

OO

Example 4.34. Consider the following style for the architecture shown previously, using
again the black-box notation.

Cart Stat

Check In Load3,3 ////
//oooooo Cart

move7→{move,lap}

OO

Unload3,2 ////
oooooo Gate

NoCrash

OOOO

4.7 Architectures 95

This diagram basically states that carts may be refined by carts with counters, all sender
roles of the ‘Unload3,3’ connector must be applied to counters, all receiver roles are
applied to carts, etc. This example also illustrates that an actual architecture does not
have to use all connectors and components given by the style.

This style provides two kinds of information. First, it constrains what components
each connector can be applied to. For example, it states that the action subsumption
connector is only to be used for carts’ movement; it prevents the ‘put’ action of a counter
to subsume the ‘get’ action of a gate, among other combinations. Second, it constrains
the visibility of a program’s variables and actions. For example, it states that the ‘new’
action and the ‘q’ variable of a check-in station (Example 4.5 on page 62) are only to be
used by it. In [Lop99] private output variables and private actions were introduced. As
the name implies, they may not be shared or synchronised with variables or actions of
other programs. This leads to several changes in the definitions of COMMUNITY. With
our approach, the style simply does not include any morphism involving a variable or
action that is to be private. However, from a practical and conceptual point of view, it
is better to let the programmer state as early as possible which variables and actions
are intended only for local computations done by the program, instead of delaying it
to the style specification. Moreover, the execution of private actions can obey fairness
constraints, which cannot be captured by our notion of style.

In our categorical framework, an architectural style represents all combinations of
possible morphisms between roles and components. Hence, styles capture a finer-
grained notion than role dependency, they represent morphism dependency. The style
specifier must take care not to put between a given connector and set of components
morphisms that must not occur together.

Example 4.35. The following two style excerpts are not equivalent, i.e., the sets of con-
forming architectures are distinct: whereas

〈i:int | a〉
a7→get //

��

Msg 〈o:int | a〉
put← [aoo

��
Sender

o7→bag
��

o 7→dest
��

Receiver

i7→ibag
��

i7→idest
��

CheckIn Cart

allows a bag to be passed as a destination (and vice-versa),

〈i:int | a〉
a7→get

//

��

Msg 〈o:int | a〉
put← [a
oo

��
Sender

o 7→bag
��

Receiver

i7→ibag
��

CheckIn Cart

Sender

o 7→dest

OO

Receiver

i7→idest

OO

〈i:int | a〉
a7→get //

OO

Msg 〈o:int | a〉
put← [aoo

OO

does not.

96 The COMMUNITY Approach

In the definition we have not required the style to be an architecture, i.e., the style
does not have to be well-formed nor obey the restrictions on degrees stated in Defini-
tion 4.33 on page 68. The reason is that a style shows all possible morphisms in one
single diagram. For example, there may be several refinement morphisms from the same
role to the several components to which it may be applied, thus violating the constraint
on having outdegree one. If the morphisms map an input variable of the role to output
variables of the components, the diagram is not well-formed either.

To compensate for the lack of flexibility, there would have to be an added value in
requiring a style to be well-formed, namely to force any conforming architecture to be
well-formed. However, that cannot be achieved.

Example 4.36. Well-formedness is not preserved by typed graph morphisms. Imagine
the diagram of Example 4.32 on page 92 with both glues being ‘G1’. The two output
variables would still be indirectly shared, but the diagram could be typed by the well-
formed diagram

prog G1
out x : int
do a: x := 3

〈x : int | a〉oo //
prog R
in x : int
do a: skip

//
prog P
in x : int
do a: skip

4.8 Reconfiguration

Our treatment of reconfiguration so far has two drawbacks. First, the specification may
grow quite large because the architecture of the system is given by a fixed diagram
showing all possible connections between the existing components, even if due to the
actual computations some components will never interact. In our example, the diagram
for an architecture with c carts has c copies of the action subsumption connector. The
other disadvantage is that connectors have to capture all transient interactions and
thus may become quite complex and specific to the number of interacting components.
Our message bus illustrates this point.

The semantics we present in this section instead captures the dynamic flavour of the
configurations in a more explicit way by formalising transient connectors as conditional
rewrite rules over architecture instances.

4.8.1 Rules

Since an architecture is a diagram in a given category, which in turn is a graph typed
over the objects and morphisms of that category, the algebraic graph transformation
approach summarised in Section A.3 on page 116 can be directly applied to architecture
reconfiguration.

Definition 4.60. A reconfiguration rule is a graph production typed over GProg where L,
K, and R are architectures.

Whereas the relational graph grammars of Section 3.2 on page 29 encode graphs,
the algebraic approach manipulates directly the mathematical structures. It thus guar-
antees that the architecture is at all times during reconfiguration a graph (in partic-
ular a diagram), a necessary condition for our approach, based on colimits. The re-
lational characterization of graphs and their transformation cannot enforce that (see
Section 3.3.1 on page 31).

When a production only adds nodes and arcs, it may be reapplied again immediately
because the left-hand side is a sub-graph of the right-hand side. If the left-hand side

4.8 Reconfiguration 97

is matched more than once to the same part of the graph to be rewritten, then no real
new information is being added. Moreover, this leads to infinite rewriting sequences. We
thus restrict the allowed derivations.

Definition 4.61. A direct derivation G
p,m
=⇒ H (typed over a graph TG) is called productive

if there are no (typed) morphisms lr : L→ R and x : R→ G such that lr; x = m.

The existence of morphism lr shows that the production does not delete any nodes
or arcs. The remaining conditions check that the match is being applied to a part of
G that corresponds to the right-hand side and therefore can have been generated by a
previous application of this production.

Example 4.37. A production of the form L←− ∅ −→ L can never be used in a productive
derivation.

Example 4.38. Consider the labelled graph without edges

a b a

and the production

a b a boo // a f // b

A sequence of two direct derivations might lead to the graph

a
f
((

f

66 b a

whereas a sequence of two productive derivations can only result in

a
f // b a

foo

and then no further productive derivation is possible.

Our definition is a particular case of productions with application conditions in the
sense of [HHT96]: a derivation G

p,m
=⇒ H is productive if p is applicable to G using the

negative application condition lr.
We can now define a reconfiguration step as a productive direct derivation from a

given architecture G to an architecture H. In the algebraic graph transformation ap-
proach, there is no restriction on the obtained graphs, but in reconfiguration we must
check that the result is indeed an architecture, otherwise the rule (with the given match)
is not applicable. For example, two separate connector addition rules may each be cor-
rect but applying them together may yield a diagram which is not an architecture (see
Example 4.32 on page 92).

Definition 4.62. A reconfiguration step is a productive direct derivation G
p,m
=⇒ H typed

over Prog where p is a reconfiguration rule and G and H are architectures.

If there is an architectural style, then the three architectures in a reconfiguration
rule must conform to the style and the morphisms between them must also preserve
the typing given by the style.

Definition 4.63. An AS-reconfiguration rule for a style AS is of the form pAS : (〈L, tL〉
l←−

〈K, tK〉
r−→ 〈R, tR〉) where

• {〈X, tX〉 | X = L, K, R} are AS-architectures,

98 The COMMUNITY Approach

• p : (L
l←− K r−→ R) is a reconfiguration rule,

• l; tL = tK = r; tR.

A rule conforming to a given style can only be applied to architectures conforming
to the same style, and the match must preserve the typing given by the style. This
guarantees that the resulting architecture (if it exists) also conforms to the style.

Definition 4.64. Given a style AS, an AS-architecture 〈G, tG〉 and an AS-reconfiguration
rule pAS, an AS-reconfiguration step 〈G, tG〉

pAS,m=⇒ 〈H, tH〉 is a reconfiguration step G
p,m
=⇒ H

with m; tG = tL.

Proposition 4.15. The result of an reconfiguration step conforming to a style AS is al-
ways an AS-architecture 〈H, tH〉 with unique tH.

Proof. Consider the following diagram in Graph

GProg

∆L

m

~~}}}}}}}}}}}}}}}}

δL

66

tL

��;
;

;
;

;
;

;
;

;
;

;
;

; ∆K

d

zzuuuuuuuuuuuuuuuuuuuu
loo r //

δK

bb

tK

���
�

�
�

�
�

�
�

�
�

�
∆R

m∗

~~}}}}}}}}}}}}}}}}

δR

kk

tR

yys
s

s
s

s
s

s
s

s
s

s
s

s
s

s
s

s
s

∆G

δG

99

tG

++XXXXXXXXXXXXXXX ∆D
l∗oo r∗ //

δD

GG

tD ##G
G

G
G ∆H

δH

]]

tH
vvl l l l l l l l

∆AS

δAS

OO

The morphism tD exists and is unique because 〈∆D, tD〉 is the pushout complement
object in (Graph ↓ ∆AS). Similarly for tH. We now prove 〈D, tD〉 is an AS-architecture:

tD; δAS = l∗; tG; δAS Proposition A.5 on page 115 for (Graph ↓ ∆AS)
= l∗; δG 〈G, tG〉 is an AS-architecture
= δD Proposition A.5 on page 115 for (Graph ↓ GProg)

As for 〈H, tH〉:

d; tH; δAS = tD; δAS Proposition A.4 on page 114 for (Graph ↓ ∆AS)
= δD 〈D, tD〉 is an AS-architecture
= d; δH Proposition A.4 on page 114 for (Graph ↓ GProg)

From the uniqueness it results δH = tH; δAS. ✓

Dynamic reconfiguration basically is a rewriting process over architecture instances,
i.e., graphs labelled with program instances instead of just programs. This ensures that
reconfiguration and computation are kept separate because the state of components
and connectors that are not deleted nor added by a rule does not change, due to the
preservation of labels enforced by typed graph morphisms. As for components intro-
duced by the rule, we provide full control to the rule writer, letting him specify exactly in
which state new components are added to the architecture. For that purpose we require
that the logical variables occurring on the right-hand side of a rule also occur on the
left-hand side.

