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Abstract—Transmitting texture and depth images of captured
camera view(s) of a 3D scene enables a receiver to synthesize
novel virtual viewpoint images via Depth-Image-Based Rendering
(DIBR). However, a DIBR-synthesized image often contains
disocclusion holes, which are spatial regions in the virtual view
image that were occluded by foreground objects in the captured
camera view(s). In this paper, we propose to complete these
disocclusion holes by exploiting the self-similarity characteristic
of natural images via nonlocal template-matching (TM). Specif-
ically, we first define self-similarity as nonlocal recurrences of
pixel patches within the same image across different scales–one
characterization of self-similarity in a given image is the scale
range in which these patch recurrences take place. Then, at
encoder we segment an image into multiple depth layers using
available per-pixel depth values, and characterize self-similarity
in each layer with a scale range; scale ranges for all layers
are transmitted as side information to the decoder. At decoder,
disocclusion holes are completed via TM on a per-layer basis
by searching for similar patches within the designated scale
range. Experimental results show that our method improves the
quality of rendered images over previous disocclusion hole-filling
algorithms by up to 3.9dB in PSNR.

Index Terms—Free viewpoint video, depth-image-based ren-
dering, image inpainting

I. INTRODUCTION

By transmitting both texture maps (color images) and depth
maps (per-pixel distance between objects in the 3D scene
and the capturing camera) captured from one or more camera
view(s), free viewpoint video [1] enables a user the ability
to synthesize novel virtual view images via depth-image-
based rendering (DIBR) [2]. In a nutshell, DIBR copies color
pixels in the camera-captured view(s) to corresponding pixel
locations in the virtual view image, given 3D geometric in-
formation provided by the depth map(s). A DIBR-synthesized
image often contains disocclusion holes, however, which are
spatial regions in the virtual view that were occluded by
foreground (FG) objects in the camera-captured view(s) but
became visible after the view-switch. Satisfactory filling of
disocclusion holes is essential to the free viewpoint visual
experience. This paper addresses the disocclusion hole-filling
problem.

Coincidentally, the computer vision community has studied
a related image inpainting problem over the last decade [3]–
[5]: completion of missing pixel regions in a natural image.
Broadly speaking, there are two categories of approaches.
In the first category are schemes that locally extrapolate
signals based on partial differential equations [4], Fourier
analysis [5] etc. While intuitive, these local schemes do not
perform well when the missing pixel regions are large. In
the second category are nonlocal schemes such as Criminisi’s
template-matching (TM) [3] algorithm, that fill in missing
pixels in a target region by identifying similar pixel patterns
in faraway known region, assuming the well recognized self-
similarity characteristic commonly observed in natural images.
Recently, TM has been adopted for disocclusion hole-filling
in DIBR-synthesized images as well [6], [7]. There remain
two problems. First, there may not always exist self-similar
patches of the same scale in a given image for TM to properly
fill in missing pixels in disocclusion holes. Second, nonlocal
TM schemes tend to be computationally complex due to the
exhaustive search employed in the large known pixel region.

In this paper we propose a new sender-guided disocclusion
hole-filling scheme that addresses the two aforementioned
problems in previous nonlocal TM schemes. Specifically, we
first redefine self-similarity in a multi-scale manner for natural
images−a characterization of self-similarity for a given natural
image is then how well target pixel patches will match with
nonlocal patches of the same image resized by a specified
range of scaling factors. Next, we design a sender-guided
disocclusion hole-filling algorithm, where i) at encoder we
divide a camera-captured texture image into multiple depth
layers, characterize self-similarity in each layer and transmit
the characterization parameters to decoder as side information
(SI); ii) at decoder we perform TM for disocclusion hole-
filling only within suitable depth layers but across multiple
scales as specified by the transmitted self-similarity parame-
ters. Performing TM within a subset of layers means search
complexity for matching patches in known region is drastically
reduced. Experimental results show that our disocclusion hole-
filling algorithm outperforms previous schemes by up to 3.9dB
in PSNR at comparable or smaller computation complexity.

The outline of the paper is as follows. In Section II we for-
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Fig. 1. Proposed processing blocks in multi-view context

mally define our proposed notion of self-similarity in a multi-
scale manner. Using this definition, we describe our sender-
guided disocclusion hole-filling algorithm based on multi-scale
self-similarity in Section III. We present experimental results
and conclusion in Section IV and V, respectively.

II. CHARACTERIZATION OF SELF-SIMILARITY

It is observed that natural images are self-similar in general;
i.e., a given pixel patch is likely to recur one or more times
in faraway (nonlocal) spatial regions in the same image.
While existing works on inpainting using TM [3] assume
the recurrence take place in the same scale, in this paper we
generalize the notion to assume that the recurrence of a pixel
patch can take place across multiple scales. More precisely, we
characterize self-similarity in natural images as the scale range
(SR) (parameterized by upper and lower bounds) over which
a given pixel patch is likely to recur within the same image.
This multi-scale self-similarity is an intuitive generalization;
for example, repeating textural patterns like wallpaper vary in
size as the distance to the capturing camera changes.

In practice, we compute the upper and lower bound that
characterize multi-scale self-similarity as follows. A reference
texture patch of size w × w pixels is first selected in a color
image. Then each sliding window of size (w + n)× (w + n)
pixels is rescaled to w×w pixels where n denotes the scaling
factor within a given candidate range. Using mean squared
error (MSE) as the distortion metric, for each n we identify
the number of best-matched patches at this scaling factor and
compare against a threshold T . The range of n values for
which the number of best matched patches is higher than T
defines the upper and lower bounds that characterize multi-
scale self-similarity in this image.

III. SENDER-GUIDED HOLE-FILLING ALGORITHM

Having defined our notion of multi-scale self-similarity in
natural images, we now describe our disocclusion hole-filling
algorithm that exploits this multi-scale self-similarity via TM.
We first describe operations at the encoder to characterize self-
similarity of camera-captured color images;characterization

parameters are then transmitted to the decoder as SI. We then
describe the operations at the decoder to efficiently perform
TM guided by the received SI.

A. Encoder Side Processing

At the encoder (see Fig.1), the objective is twofold:
i) segment the camera-captured texture image into depth
layers−contiguous spatial areas with similar depth values, and
ii) define and transmit SR for each depth layer to the decoder
for sender-guided disocclusion hole-filling. We discuss them
in order next.

1) Depth Layer Segmentation: The goal of depth layer
segmentation is to divide a camera-captured texture image into
contiguous spatial areas that roughly correspond to physical
objects in the 3D scene. This is done so that multi-scale TM
performed at the decoder can be done per layer instead of per
image, reducing complexity. This is reasonable, since repeated
textural patterns likely recur within the same physical object,
contained in a depth layer. Let IT and ID be the texture and
depth maps of a camera-captured view, respectively. We first
divide depth map ID into k layers by detecting peaks and
valleys in a constructed histogram of depth values (see Fig
2(a) for an example) [8]. The depth cut-off values (based on
valleys) D = {di} correspond to the segmented depth layers
Y = {yi} where i = 1, 2, ..., k and dk = 255. The same
segmentation is then applied to the corresponding color image
IT as well.

2) Scale Range Characterization: We now characterize
multi-scale self-similarity for each computed texture (color)
layer. For target in TM, we consider only patches near the
boundary of given layers. The reason is that disocclusion
holes tend to appear near FG object boundaries [2]. In our
experiment, we consider scale value n within range [−3, 3].
As illustration, Fig 2(b) shows the number of best matches for
various scale values within the range [−3, 3] for a depth layer
in Middlebury′s Aloe image. Here, it is observed that the
number of best matches exceeds T1 at n = 0 and n = 1, hence
the SR= [0, 1]. The chosen SR for each layer is transmitted
as SI to the decoder for sender-guided disocclusion hole-
filling. Note that the SI transmission accounts for only a very
small signaling overhead (0.01%) compared to the size of the
camera-captured texture and depth maps.

B. Decoder Side Processing

The decoder receives a pair of texture and depth maps
IT , ID and SR per depth layer, as shown in Fig. 1. For
disocclusion hole-filling, a recent Joint Texture and Depth
Inpainting (JTDI) algorithm [7] fills texture and depth hole
pixels alternately: use available depth information to fill in
textural pixel holes, then use inpainted textural information
to fill corresponding depth pixel holes. However, JTDI still
employs full-image TM, which is computation-expensive. In
contrast, we perform joint texture and depth pixel filling of
disocclusion holes as done in [7], but employ multi-scale

1The value of T is chosen empirically as 75. The experimental results are
not particularly sensitive to this chosen value.
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Fig. 2. (a) illustrates depth map histogram, k = 2 (b) shows bar graph
representing number of best patches per scale value n for Aloe image.

TM within suitable depth layers. Here, SR provides side
information on the suitable scaling values to resize candidate
patches for each depth layer during TM.

The virtual texture view (VT ) and depth map (VD) are syn-
thesized from IT and ID via DIBR. Before filling disocclusion
holes, both VD and VT are segmented with the same cut-
off values D as discussed earlier. The following sub-section
explains the depth layer selection method in our proposed
disocclusion hole-filling algorithm.