4.8 Reconfiguration 99

Furthermore, dynamic reconfiguration rules depend on the current state. Thus they
must be conditional rewrite rules. Within the algebraic graph transformation frame-
work it is possible to define conditional graph productions in a uniform way, using only
graphs and graph morphisms [HHT96]. However, for our representation of components
it is simpler, both from the practical and formal point of view, to represent conditions
as boolean expressions over logical variables.

Definition 4.65. A dynamic reconfiguration rule 〈p,mc〉 is a graph production p typed
over GInst where L, K, and R are architecture instances, Vars(R) ⊆ Vars(L), and mc ∈
Props(Vars(L)) is the matching condition.

The definition of reconfiguration step must be changed accordingly. At any point in
time the current system is given by an architecture instance without logical variables.
Therefore the notion of matching must also involve a compatible substitution of the
logical variables occurring in the rule by ground terms. Applying the substitution to
the whole rule, we obtain a rule without logical variables whose left hand side can be
directly matched to the current architecture. The reconfiguration proceeds as a normal
derivation (i.e., as a double pushout over typed graphs). However, the notion of state
introduces two constraints. First, the substitution must obviously satisfy the matching
condition. Second, the state of each program instance added by the right-hand side
satisfies the respective initialisation condition.

Definition 4.66. Given a dynamic reconfiguration rule 〈p,mc〉, an architecture instance
G, and a substitution φ : Vars(L) → Terms(∅), a dynamic reconfiguration step is a pro-

ductive direct derivation G
φ(p),m
=⇒ H typed over GInst such that

• φ(p) is the rule obtained through replacement of every program instance 〈P, ε〉 by
〈P, ε ′〉, with ε ′(o) = φ(ε(o)) for every o ∈ O,

• |=∅ φ(mc),

• for each 〈P, ε〉 in R \ r(K), |=∅ φ(ε(ic)).

The definitions are trivially adapted to handle styles.

Definition 4.67. An AS-dynamic reconfiguration rule for a style AS is a pair 〈pAS :

(〈L, tL〉
l←− 〈K, tK〉 r−→ 〈R, tR〉),mc〉 where

• {〈X, tX〉 | X = L, K, R} are AS-architecture instances,

• 〈p : (L
l←− K r−→ R),mc〉 is a dynamic reconfiguration rule,

• l; tL = tK = r; tR.

Definition 4.68. Given a style AS, an AS-architecture instance 〈G, tG〉, an AS-dynamic
reconfiguration rule pAS, and a substitution φ : Vars(L) → Terms(∅), an AS-dynamic

reconfiguration step 〈G, tG〉
φ(pAS),m

=⇒ 〈H, tH〉 is a reconfiguration step G
φ(p),m
=⇒ H with

m; tG = tL.

Proposition 4.16. The result of a dynamic reconfiguration step conforming to a style AS
is always an AS-architecture instance 〈H, tH〉 with unique tH.

Proof. Similar to Proposition 4.15 on the preceding page and using IP. ✓

100 The COMMUNITY Approach

To simulate a transient connector we need two rules, one to introduce the connector,
the other to remove it. To make the specification easier, it is convenient to generate
the second rule automatically from the first one. Basically it is the inverse rule, but
some care must be taken. First, the variables of the left-hand side must be included
in the right-hand side to make the inversion well-defined. Second, the state in which a
connector is added is generally not the same as the state in which it is removed due to
the computations meanwhile performed by the glue. Since the conditions under which
the connector is in effect depend only on the state of the interacting components, the
rule to remove a connector must use fresh state variables for the glue.

Definition 4.69. Given a dynamic reconfiguration rule 〈p : (L
l←− K r−→ R),mc〉 (possibly

conforming to some style AS) such that Vars(L) = Vars(R), the mirror rule is 〈p : (R ′
r←−

K
l−→ L),¬mc〉 where R ′ is obtained from R by replacing, for every 〈P, ε〉 in R \ r(K), each

ε(o) by a different logical variable not in Vars(L), if that does not violate the conditions
on program instance morphisms.

We now start presenting the reconfiguration rules for our running example. At each
point in time, each cart is connected at most to one gate or one check-in counter. There-
fore there is no need for message buses and we use only the simpler message passing
connector. However, the message bus guarantees that the components’ actions to send
and receive messages are blocked when no interaction is occurring. Hence we must
explicitly inhibit those actions when the message passing connector is not in effect. A
further simplification is obtained by using a style instead of connectors with refined
roles.

Example 4.39. The black-box view of the architectural style for the dynamic reconfigur-
ation of the luggage distribution system is

Msg

bag← [o

yysssssssssssssssss

i7→ibag

%%KKKKKKKKKKKKKKKKK Cart Stat Msg

xxrrrrrrrrrrrrrrrrrr

obag← [o

xxrrrrrrrrrrrrrrrrrr

i 7→bag

%%KKKKKKKKKKKKKKKKK

Check In Cart

move7→{move,lap} OO

Gate

Inhibit

a7→put

OO

Msg

dest← [o

eeKKKKKKKKKKKKKKKKK

i7→idest

99sssssssssssssssss
Subsume

a7→move

OO

a 7→move

OO

Inhibit

put← [a

ffLLLLLLLLLLLLLLLLLL

get← [a

ffLLLLLLLLLLLLLLLLLL

Inhibit

a 7→get

OO

Notice that the above style, unlike the one in Example 4.34 on page 94, can be used
for architectures with any number of components.

Notation 4.70. Due to page width constraints, we may omit the interface graph. A rule

L
l←− K r−→ R is simply written as L → R where the arrow is only used as a separator.

It does not correspond to any total graph morphism. Also, a dynamic rule 〈p,mc〉 is
written p if mc or simply p, if mc is a tautology.

4.8 Reconfiguration 101

Example 4.40. The rule to avoid a cart colliding with the one in front of it is:

Cart
loc l1
odest d1
obag b1

Cart
loc l2
odest d2
obag b2

Cart
loc l1
odest d1
obag b1

Cart
loc l2
odest d2
obag b2

oo //

〈 | a〉 //

��

Subsume 〈 | b〉oo

��

Subsumer

a7→move
��

Subsumed

a 7→move
��

Cart
loc l1
odest d1
obag b1

Cart
loc l2
odest d2
obag b2

if l2 = l1 +N 1∨ l2 = l1 +N 2

The mirror rule removes the action subsumption connector when it is not longer
needed.

As in the example above, where the added subsumption connector has no initial-
isation conditions in the glue and roles, it is often possible to prove that a rule will
introduce program instances in a valid initial state for any substitution φ. Thus the
run-time check for each reconfiguration step becomes unnecessary, leading to a more
efficient implementation.

Example 4.41. The next rule connects a cart to a gate when it passes in front of it. For
illustration purposes, instead of using a matching condition we share the same logical
variable to express co-location of cart and gate.

Cart
loc l

odest d

obag b

Action

a7→get
��

〈 | a〉oo

��Gate
loc l

q q
Inhibit

//

〈i | a〉 //

��

Msg
ready false
o 0

〈o | a〉oo

��
Sender
o b

o7→obag
��

Receiver

i7→bag

��Cart
loc l

odest d

obag b

Gate
loc l

q q

It should also be noticed that the rule does not check whether the cart is carrying
a bag and, if so, whether the gate is the cart’s destination. There are two possible
scenarios: either the cart is carrying a bag for this gate or not. In the first case, the
guard of the ‘put’ action is true and right after executing it, it becomes false. In the
second case the guard is already false (see Example 4.3 on page 61) and the connector
is not used at all. Now only action ‘move’ can execute (because ‘get’ is inhibited). This
will change the cart’s location and trigger the following rule to remove the connector.

102 The COMMUNITY Approach

〈i | a〉 //

��

Msg
ready r

o i

〈o | a〉oo

��
Sender
o b

o7→obag
��

Receiver

i7→bag

��Cart
loc l1
odest d

obag b

Gate
loc l2
q q

//

Cart
loc l1
odest d

obag b

Action

a 7→get
��

〈 | a〉oo

��Gate
loc l2
q q

Inhibit

if l1 6= l2

Example 4.42. A cart and a check-in station interact when they are co-located, the cart
is empty, and the check-in has undelivered bags. In that case the cart gets a new bag
and its destination (Figure 4.1 on the following page).

In the mirror rule the constants of the connector glues become new variables but
the logical variables associated to the output variables of the ‘Sender’ roles cannot be
changed due to the morphisms to ‘Check In’ (Figure 4.2 on page 103).

Example 4.43. The rule to refine a cart by one with statistics is

Cart
loc l

odest d

obag b

//

Cart
loc l

odest d

obag b

//

Cart Stat
loc l

odest d

obag b

sloc l

laps 0

bags 0

The definition of dynamic reconfiguration step implies d = −1 and b = 0. Putting it
explicitly in the rule would be better because it would allow to check at “compile-time”
that the initialisation condition is satisfied for any locations l.

Now we turn to the “Oops, I forgot”-kind of reconfiguration. In this case the pro-
grammer (me) forgot to provide code to process the data gathered in the bag and lap
counters1. Feeling that the problem is also due to the vague requirements provided by
the project manager (myself), the programmer goes to the manager and, after a brief
meeting, they decide to stop collecting further data after 100 laps and to collect the
averages in a component specifically for that purpose.

Example 4.44. To achieve the goal we first write a “program” that has true initialisation,
no actions, and simply holds the values for the accumulated bag and lap counters,
together with the average. We also need two rules. The first creates the accumulator for
a cart that has already made 100 laps. The second rule merges accumulators. When

1This actually happened while I was writing this chapter.

4.8 Reconfiguration 103

Action

a7→get
��

〈 | a〉oo

��
Cart
loc l1
odest d1
obag b1

Inhibit

Action

a7→put
��

〈 | a〉oo

��

Check In
loc l

bag b

dest d

next r

q q

Inhibit

//

〈i:int | a〉
a7→get //

��

Msg
ready false
o 0

〈o:int | a〉
put← [aoo

��
Sender
o b

o7→bag
��

Receiver

i7→ibag

��Check In
loc l

bag b

dest d

next r

q q

Cart
loc l1
odest d1
obag b1

Sender
o d

o7→dest

OO

Receiver

i7→idest

OO

〈i:int | a〉
a7→get

//

OO

Msg
ready false
o 0

〈o:int | a〉
put← [a
oo

OO

if l = l1 ∧ d1 = −1∧ b1 = 0∧ q 6= []

Figure 4.1: Before loading a bag from a check-in station

these rules can no longer be applied we obtain the final result.

Cart
loc l

odest d

obag b

//

Cart Stat
loc l

odest d

obag b

sloc l

laps 0

bags 0

//

Cart
loc l

odest d

obag b

Accum
laps l

bags b

avrg l/b

if l ≥ 100

Accum
laps l1
bags b1
avrg i1

Accum
laps l2
bags b2
avrg i2

//

Accum
laps l1 + l2
bags b1 + b2
avrg (l1 + l2)/(b1 + b2)

It is obvious from the rules that the ‘Accum’ program cannot impose any conditions
on the initial values of the two counters (besides being non-negative) and hence has a

104 The COMMUNITY Approach

〈i:int | a〉
a7→get //

��

Msg
ready r1
o i1

〈o:int | a〉
put← [aoo

��
Sender
o b

o 7→bag
��

Receiver

i7→ibag

��Check In
loc l

bag b

dest d

next r

q q

Cart
loc l1
odest d1
obag b1

Sender
o d

o 7→dest

OO

Receiver

i7→idest

OO

〈i:int | a〉
a7→get

//

OO

Msg
ready r2
o i2

〈o:int | a〉
put← [a
oo

OO

//

Action

a7→get
��

〈 | a〉oo

��
Cart
loc l1
odest d1
obag b1

Inhibit

Action

a7→put
��

〈 | a〉oo

��

Check In
loc l

bag b

dest d

next r

q q

Inhibit

if l 6= l1 ∨ d1 6= −1∨ b1 6= 0∨ q = []

Figure 4.2: After loading a bag from a check-in station

true initialisation condition.

Although it is not necessary for our example, the double-pushout approach guar-
antees that a ‘Cart Stat’ is replaced by an accumulator only when it is not connected
to any other component than ‘Cart’. This is important both for conceptual reasons—
components are not removed during interactions [KM90]—as technical ones: there will
be no “dangling” roles.

This example shows how a rule describes transfer of state from an old to a new
component. The transfer may involve both copy of values and arbitrarily complex cal-
culations of new values from the old ones.

4.8.2 Process

An architecture instance is not just a labelled graph, it is a diagram with a precise
semantics, given by its colimit. We can define a computation step of the system as
being performed on the colimit and then propagated back to the components of the
architecture through the inverse of their morphisms to the colimit. This keeps the
state of the program instances in the architectural diagram consistent with the state
of the colimit, and ensures that at each point in time the correct conditional rules are
applied. As [MR98, HIM99] we adopt a two-phase approach: each computation step is

4.9 Concluding Remarks 105

followed by a reconfiguration sequence. In this way, the specification of the components
is simpler, because it is guaranteed that the necessary interconnections are in place as
soon as required by the state of the components. In our example, a cart simply moves
forward without any concern for its location. Without the guarantee that an action
subsumption connector will exist whenever necessary, a cart would have to know at all
times the locations of the other carts to be sure it would not collide with one of them.
And this would make the program much more complex.

Definition 4.71. Given a style AS, an initial architecture instance G conforming to AS,
and a set of AS-dynamic reconfiguration rules, the configuration manager performs the
following steps:

1. allow the user to add new connectors and components to AS;

2. allow the user to change the set of rules;

3. find a maximal sequence of AS-dynamic reconfiguration steps starting with G, ob-
taining a new diagram G ′;

4. compute the colimit S of G ′;

5. if none of S’s actions can be executed, stop, otherwise update S’s environment
according to the chosen action;

6. propagate back the changes to the environments of the program instances of G ′,
call the new diagram G, and go back to step 1.

The first two steps cater for ad-hoc reconfiguration. For our system, step 1 allows to
add the ‘Accum’ program to the style of Example 4.39 on page 100, and step 2 permits
the addition of the rules in Example 4.44 on the page before.

4.9 Concluding Remarks

This chapter presents an algebraic foundation for software architecture reconfiguration.
The approach is based on three pillars: the general framework of Category Theory; the
category of typed graphs and their morphisms; the category of COMMUNITY programs
with morphisms that capture superposition and refinement. The first two allow us to
use in a straightforward way the double pushout approach to graph transformation.

The main advantages of this approach are:

• Architectures, reconfigurations, and connectors are represented and manipulated
in a graphical yet mathematical rigorous way at the same language-independent
level of abstraction, resulting in a very uniform framework based simply on dia-
grams and their colimits.

• The chosen program design language is at a higher level of abstraction than process
calculi or term rewriting, allowing a more intuitive representation of program state
and computations.

• Computations and reconfigurations are kept separate but related in an explicit,
simple, and direct way through the colimit construction.

• Typed graph morphisms provide a simple, declarative, yet expressive notion of
architectural style.

• Several practical problems—maintaining the style during reconfiguration, trans-
ferring the state during replacement, removing components in a quiescent state,
adding components properly initialized—are easily handled.

106 The COMMUNITY Approach

Another advantage is transient connectors to encapsulate, localise, and make chan-
ging interactions explicit. This contrast with other approaches [MR98, CFM98]. It also
reinforces the importance of connectors to support reconfiguration, as other researchers
have already observed [OT98].

Among the many possibilities for future work, we are considering the following:

• Implement the approach, either by incorporating a library to compute colimits
[Wol98] into a COMMUNITY tool that is being developed, or by adapting a graph
transformation workbench to COMMUNITY.

• Extend the work done to the full language [Lop99].

• Look into and try to adapt work on graph rewriting termination [Plu95] and sequen-
tial independence to be able to analyse the possible reconfiguration sequences.

• Investigate further into primitive connectors, connector operations, and their al-
gebraic properties along the lines of [Gar98].

• Investigate the applicability of the approach to other languages. This should only
require changing the language-dependent notions of program instance, superposi-
tion/refinement, channel, and data view, because the remaining definitions (con-
nector, architecture style, dynamic reconfiguration rule, etc.) build on them.

• Handle hierarchic architectures, possibly representing a composite component as
the colimit of a sub-architecture.

• Explore the expressiveness of Category Theory to represent multiple views and
make their relationships explicit (e.g., through functors).

Chapter 5

Conclusion

We surveyed work done in Software Engineering, Distributed Systems, Mobile Comput-
ing, and Theoretical Computer Science in order to investigate several aspects of the
formal specification of dynamic reconfiguration of software architectures.

We looked for existing mathematical constructions and formalisms to avoid the “yet
another language/formalism” syndrome. In our case we chose graphs, Category Theory,
the chemical computation model, and UNITY, all of them widely used in several sub-
areas of Computer Science.

We presented three approaches to the formal specification of software architecture
reconfiguration. They make different assumptions on the systems to be applied to (e.g.,
whether they are hierarchic or not), and they emphasize different aspects, namely effi-
ciency, simplicity, and abstraction.

The transaction approach addresses the minimization of the disruption caused by
reconfiguration. Given a hierarchic architecture and the dependencies between the
transactions among the various components, together with a a pre-defined, fixed, and
valid set of addition and deletion commands, the approach generates the specification
of the architecture of a configuration manager that executes those commands in a cor-
rect, modular, and minimal way. The input and output being architectures, it follows
that the main advantage of the approach is that managers are specified in exactly the
same way as the systems on which they operate. Additionally, the decomposition of the
configuration manager mirrors that of the system.

The CHAM approach strives for maximal uniformity and minimal number of con-
structions used by the specification formalism. Architectures (as members of a cer-
tain style), reconfigurations, and computations are all specified by rewriting of multis-
ets of terms. The main contribution is a systematic way to write individual compon-
ent specifications—each describing the component’s structure (which may be a sub-
architecture), state, interactions, computations, and allowed reconfigurations—and to
compose them into architectures.