1) Depth Layer Selection and Hole-filling: First, we select
the target patch PT and the corresponding depth target patch
DT . The order of selecting target patches for filling is very
important, but is outside the scope of this paper; we will
simply use the PT selection method in [7]. The known values
of DT are used to determine the mean of depth values dmean.
Since disocclusion holes are missing pixels from background
(BG) region [9], dmean facilitates the selection of appropriate
BG depth layer(s) Yb as follows:

Yb = {yi ∈ Y | dmean ≤ di, di ∈D} where i = 1, 2, ..., k. (1)

The SR corresponding to depth layer(s) Yb helps in gen-
erating multi-scale candidate search space X by rescaling
the patches for given values in the range such that X =
{x1, x2, ..., xq} where q represents number of patches in X .
This search space is used for finding best candidate patch CP

as follows:

CP = min MSE(xj , PT ) where j = 1, 2, ..., q (2)

The known pixels of selected CP corresponding to the
unknown (holes) pixels of PT are then copied into PT . This
process repeats until all the disocclusion holes are filled.

IV. EXPERIMENTAL SETUP AND RESULTS

The proposed algorithm was tested and evaluated using
four Middlebury datasets [10]: Aloe, Baby2, Books and
Cones. These datasets contain seven different captured views
of the same static scene, as well as disparity maps for views
#1 and #5. For each sequence, DIBR has been used to
generate the reference view #3 using texture and the disparity
map of view #1. To quantitatively and qualitatively evaluate
the performance of proposed algorithm, the generated view
#3 was inpainted using a patch-size of 9 × 9 pixels and

compared with Criminisi [3] and JTDI [7] methods. Both the
comparators, Criminisi [3] and JTDI [7] employs single-scale
exhaustive TM to find CP for filling disocclusion holes. For
numerical analysis, the original view #3 of image datasets
was used as the ground truth for all peak signal-to-noise
ratio (PSNR) calculations, with the PSNR computed for both
the whole image and hole regions. All experiments were
performed on an Ubuntu 12.04 64-bit with 3.10 GHz Intel
QuadCore and 4GB RAM, with all algorithms implemented
in MATLAB.

A. Quantitative Result Analysis

Table I shows the PSNR results for three inpainting meth-
ods, which reveal that proposed algorithm performs consis-
tently better than [3] and [7] for all four datasets. In Books
dataset for example, the PSNR increased by up to 2dB and
1.76dB for whole image as compared to Criminisi [3] and
JTDI [7] respectively, while the corresponding results for only
the hole regions, show an increase of 3.92dB and 3.44dB.
This confirms that characterization parameters provided in SR
enhances the probability of finding a better match by searching
CP at two scales, i.e. at scale n = 0 and n = −1. The PSNR
increase supports the fact that during the disocclusion filling
process, there are cases where patches at scale n = −1 provide
better matches than scale n = 0 (same scale). The computation
cost due to multi-scale TM is compensated by layer based
search during inpainting and the overall computation time
remains either comparable or smaller than exhaustive TM.
Similar observations can be made upon the results for Aloe,
Baby2 and Cones images using proposed algorithm.

B. Qualitative Result Analysis

From a perceptual quality perspective, Fig. 3 shows the
qualitative comparison of proposed algorithm with [3] and [7]
with example zoomed-in regions for Aloe, Baby2, Books
and Cones in each row respectively. The proposed algorithm
again provides improved visual quality and fewer artefacts by
preserving the FG object boundaries as shown in Fig. 3(d)
in comparison to Criminisi [3] (Fig. 3(b)) and JTDI [7] (Fig.
3(c)). For comparison of various techniques, the disocclusion
holes and ground truth are shown in Fig. 3(a) and 3(e),
respectively. Multi-scale TM reduces the artefacts and fills the
disocclusion holes with enhanced perceptual quality.

TABLE I
PSNR COMPARISON FOR TEXTURE IMAGE INPAINTING (in dB)

Whole Image Hole Regions
Dataset Criminisi JTDI Proposed Criminisi JTDI Proposed

[3] [7] n [3] [7]
Books 26.80 27.05 -1,0 28.81 15.14 15.62 19.06
Baby2 30.87 30.92 1, 0, -1 31.80 19.24 19.36 21.75
Aloe 26.83 27.83 1, 0 28.14 17.02 18.66 19.50
Cones 22.48 23.17 -1, 1, 2 23.41 17.45 19.92 20.34



(a) Disocclusion holes (b) Criminisi [3] (c) JTDI [7] (d) Proposed (e) Ground truth

Fig. 3. shows Aloe (row 1), Baby2 (row 2), Books (row 3) and Cones (row 4) with corresponding (a) disocclusion holes, filled by (b) Criminisi [3], (c)
JTDI [7], (d) Proposed method and respective (e) Ground truth.

V. CONCLUSION

While free viewpoint video enables the synthesis of novel
virtual view images at decoder via DIBR, the synthesized
images often contain disocclusion holes that require proper
filling. In this paper, we propose a new disocclusion hole-
filling algorithm that exploits multi-scale self-similarity dur-
ing TM. Though searching for nonlocal patches of different
scales entails a larger search space, we contain the resulting
search complexity by performing TM only within designated
depth layers−subset of the image with similar depth values.
Experimental results show that our proposed hole-filling algo-
rithm can outperform previous proposals by up to 3.9dB at
comparable or smaller complexity.
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