The COMMUNITY approach, on the one hand, provides an abstract algebraic frame-
work to describe and operate on connectors, styles, and architectures and, on the other
hand, raises the level of component behaviour description. As in the CHAM approach,
reconfigurations are described by conditional graph rewriting. The conditions state un-
der which conditions a change may occur, and rewriting allows the designer to capture
higher level abstractions than those provided by the transaction approach, like com-
ponent relinking and replacement. Unlike the CHAM approach however, it is able to
automatically enforce the maintenance of a given style during reconfiguration. The ma-
jor strength of this approach is to avoid the drawbacks listed at the end of Section 1.4
on page 3.

Although the approaches are quite disparate, they have the following in common:

108 Conclusion

• all four basic changes—addition and removal of components and connections—are
allowed;

• architectures are represented explicitly through the simple concept of graph.

The transaction approach only deals with the execution of the reconfiguration com-
mands, describing it by a partial order which is represented as a graph. The other
two approaches specify reconfigurations through conditional graph rewrite rules. The
partial order graph and the rules share the following characteristics:

• they are suitable for their purposes and for the underlying representation of archi-
tectures;

• they are conceptually simple, and their pictorial representation makes them easy
to understand;

• they represent the reconfiguration process explicitly, either showing the temporal
ordering of the commands or the parts of the architecture to be modified.

Taking all this into account, we conclude that our goal, stated in Section 1.5 on page 6,
has been achieved, hence improving on the previous work summarised in Section 1.4
on page 3: arbitrary software architecture reconfigurations can be formally specified in
a simple, explicit, and adequate way.

Future work to augment our contributions will be along three axes: analysis, tools,
and integration.

The purpose of reconfiguration is to obtain an architecture with new properties while
preserving of the existing architecture (like absence of deadlock). It is desirable to de-
scribe those properties in a precise and declarative way in order to check them against
the reconfiguration specification. The description language and the analysis techniques
may depend on the kind of properties (e.g., security, throughput). It is also necessary
to analyse whether a reconfiguration script performs the intended changes and termin-
ates.

Tools will provide the necessary support both for specification and analysis. The
goal is to obtain an integrated graphical environment for reconfigurable software ar-
chitectures that allows to describe components, interconnect them into architectures,
manage component and architecture libraries, specify reconfigurations, animate them,
and automatically validate some properties.

Integration will be done in two “directions”. The “vertical” integration will try to com-
bine the transaction approach with each one of the other two. The goal is to derive from
the CHAM (or COMMUNITY) description the exact reconfiguration script to be executed by
the configuration manager, in order to have an integrated framework that provides the
specification and execution of architectural changes. This will require several changes to
the work done because the assumptions made by the transaction approach—dependent
transactions between components with unknown state—are different from the CHAM
and COMMUNITY approaches.

The “horizontal” integration aims at incorporating in the COMMUNITY approach some
of the features of the CHAM approach (e.g., hierarchic architectures and self-organisa-
tion) and vice-versa (e.g., connectors). The goal is to allow both approaches to handle the
same kinds of architectures and reconfigurations, although specifying them in different
ways. The user would thus choose between the two approaches according to other
criteria, e.g., the way computations and interactions are described. The purpose of
this kind of integration is not to obtain a single framework, because that would defeat
the rationale of using different formalisms to emphasize different aspects and handle
different problems.

Appendix A

Mathematics

This appendix provides the basic mathematical definitions and notations used in Chapter 4
on page 49. To facilitate exposition and achieve greater uniformity we base most defini-
tions on the familiar concept of graph. We do not prove well-known results. For notation
used but not defined in this appendix see the List of Symbols on page viii.

A.1 Graphs

Although the concepts are familiar, there is not one standard terminology and notation
for graphs, hence the need for this section.

Definition A.1. A graph is a tuple 〈N,A, src, trg〉 where

• N is a collection of nodes,

• A is a collection of arcs,

• src, trg : A→ N map each arc to its source and target node, respectively.

Notation A.2. An arc a with source x and target y is written x a−→ y.

Definition A.3. Given a graph with nodes x and y, a path of length n > 0 from x to y is a
sequence of arcs a1,a2,. . . ,an such that src(a1) = x, trg(an) = y, and trg(ai) = src(ai+1)
for 0 < i < n. A path of length zero is the empty sequence and is defined only for
x = y.

Notation A.4. For a given graph G, the collection of paths of length i is written Gi.

The collection G0 corresponds to the graph’s nodes, and G1 = A.

Definition A.5. The outdegree (resp. indegree) of node x is the number of arcs a such
that src(a) = x (resp. trg(a) = x).

A graph morphism is a structure preserving mapping of nodes and arcs.

Definition A.6. A graph morphism f : G → G ′ is a pair of functions fN : N → N ′ and
fA : A→ A ′ such that trg; fN = fA; trg ′ and src; fN = fA; src ′.

Notation A.7. To be able to present several graph morphisms within the same picture,
we write graphs within dotted boxes, and morphisms are arcs between graphs showing
the mappings done by fN and fA (see Example A.1 on the next page).

110 Mathematics

We adopt from [CMR96b] the concept of a graph G typed over a fixed graph of types
TG. The purpose of TG is to restrict the possible nodes and what arcs are allowed
between a pair of nodes. The typing of G is provided by a morphism to TG. A morphism
between typed graphs must preserve the typing.

Definition A.8. A typed graph (over a graph of types TG) is a pair 〈G, t〉 where t : G→ TG

is a graph morphism. A typed graph morphism m : 〈G, t〉→ 〈G ′, t ′〉 is a graph morphism
m : G→ G ′ such that m; t ′ = t.

A special case of typed graphs are labelled graphs: TG contains one node for each
node label, and between each pair of nodes there is one arc for each arc label.

Definition A.9. A labelled graph over the collections of node labels LN and arc labels
LA is a graph 〈G, lbl〉 typed over TG = 〈LN, LN × LA × LN, π1, π3〉.

Example A.1. Let LN = {a, b} and LA = {f, g}. Then the labelled graph

a•
f))
•b

g
jj

is the typed graph

1

3
((
2

4

hh
17→a,3 7→〈a,f,b〉
2 7→b,4 7→〈b,g,a〉 // a

〈a,f,b〉

��〈a,g,b〉//
b

〈b,f,a〉

QQ
〈b,g,a〉
oo

From the definition of typed graph morphism, it results that a labelled graph morph-
ism must preserve the labels on nodes and arcs. We use the following conventions.

Notation A.10. Nodes (or arcs) labelled with the same label are distinguished through
numeric indices. A mapping is omitted when it can be unambiguously determined from
the labels and indices used.

Example A.2. Using the same sets of labels as in the previous example,

a

f1

��

f2

}}||||||||

b1 b2

//

a1

f

��

b1

b2 a2

g

OO

is well-defined since there is only one morphism that preserves structure and labels:
{a 7→ a1, f1 7→ f, f2 7→ f, b1 7→ b2, b2 7→ b2}.

A labelled graph with a distinguished node is called a labelled transition system.

Definition A.11. A labelled transition system is a labelled graph, whose nodes are called
worlds and whose arcs are called transitions, with a distinguished node called initial
world.

Notation A.12. We use the symbols W, T , and w0 to represent the collections of worlds
and transitions, and the initial world, respectively.

A.2 Category Theory 111

A.2 Category Theory

Category Theory [Pei91, Mar96, FM94] is the mathematical discipline that studies, in a
general and abstract way, relationships between arbitrary entities. Basically, a category
is a graph, with nodes called objects and arcs called morphisms, such that paths are
closed under transitivity and reflexivity.

Definition A.13. A category C is a tuple 〈GC, ; , id〉 where

1. GC = 〈|C|, HomC, dom, cod〉 is a graph, with objects |C|, morphisms HomC, domain
map dom, and codomain map cod,

2. ; : (GC)2 → (GC)1 is the composition operator,

3. id : |C|→ HomC maps each object to its identity morphism,

such that

• dom(f;g) = dom(f) and cod(f;g) = cod(g),

• f; (g;h) = (f;g);h,

• dom(id(x)) = cod(id(x)) = x,

• f; id(cod(f)) = id(trg(f)); f = f.

Notation A.14. The collection of all morphisms with domain x and codomain y is writ-

ten HomC(x, y). A morphism f ∈ HomC(x, y) is written f : x→ y or x f−→ y.

Example A.3. The category Set has sets as objects and total functions between sets
as morphisms. Composition of morphisms is given by the usual composition of total
functions and the identity morphisms correspond to identity functions.

In this case, between each pair of sets there are as many morphisms as total func-
tions between those sets. Other morphisms are possible. For instance, the subset
relation. In this case there is at most one morphism between a pair of sets, and the
composition operator just states that the relation is transitive.

Example A.4. Graphs and graph morphisms form the category Graph.

It is also possible to have “morphisms” between different categories. Such morphisms
must preserve compositions and identities.

Definition A.15. Given categories C and C ′, a functor F : C → C ′ is a graph morphism
F : GC → GC ′ such that

• ∀x ∈ |C| FA(id(x)) = id ′(FN(x)),

• ∀f1f2 ∈ (GC)2 FA(f1; f2) = FA(f1);
′ FA(f2).

The functor is called forgetful if C has more structure than C ′.

Given a category, it is possible to build another one by distinguishing one of its
elements.

Definition A.16. Given a category C with an object x, the comma category (C ↓ x) has as
objects all pairs 〈y, f〉 with f ∈ HomC(y, x) and the morphisms g : 〈y1, f1〉→ 〈y2, f2〉 are all
g ∈ HomC(y1, y2) such that g; f2 = f1.

Example A.5. The category GraphTG of graphs typed over TG is the comma category
(Graph ↓ TG).

112 Mathematics

The inverse construction is trivial and amounts to forget the extra morphisms to x.

Proposition A.1. For any (C ↓ x) there is a forgetful functor Fx : (C ↓ x)→ C.

Diagrams are labelled graphs—where nodes denote objects and arcs represent mor-
phisms—and can be used to represent “complex” objects as configurations of smaller
ones. The labelling of the nodes and arcs must of course be consistent with the objects
and morphisms provided by the category.

Definition A.17. A diagram in category C is a graph typed over GC.

Notation A.18. We use D = 〈∆, δ〉 or simply 〈∆D, δD〉 to denote a diagram D and depict
it with a labelled graph, where the label of node (or arc) x is δ(x).

Functors allow us to “translate” diagrams from one category to another.

Notation A.19. If D = 〈∆, δ〉 is a diagram in C, and F : C → C ′ is a functor, then F(D) is
the diagram 〈∆, δ; F〉 in C ′.

A diagram commutes if all paths between the same pair of nodes represent the same
morphism.

Definition A.20. A diagram 〈∆, δ〉 in category C is commutative if for every pair x, y ∈ N
and every pair of paths a1 . . . an and a ′1 . . . a

′
m from x to y, δ(a1); . . . ; δ(an) = δ(a ′1); . . . ; δ(a

′
m)

in C.

Two objects x and y are said to be isomorphic if there is a commutative diagram

xid(x) ::

f
((
y id(y)ee

g

hh

Definition A.21. A morphism f : x → y is an isomorphism, and x and y are isomorphic,
if there is a morphism g : y→ x such that f;g = id(x) and g; f = id(y).

Example A.6. In Set, isomorphisms are bijective functions.

For certain categories, each diagram denotes an object that can be retrieved through
an operation called colimit. Informally, the colimit of a diagram returns the “minimal”
object such that there is a morphism from every object in the diagram to it (i.e., the
colimit contains the objects in the diagram as components) and the addition of these
morphisms to the original configuration results in a commutative diagram (i.e., inter-
connections, as established by the morphisms of the configuration diagram, are en-
forced).

The mathematical definition is given in two steps. First we define a cocone for a
diagram D as a commutative diagram of the form

x66nnnnnnnnnnnn

hhPPPPPPPPPPPP

D

di

fi

DD

// dj

fj

ZZ4444444444444444444

A.2 Category Theory 113

Definition A.22. A cocone for a diagram 〈∆, δ〉 in category C is a cocone object x ∈ |C| and
one morphism fi ∈ HomC(δ(ni), x) for each node ni of ∆, such that for every arc ni

aij−→ nj
of ∆, δ(aij); fj = fi.

Notation A.23. A cocone is written {fi : di → x}, where di = δ(ni).

The second step is to define colimit as the minimal cocone:

x
g //___________ y>>}}}}}}}}}}}}}}}

44iiiiiiiiiiiiiiiiii

``AAAAAAAAAAAAAAA

>>}
}

}
}

}
}

}
}

D

di

fi

GG�����������������������

f ′i

99s
s

s
s

s
s

s
s

s
s

s
s

s
s

s
s

s
s

s // dj

fj

WW0000000000000000000000

f ′j

GG�
�

�
�

�
�

�
�

�
�

�

Definition A.24. A colimit for diagram D in category C is a cocone {fi : di → x} such
that if {f ′i : di → y} is another cocone for D, then there is a unique morphism g : x → y

such that fi;g = f ′i. Object x is called the colimit object.

Due to the next result, we usually refer to the colimit of a given diagram.

Proposition A.2. All colimit objects for the same diagram are isomorphic.

The colimits of particular diagrams have special names.

Definition A.25. A colimit for the empty diagram is called an initial object.

Any object is a cocone for the empty diagram. The colimit is then an object that has
a unique morphism to any other object.

Example A.7. The initial object of Set is the empty set.

Definition A.26. The colimit of a diagram with just two objects is called coproduct.

Example A.8. In Set, the coproduct is the disjoint union.

Pushouts are colimits of diagrams of the form b
f←− a g−→ c. By definition of colimit,

the pushout returns an object d such that the diagram

a
f

������� g

��>>>>>

i

��

b

h ��>>>>> c

j�������

d

exists and commutes (i.e., f;h = i = g; j). Furthermore, for any other pushout candidate
d ′, there is a unique morphism k : d → d ′. This ensures that d, being a component of
any other object in the same conditions, is minimal. Morphisms g and j are called the
pushout complement of f and h, and vice-versa.

Definition A.27. A pushout is a colimit for a diagram of the form x1
f1←− x f2−→ x2.

114 Mathematics

Definition A.28. A pushout complement of x0
f1−→ x1

g1−→ x is x0
f2−→ x2

g2−→ x such that
{gi : xi → x} is a pushout of {fi : x0 → xi}, with i = 1, 2.

The pushout of sets is obtained by computing first the coproduct (i.e., the disjoint
union) and then calculating the equivalence classes of those elements identified through
x.

Example A.9. In Set, the pushout {gi : xi → z} of x
fi−→ xi (with i = 1, 2) is given by

z = {〈i, ei〉 | ei ∈ xi}/ ≡ and gi(ei) = [〈i, ei〉]≡, with ≡ the equivalence relation obtained
from 〈1, e1〉 ∼ 〈2, e2〉 ⇐⇒ ∃e ∈ x f1(e) = e1 ∧ f2(e) = e2.

For instance,

{a, b}

a 7→c
b7→c

uujjjjjjjjjjjjjjjjjjj
a 7→c

b7→d
**TTTTTTTTTTTTTTTTTTT

{b, c}

g1

))TTTTTTTTTTTTTTTTT {b, c, d}

g2

ttjjjjjjjjjjjjjjjjj

{{〈1, b〉}, {〈1, c〉, 〈2, c〉, 〈2, d〉}, 〈2, b〉}

with g1(b) = {〈1, b〉}, g1(c) = g2(c) = g2(d) = {〈1, c〉, 〈2, c〉, 〈2, d〉}, and g2(b) = {〈2, b〉}.
This example clearly shows that Category Theory enforces a locality principle in the

sense that the names used to write down objects are independent of each other. The
relationships are solely established by the morphisms. In this case, the name b used in
the different sets does not represent the same element as the mappings clearly show.
In fact, sets with the same cardinality are isomorphic and thus indistinguishable, since
they are equipped with the same morphisms. Therefore, the names we choose to rep-
resent the elements of sets are irrelevant.

As a further example that the relevant information lies in the morphisms, not in the
internal structure of the objects, consider the category mentioned after Example A.3 on
page 111: objects are sets and morphisms show the “subset-of” relation. The colimit of
a diagram in that category is the minimal superset (i.e., the union) of the sets appearing
in the diagram. Notice that although the objects are the same as in Set, the change in
the definition of morphism brought about a change in the meaning of the colimit.

We are interested in categories that provide a “semantics” for every diagram.

Definition A.29. A category C is finitely cocomplete if every finite diagram in C has a
colimit.

Theorem A.3. A category is finitely cocomplete if and only if it has an initial object and a
pushout for every pair of morphisms with common domain.

Example A.10. Set is finitely cocomplete.

Computing the colimit in comma categories amounts to calculate it in the underlying
category, and the same for pushout complements.

Proposition A.4. If C is finitely cocomplete, so is any (C ↓ y).
Proof. Let D be any finite diagram in (C ↓ y) and {fi : xi → x} be the colimit of Fy(D).
Then {fi : 〈xi, ti〉→ 〈x, t〉} is the colimit of D with t : x → y. Since {ti : xi → x} is a cocone
of F(D), fi are morphisms in (C ↓ y) and t exists and is unique.

It remains to show that for any cocone {fi : 〈xi, ti〉 → 〈x ′, t ′〉} there is a unique f :
〈x, t〉 → 〈x ′, t ′〉 such that for every i, fi; f = f ′i. Because {f ′i : xi → x} is a cocone of
Fy(D), f satisfies the conditions. It suffices to prove f ∈ Hom(C↓y). Let t = f; t. Then
fi; t = fi; f; t = f ′i; t = ti. Since x is a pushout object, t is the unique morphism satisfying
fi; t = ti and therefore t = t as wished. ✓

A.2 Category Theory 115

Proposition A.5. A diagram 〈x0, t0〉
f1−→ 〈x1, t1〉 g1−→ 〈x, t〉 in (C ↓ y) has pushout comple-

ment if and only if diagram x0
f1−→ x1

g1−→ x in C has.

Proof. The left to right implication is immediate using Fy. For the other direction, con-
sider the following diagram in C:

x0
f1

}}||||||||
f2

!!BBBBBBBB

t0

��
x1

g1
!!CCCCCCCC

t1 // y x2

g2
}}{{{{{{{{

t2oo

x

t

OO

If f2 and g2 are a pushout complement of f1 and g1 in C, they are also in (C ↓ y) with
t2 = g2; t. They are morphisms in (C ↓ y) because f2; t2 = f2;g2; t = f1;g1; t = f2; t1 = t0. ✓

Finally, we introduce a general operation on diagrams that replaces every labelled

arc x f−→ y by x ′ f ′−→ y ′ if there are morphisms g : x→ x ′ and h : y→ y ′ such that

x
f
//

g

��

y

h

��
x ′

f ′ // y ′

commutes.

Definition A.30. Diagram 〈∆ ′, δ ′〉 specialises diagram 〈∆, δ〉 in the same category if ∆ ′ =
∆ and there is a collection {fn ∈ HomC(δ(n), δ ′(n)) | n ∈ N} such that ∀a ∈ A δ(a); ftrg(a) =
fsrc(a); δ

′(a).

This operation preserves the semantics of the original diagram in the following sense.

Proposition A.6. If D is specialised by D ′, x is a colimit object of D, and y is a colimit
object of D ′, then there exists a morphism with domain x and codomain y.

Proof. The result is immediate from Definition A.22 on page 113 if we prove that y is a
cocone object of D. Let {g ′n : δ ′(n) → y} be a colimit of D ′. We prove {gn : δ(n) → y} is a
cocone of D, with gn = fn;g ′n. Let a ∈ A. Then

δ(a);gtrg(a) = δ(a); ftrg(a);g
′
trg(a) definition of g

= fsrc(a); δ
′(a);g ′trg(a) Definition A.30

= fsrc(a);g
′
src(a) colimit of D ′

= gsrc(a) definition of g ✓

The proof establishes that the following diagram commutes.

δ(src(a))
δ(a) //

fsrc(a)

��

gsrc(a)

$$IIIIIIIIII
δ(trg(a))

ftrg(a)

��

gtrg(a)

zzuuuuuuuuuu

y

δ ′(src(a))
δ ′(a)

//

g ′src(a)

::uuuuuuuuuu
δ ′(trg(a))

g ′trg(a)

ddIIIIIIIIII

116 Mathematics

A.3 Graph Grammars

The algebraic approach to graph transformation was introduced over 20 years ago in
order to generalize grammars from strings to graphs. Hence it was necessary to adapt
string concatenation to graphs. The approach is algebraic because the gluing of graphs
is done by a pushout in an appropriate category. There are two main variants, the
double-pushout approach [CMR+96a] and the single-pushout approach [EHK+96]. We
first present the former which is based on Graph. We also take the opportunity to extend
the definitions for GraphTG as done in [CMR96b].

A graph transformation rule, called graph production, is simply a diagram of the

form L
l←− K r−→ R stating how graph L is transformed into R, where K is the common

subgraph, i.e., those nodes and arcs that are not deleted by the rule.

Definition A.31. A graph production p : (L
l←− K

r−→ R) is composed of a production
name p and two injective graph morphisms l : K → L and r : K → R, where L, K, and R
are called the left-hand side, the interface, and the right-hand side of p, respectively. A
production is typed over TG if l and r are morphisms in GraphTG.

Example A.11. Consider the graph of types of Example A.1 on page 110 and the con-
ventions in Notation A.10 on page 110. The rule

a1

f

��
a2

a1

a2

oo //

a1

a2

g

OO

substitutes an arc by another.

A production can be applied to a graph G if the left-hand side can be matched to G,
i.e., if there is a graph morphism m : L → G. The transformed graph is then obtained
through two pushouts.

Definition A.32. Given a graph G, a production p : (L
l←− K r−→ R), and a morphism

m : L → G, a direct derivation from G to H using p based on match m, written G
p,m
=⇒ H,

exists if diagram

L

m

��

K
l

oo
r
//

d

��

R

m∗

��
G D

l∗oo r∗ // H

can be constructed, where each square is a pushout. Morphism m∗ is called the co-
match of the derivation. A direct derivation is typed over TG if the above is a diagram in
GraphTG.

Intuitively, first the pushout complement object D is obtained by deleting from G all
nodes and arcs that appear in L but not in K. Then H is obtained by adding to D all
nodes and arcs that appear in R but not in K. For more details see [MEN96].

Example A.12. We extend the rule of Example A.11 to show, besides substitution of
an arc, the removal of a connected node, and the creation of an unconnected node.
Furthermore, the derivation is based on a non injective match. All morphisms are

A.3 Graph Grammars 117

uniquely determined.

a1

f1

��
b

f2

// a2

��

a1

a2

oo //

��

a1

a2

g

OO

d

��

b1
f2

// a

f1

��

f3

��
b2

a

f

��
b

oo // a

g

��

f

��
b d

A direct derivation is only possible if the pushout complement given by d and l∗

exists. For that to happen, the match m must obey two conditions. The dangling
condition states that if the production removes a node n ∈ L, then each arc incident to
m(n) ∈ G must be image of some arc attached to n. The identification condition imposes
that if the production removes one node (or arc) and maintains another one, then m

may not map them to the same node (or arc) in G.

Example A.13. The left diagram violates the dangling condition, the right one the iden-
tification condition, no matter which morphism l is chosen.

a

��

∅oo

a
f //b

a1 a2

��

a
loo

a

Both conditions are quite intuitive. The first one prevents dangling arcs, the second
one avoids contradictory situations. Both allow an unambiguous prediction of removals.
A node of G will be removed only if its context (i.e., adjacent arcs and nodes) are com-
pletely matched by the left-hand side of some production. The advantage is that the
production specifier can control exactly in which contexts a node is to be deleted. This
means it is not possible to remove a node no matter what other nodes are linked to it.

Proposition A.7. Morphisms f : G → G ′ and g : G ′ → G ′′ in Graph (or GraphTG) have a
pushout complement if and only if the following two conditions are met:

dangling condition No arc in A ′′ \ gA(A ′) is incident to any node in gN(N ′ \ fN(N));

identification condition There are no nodes or arcs x, y ∈ G ′ such that g(x) = g(y) and
y 6∈ f(G).

In this case we say g satisfies the gluing condition w.r.t. f. If f is injective then the pushout
complement is unique up to isomorphism.

This explains why in a graph production the left-hand side morphism l is injective.
The right-hand side morphism is also required to be injective to allow derivations to be
invertible, hence providing an “undo” facility.

118 Mathematics

Proposition A.8. For each direct derivation G
p,m
=⇒ H (possibly typed over TG) there is an

inverse derivation H
p−1,m∗

=⇒ G using the inverse production p−1 : (R
r←− K l−→ L) where

R
m∗−→ H is the co-match of G

p,m
=⇒ H.

The single-pushout approach is simpler. Graph morphisms are partial maps, pro-
ductions are simply morphisms L σ−→ R, and there is no restriction on m. Because
of that, derivations may have unintuitive side-effects and hence are not invertible in
general. Moreover, the approach allows the removal of nodes in unknown contexts. Put
differently, any production that removes a node n will also remove automatically all arcs
in G incident to m(n), without the designer having any means to prevent it. We feel that
for dynamic architecture reconfiguration it is preferable to allow the designer to control
precisely in which situations a component (i.e., node) may be removed in order to avoid
dangling connectors. For these reasons, we adopt the double-pushout approach.

Bibliography

[ADG98] Robert Allen, Rémy Douence, and David Garlan. Specifying and analyzing
dynamic software architectures. In Fundamental Approaches to Software
Engineering, volume 1382 of LNCS, pages 21–37. Springer-Verlag, 1998.

[AGI98] Robert J. Allen, David Garlan, and James Ivers. Formal modelling and
analysis of the HLA component integration standard. Software Enginnering
Notes, 23(6):70–79, November 1998. Proceedings of the Sixth International
Symposium on the Foundations of Software Enginnering.

[BB92] Gérard Berry and Gérard Boudol. The chemical abstract machine. Theoret-
ical Computer Science, 96(1):217–248, April 1992.

[BCM88] Jean-Pierre Banâtre, A. Coutant, and Daniel Le Métayer. A parallel machine
for multiset transformation and its programming style. Future Generation
Systems, pages 133–144, 1988.

[BKK+96] Peter Borovanský, Claude Kirchner, Hélène Kirchner, Pierre-Etienne Mor-
eau, and Marian Vittek. ELAN: A logical framework based on computational
systems. In Proceedings of the First International Workshop on Rewriting Lo-
gic, volume 4 of Electronic Notes in Theoretical Computer Science. Elsevier,
1996.

[BM96] Jean-Pierre Banâtre and Daniel Le Métayer. Gamma and the chemical re-
action model: Ten years after. In Jean-Marc Andreoli, Chris Hankin, and
Daniel Le Métayer, editors, Coordination programming: mechanisms, models
and semantics, pages 3–41. Imperial College Press, 1996.

[CDS96] Proceedings of the Third International Conference on Configurable Distributed
Systems. IEEE Computer Society Press, 1996.

[CDS98] Proceedings of the Fourth International Conference on Configurable Distrib-
uted Systems. IEEE Computer Society Press, 1998.

[CELM96] Manuel Clavel, Steven Eker, Patrick Lincoln, and José Meseguer. Principles
of Maude. In Proceedings of the First International Workshop on Rewriting
Logic, volume 4 of Electronic Notes in Theoretical Computer Science, pages
65–89. Elsevier, 1996.

[CFM98] Paolo Ciancarini, F. Franzè, and Cecilia Mascolo. A coordination model
to specify systems including mobile agents. In Proceedings of the Ninth
International Workshop on Software Specification and Design, pages 96–105.
IEEE Computer Society Press, 1998.

[CI99] Flavio Corradini and Paola Inverardi. Model checking of CHAM descriptions
of software architectures. Position paper for WICSA1, February 1999.

120 Bibliography

[CLR90] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction
to Algorithms. MIT Press/McGraw-Hill, 1990.

[CM88] K. Mani Chandy and Jayadev Misra. Parallel Program Design—A Founda-
tion. Addison-Wesley, 1988.

[CMR+96a] Andrea Corradini, Ugo Montanari, F. Rossi, Hartmut Ehrig, Reiko Heckel,
and Michael Löwe. Algebraic approaches to graph transformation, part I:
Basic concepts and double pushout approach. Technical Report TR-96-17,
University of Pisa, March 1996.

[CMR96b] Andrea Corradini, Ugo Montanari, and Francesca Rossi. Graph processes.
Fundamentae Informatica, 26(3–4):241–266, 1996.

[CPT99] Carlos Canal, Ernesto Pimentel, and José M. Troya. Specification and re-
finement of dynamic software architectures. In Software Architecture, pages
107–125. Kluwer Academic Publishers, 1999.

[Cre91] C. Creveuil. Techniques d’analyse et de mise en œuvre des programmes
Gamma. PhD thesis, University of Rennes, 1991.

[edc97] Description of EDCS technology clusters. ACM SIGSOFT Software Engineer-
ing Notes, 22(5):33–42, September 1997.

[EHK+96] Hartmut Ehrig, Reiko Heckel, Martin Korff, Michael Löwe, Leila Ribeiro, An-
nika Wagner, and Andrea Corradini. Algebraic approaches to graph trans-
formation part II: Single pushout approach and comparison with double
pushout approach. Bericht Nr. 96-20, Technische Universität Berlin, Fach-
bereich 13, Informatik, 1996.

[EM85] Hartmut Ehrig and G. Mahr. Fundamentals of Algebraic Specification I:
Equations and Initial Semantics. Springer-Verlag, 1985.

[End94] Markus Endler. A language for implementing generic dynamic reconfigur-
ations of distributed programs. In Proceedings of the 12th Brazilian Sym-
posium on Computer Networks, pages 175–187, 1994.

[FF96] Nissim Francez and Ira Forman. Interacting Processes. Addison-Wesley,
1996.

[Fia96] José Luiz Fiadeiro. On the emergence of properties in component-based
systems. In Proceedings of the Fifth International Conference on Algebraic
Methodology and Software Technology, volume 1101 of LNCS, pages 421–
443. Springer-Verlag, 1996.

[FL97] José Luiz Fiadeiro and Antónia Lopes. Semantics of architectural connect-
ors. In Proceedings of TAPSOFT’97, volume 1214 of LNCS, pages 505–519.
Springer-Verlag, 1997.

[FM94] José Luiz Fiadeiro and Tom Maibaum. Category theory for the object tech-
nologist. Slides for a OOPSLA tutorial, 1994.

[FM95] José Luiz Fiadeiro and Tom Maibaum. Interconnecting formalisms: Sup-
porting modularity, reuse and incrementality. In SIGSOFT’95: Third Sym-
posium on Foundations of Software Engineering, pages 72–80. ACM Press,
1995.

[FM96] José Luiz Fiadeiro and Tom Maibaum. A mathematical toolbox for the soft-
ware architect. In Proceedings of the 8th International Workshop on Software
Specification and Design, pages 46–55. IEEE Computer Society Press, 1996.

Bibliography 121

[FM97] José Luiz Fiadeiro and Tom Maibaum. Categorial semantics of parallel pro-
gram design. Science of Computer Programming, 28:111–138, 1997.

[FWM99] José Luiz Fiadeiro, Michel Wermelinger, and José Meseguer. Semantics of
transient connectors in rewriting logic. Position Paper for the First Working
International Conference on Software Architecture, February 1999.

[GAK99] George Yanbing Guo, Joanne M. Atlee, and Rick Kazman. A software ar-
chitecture reconstruction method. In Software Architecture, pages 15–33.
Kluwer Academic Publishers, 1999.

[Gar98] David Garlan. Higher-order connectors. Position paper for the Workshop
on Compositional Software Architectures, January 1998.

[GK96] Kaveh Moazami Goudarzi and Jeff Kramer. Maintaining node consistency
in the face of dynamic change. In CDS96 [CDS96], pages 62–69.

[GMW97] David Garlan, Robert T. Monroe, and David Wile. ACME: An architecture
description interchange language. In Proceedings of the IBM Center for Ad-
vanced Studies Conference, pages 169–183, November 1997.

[HHT96] Annegret Habel, Reiko Heckel, and Gabriele Taentzer. Graph grammars
with negative application conditions. Fundamenta Informaticae, 26(3–4),
1996.

[HIM99] Dan Hirsch, Paola Inverardi, and Ugo Montanari. Modelling software archi-
tectures and styles with graph grammars and constraint solving. In Soft-
ware Architecture, pages 127–143. Kluwer Academic Publishers, 1999.

[HP93] Christine Hofmeister and James Purtilo. Dynamic reconfiguration in dis-
tributed systems: Adapting software modules for replacement. In Proceed-
ings of the 13th International Conference on Distributed Computing Systems,
pages 101–110, Pittsburgh, May 1993. IEEE Computer Society Press.

[IW95] Paola Inverardi and Alexander L. Wolf. Formal specification and analysis of
software architectures using the chemical abstract machine. IEEE Transac-
tions on Software Engineering, 21(4):373–386, April 1995.

[IWY97] Paola Inverardi, Alexander L. Wolf, and Daniel Yankelevich. Checking as-
sumptions in component dynamics at the architecture level. In Coordina-
tion Languages and Models, volume 1282 of LNCS, pages 46–63. Springer-
Verlag, 1997.

[IWY98] Paola Inverardi, Alexander L. Wolf, and Daniel Yankelevich. Behavioral type
checking of architectural components based on assumptions. Technical
Report CU-CS-861-98, Department of Computer Science, University of Col-
orado, April 1998.

[IY96] Paola Inverardi and Daniel Yankelevich. Relating CHAM descriptions of soft-
ware architectures. In Proceedings of the 8th International Workshop on Soft-
ware Specification and Design, pages 66–74. IEEE Computer Society Press,
1996.

[Kat93] S. Katz. A superimposition control construct for distributed systems. ACM
TOPLAS, 15(2):337–356, 1993.

[Kin93] T. Kindberg. Reconfiguring client-server systems. Technical Report QMW-
DCS-1993-630, Queen Mary and Westfield College, Department of Com-
puter Science, March 1993.

122 Bibliography

[KM85] Jeff Kramer and Jeff Magee. Dynamic configuration for distributed systems.
IEEE Transactions on Software Engineering, 11(14):424–435, April 1985.

[KM90] Jeff Kramer and Jeff Magee. The evolving philosophers problem: Dy-
namic change management. IEEE Transactions on Software Engineering,
16(11):1293–1306, November 1990.

[KM98] Jeff Kramer and Jeff Magee. Analysing dynamic change in distributed soft-
ware architectures. IEE Proceedings—Software, 145(5):146–154, October
1998.

[LF99] Antónia Lopes and José Luiz Fiadeiro. Using explicit state do describe ar-
chitectures. In Proceedings of Fundamental Approaches to Software Engin-
eering, number 1577 in LNCS, pages 144–160. Springer-Verlag, 1999.

[Lop99] Antónia Lopes. Não-determinismo e Composicionalidade na Especificação de
Sistemas Reactivos. PhD thesis, Universidade de Lisboa, January 1999.

[LV95] David C. Luckham and James Vera. An event-based architecture defini-
tion language. IEEE Transactions on Software Engineering, 21(9):717–734,
September 1995.

[Mar96] Alfio Martini. Elements of basic category theory. Bericht Nr. 96-5, Techni-
sche Universität Berlin, Fachbereich 13, Informatik, 1996.

[Mas99] Cecilia Mascolo. MobiS: A specification language for mobile systems. In
Proceedings of the Third International Conference on Coordination Languages
and Models, volume 1594 of LNCS, pages 37–52. Springer-Verlag, 1999.

[MDEK95] Jeff Magee, Naranker Dulay, Susan Eisenbach, and Jeff Kramer. Specify-
ing distributed software architectures. In Proceedings of the Fifth European
Software Engineering Conference, Barcelona, September 1995.

[Med96] Nenad Medvidovic. ADLs and dynamic architecture changes. In Joint Pro-
ceedings of the SIGSOFT’96 Workshops, pages 24–27. ACM Press, 1996.

[Med97] Nenad Medvidovic. A classification and comparison framework for software
architecture description languages. Technical Report UCI-ICS-97-02, De-
partment of Information and Computer Science, University of California,
Irvine, February 1997.

[MEN96] Alfio Martini, Harmut Ehrig, and Daltro Nunes. Graph grammars - an in-
troduction to the double-pushout approach. Bericht Nr. 96-6, Technische
Universität Berlin, Fachbereich 13, Informatik, 1996.

[Mes96] José Meseguer. Rewriting logic as a semantic framework for concurrency: a
progress report. In Proceedings of the 7th International Conference on Con-
currency Theory, volume 1119 of LNCS, pages 331–372. Springer-Verlag,
1996.

[Mét98] Daniel Le Métayer. Describing software architecture styles using graph
grammars. IEEE Transactions on Software Engineering, 24(7):521–553, July
1998.

[MG99] Kaveh Moazami-Goudarzi. Consistency Preserving Dynamic Reconfiguration
of Distributed Systems. PhD thesis, Imperial College London, March 1999.

[MGW97] Robert T. Monroe, David Garlan, and David Wile. Acme StrawManual,
November 1997.

Bibliography 123

[Mil99] Robin Milner. Communicating and Mobile Processes: the π-calculus. Cam-
bridge University Press, 1999.

[MK96a] Jeff Magee and Jeff Kramer. Dynamic structure in software architectures.
In Proceedings of the Fourth ACM SIGSOFT Symposium on the Foundations
of Software Engineering, pages 3–14. ACM Press, 1996.

[MK96b] Jeff Magee and Jeff Kramer. Self organising software architectures. In Joint
Proceedings of the SIGSOFT’96 Workshops, pages 35–38. ACM Press, 1996.

[MKG99] Jeff Magee, Jeff Kramer, and Dimitra Giannakopoulou. Behaviour analysis
of software architectures. In Software Architecture, pages 35–50. Kluwer
Academic Publishers, 1999.

[MKS89] Jeff Magee, Jeff Kramer, and Morris Sloman. Constructing distributed sys-
tems in CONIC. IEEE Transactions on Software Engineering, 15(6):663–675,
June 1989.

[Mon98] Robert T. Monroe. Capturing software architecture design expertise with
armani. Technical Report CMU-CS-98-163, School of Computer Science,
Carnegie Mellon University, October 1998.

[MP91] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Concur-
rent Systems: Specification. Springer-Verlag, 1991.

[MP98] Jeff N. Magee and Dewayne E. Perry. Welcome to ISAW-3. In Third Interna-
tional Software Architecture Workshop, pages vii–viii. ACM Press, 1998.

[MR96] Peter J. McCann and Gruia-Catalin Roman. Mobile UNITY: A language and
logic for concurrent mobile systems. Technical Report WUCS-97-01, De-
partment of Computer Science, Washington University in St. Louis, Decem-
ber 1996.

[MR98] Peter J. McCann and Gruia-Catalin Roman. Compositional programming
abstractions for mobile computing. IEEE Transactions on Software Engin-
eering, 24(2), February 1998.

[MVS85] Tom Maibaum, Paulo Veloso, and M. Sadler. A theory of abstract data types
for program development: Bridging the gap? In TAPSOFT’85, volume 186
of LNCS, pages 214–230. Springer-Verlag, 1985.

[Ore96] Peyman Oreizy. Issues in the runtime modification of software architec-
tures. Technical Report UCI-ICS-TR-96-35, Department of Information and
Computer Science, University of California, Irvine, August 1996.

[Ore98] Peyman Oreizy. Issues in modeling and analyzing dynamic software ar-
chitectures. In Debra Richardson, Paola Inverardi, and Antonia Bertolino,
editors, Proceedings of the International Workshop on the Role of Software
Architecture in Testing and Analysis, pages 54–57, July 1998.

[OT98] Peyman Oreizy and Richard N. Taylor. On the role of software architectures
in runtime system reconfiguration. IEE Proceedings—Software, 145(5):137–
145, October 1998.

[Pei91] Benjamin C. Peirce. Basic Category Theory for Computer Scientists. The MIT
Press, 1991.

124 Bibliography

[Per97] Dewayne E. Perry. State-of-the-art: Software architecture. In Pro-
ceedings of the 19th International Conference on Software Engineering,
pages 590–591. ACM Press, 1997. Slides available from http://www.bell-
labs.com/user/dep/work/swa/icse97.vg.ps.gz.

[Plu95] Detlef Plump. On termination of graph rewriting. In Proceedings of the 21st
International Workshop on Graph-Theoretic Concepts in Computer Science,
number 1017 in LNCS, pages 88–100. Springer-Verlag, 1995.

[PW92] Dewayne E. Perry and Alexander L. Wolf. Foundations for the study of
software architecture. ACM SIGSOFT Software Engineering Notes, 17(4):40–
52, October 1992.

[RMP97] Gruia-Catalin Roman, Peter J. McCann, and Jerome Y. Plun. Mobile UNITY:
Reasoning and specification in mobile computing. ACM TOSEM, 6(3):250–
282, July 1997.

[SG94] Mary Shaw and David Garlan. Characteristics of higher-level languages for
software architecture. Technical Report CMU-CS-94-210, School of Com-
puter Science, Carnegie Mellon University, December 1994.

[SG96a] Mary Shaw and David Garlan. Formulations and formalisms in software
architecture. In Computer Science Today: Recent Trends and Developments,
volume 1000 of LNCS, pages 307–323. Springer-Verlag, 1996.

[SG96b] Mary Shaw and David Garlan. Software Architecture: Perspectives on an
Emerging Discipline. Prentice Hall, 1996.

[TGM98] Gabriele Taentzer, Michael Goedicke, and Torsten Meyer. Dynamic change
management by distributed graph transformation: Towards configurable
distributed systems. In Proc. 6th Int. Workshop on Theory and Application of
Graph Transformation, 1998.

[VPL99] James Vera, Louis Perrochon, and David C. Luckham. Event-based execu-
tion architectures for dynamic software systems. In Software Architecture,
pages 303–317. Kluwer Academic Publishers, 1999.

[Wer97] Michel Wermelinger. A hierarchic architecture model for dynamic recon-
figuration. In Proceedings of the Second International Workshop on Soft-
ware Engineering for Parallel and Distributed Systems, pages 243–254. IEEE
Computer Society Press, 1997.

[Wer98a] Michel Wermelinger. A simple description language for dynamic architec-
tures. In Proceedings of the Third International Software Architecture Work-
shop, pages 159–162. ACM Press, 1998.

[Wer98b] Michel Wermelinger. Specification, testing and analysis of (dynamic) soft-
ware architecture with the chemical abstract machine. In Proceedings of
the International Workshop on the Role of Software Architecture in Testing
and Analysis, pages 13–17, 1998.

[Wer98c] Michel Wermelinger. Towards a chemical model for software architecture
reconfiguration. IEE Proceedings—Software, 145(5):130–136, October 1998.

[Wer99] Michel Wermelinger. Software architecture evolution and the chemical ab-
stract machine. In Proceedings of the International Workshop on the Prin-
ciples of Software Evolution. ACM Press, 1999. To appear.

Bibliography 125

[WF98a] Michel Wermelinger and José Luiz Fiadeiro. Connectors for mobile pro-
grams. IEEE Transactions on Software Engineering, 24(5):331–341, May
1998.

[WF98b] Michel Wermelinger and José Luiz Fiadeiro. Towards an algebra of archi-
tectural connectors: a case study on synchronization for mobility. In Pro-
ceedings of the Ninth International Workshop on Software Specification and
Design, pages 135–142. IEEE Computer Society Press, 1998.

[WF99] Michel Wermelinger and José Luiz Fiadeiro. Algebraic software architecture
reconfiguration. In Software Engineering—ESEC/FSE’99, volume 1687 of
LNCS, pages 393–409. Springer-Verlag, 1999.

[WNF99] Michel Wermelinger, Helder Neto, and João Feliciano. The COM-
MUNITY Workbench Version 0.1 User Manual. Laboratório de Mod-
elos e Arquitecturas Computacionais, July 1999. Available from
http://ctp.di.fct.unl.pt/˜mw/sw/cw .

[Wol97] Alexander L. Wolf. Succeedings of the Second International Software Archi-
tecture Workshop. ACM SIGSOFT Software Engineering Notes, 22(1):42–56,
January 1997.

[Wol98] Dietmar Wolz. Colimit Library for Graph Transformations and Algebraic De-
velopment Techniques. PhD thesis, Technische Universität Berlin, 1998.

[YM92] A. J. Young and J. N. Magee. A flexible approach to evolution of recon-
figurable systems. In Proceedings of the First International Workshop on
Configurable Distributed Systems, pages 152–163. IEE, 1992.

	Introduction
	Motivation
	Context
	Issues
	Related Work
	Our Approaches

	The Transaction Approach
	The Original Model
	The Passive Approach
	The Blocking Approach

	Discussion
	Implementation
	Disruption
	Hierarchic Systems

	The Refined Model
	Minimising Disruption
	The Connection Approach
	The Partial Order

	The Configuration Manager
	Flat Systems
	Hierarchic Systems

	Concluding Remarks

	The CHAM Approach
	The CHAM formalism
	The Graph Grammar Approach
	Ad-hoc Reconfiguration
	Specification
	Analysis
	Dynamic Reconfiguration

	Self-Organisation
	A Language
	Programmed Reconfiguration
	A Mixed Example
	Concluding Remarks

	The CommUnity Approach
	Example
	Types and Expressions
	Syntax
	Semantics
	Configuration

	Signatures
	Syntax
	Semantics
	Configuration

	Programs
	Syntax
	Semantics
	Configuration

	Program Instances
	Syntax
	Semantics
	Configuration

	Connectors
	Definitions
	Catalog
	Operations

	Architectures
	Style

	Reconfiguration
	Rules
	Process

	Concluding Remarks

	Conclusion
	Mathematics
	Graphs
	Category Theory
	Graph Grammars

