
Open Research Online
The Open University’s repository of research publications
and other research outputs

Towards explaining rebuttals in security arguments
Conference or Workshop Item
How to cite:

Yu, Yijun; Piwek, Paul; Tun, Thein Than and Nuseibeh, Bashar (2014). Towards explaining rebuttals in security
arguments. In: 14th Workshop on Computational Models of Natural Argument, 10 Dec 2014, Krakow, Poland.

For guidance on citations see FAQs.

c© 2014 The Authors

Version: Version of Record

Link(s) to article on publisher’s website:
http://cmna.csc.liv.ac.uk//CMNA14/Yu.pdf

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/82978402?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://cmna.csc.liv.ac.uk//CMNA14/Yu.pdf
http://oro.open.ac.uk/policies.html

Towards Explaining Rebuttals
in Security Arguments

Yijun YU a,1, Paul PIWEK a and Thein Than TUN a and Bashar NUSEIBEH a,b

a Department of Computing and Communications, The Open University, UK
b Lero, The Irish Software Engineering Research Centre, University of Limerick, Ireland

Abstract. The satisfaction of software security requirements can be argued using
supporting facts and domain assumptions. Sometimes, these facts or assumptions
may be questioned, as more knowledge about vulnerabilities becomes available.
This results in rebuttals that can be derived from the new information. In this pa-
per, we outline an extension of our OpenArgue tool with an explanation facility
that makes a rebuttal more transparent by showing, step by step, why the original
security argument does not hold. We achieve this by using the output of the AL-
LIGATOR theorem prover, which constructs explicit and checkable proof objects.
We illustrate the feasibility of this approach by applying it to an existing case study
of a PIN entry device which involves a security argument that has been rebutted.
The output of the prover enables us to unpack the logical reasoning behind the re-
buttal at a much greater level of detail. This promises to be useful for argument
explanation.

Keywords. Security requirements, Proof systems, Formal arguments

1. Introduction

Security threats and vulnerabilities in software systems are evolving rapidly. Not long af-
ter the ‘heartbleed’ vulnerability of the OpenSSL implementation was reported,2 a more
severe ‘shellshock’ vulnerability was found to have impacted on any bash-based unix
distributions,3 followed by the discovery of the ‘Poodle’ bug in the SSLv3 used by most
web browsers.4 Security mechanisms that were once trusted are no longer so. In hind-
sight, it can be ‘easy’ to find facts against previously established trust assumptions, or
arguments in support of security claims. Of course, after fixing the vulnerabilities, a
software vendor may (at least temporarily) restore faith in the security of a system by
updating security arguments about mitigating with counter-measures deployed.

A logical analysis of the satisfaction of security requirements leads to an iterative ar-
gumentation process. An initial claim of security goes through rebuttals and mitigations,
because facts become debatable due to the lack of complete knowledge about the design
of software systems, the model of potential attacks, and the organisational and resource

1Email: yijun.yu@open.ac.uk
2http://www.bbc.co.uk/news/technology-26969629
3http://www.bbc.co.uk/news/technology-29375636
4http://www.bbc.co.uk/news/technology-29627887

constraints. Debatable assumptions or facts are referred to as trust assumptions, because
retaining them requires a leap of faith/trust [5]. The “risk assessment in security argu-
mentation” (RISA) approach [4] was proposed in order to expose these trust assump-
tions and assess the security risks that were not included in the initial analysis of security
requirements.

Even though questionable trust assumptions are often found after successful attacks,
the detailed reasons that lead to the denial of security requirements are usually not made
explicit. Without such understanding of the reasons, it is likely that similar mistakes will
be repeated in the future. In this paper, we investigate, using a case study, the feasibility of
exploiting the output of a theorem prover with explicit proof objects to explain rebuttals
of security arguments.

2. PIN Entry Device example

Before introducing the proof system, we first illustrate the application of security argu-
ments using a realistic PIN Entry Device (PED) example. The PED is a type of device
widely-deployed and used by consumers to pay for goods with debit or credit smartcards
at the Points-Of-Sale (POS). When using the device, cardholders typically insert their
cards, issued by a financial institution, into a card-reader interface, enter the PIN using
the PED’s keypad, and confirm the transaction value via a display on the PED itself.
Then smartcard-based systems are expected to authenticate cardholders via the PIN and
verify the card details against a public-key certificate before transactions can be com-
pleted. These certificates are usually stored on the chip but they can also be stored on the
magnetic strip for compatibility with card-readers that have not adopted this technology.

Most PEDs used in Europe implement the EMV (EuroPay, MasterCard and Visa)
protocol in the process of authentication and authorization of payment transactions. This
protocol drives the communication at the PED-card interface and the PED-bank inter-
face. The protocol by design allows only asymmetrically encrypted transmission of the
PIN across these interfaces. However, many card issuers in Europe make the conscious
decision to adopt a low-cost EMV option in their smartcards which researchers [3] have
found to the be vulnerable, since it can be triggered to transmit an unencrypted PIN via
the interface between the PED and card.

To illustrate the problem associated with this example, we constructed an incremen-
tally updated argument to mimic the process of rebuttal and mitigation of security re-
quirements, see Figure 1. In this argumentation diagram, nodes represent the claims, with
factual ground and warrants nested inside. The dotted arrow from a node A to node B
indicates rebuttal of the earlier claim in node A using the facts nested under node B. The
trust assumptions nested inside the nodes are revealed when facts nested in the rebuttal
nodes are found to be inconsistent with them, as indicated by the arrow between the facts
internal to the nodes.

Using the OpenArgue tool [11],5 the structured argumentation diagram can be auto-
matically transformed into a logic formula in Event Calculus. If this formula is inconsis-
tent, rebuttal relationships can be inferred. However, the existence proof of the rebuttal
relationship between two collections of facts doesn’t allow us to explain why inconsis-
tency with the trust assumptions has led to the denial of the initial claim.

5http://sead1.open.ac.uk/risa

Figure 1. Some rebuttals and mitigations about the security claim of the PED system: the upwards arrows
(e.g., DK4→ DK2, A9→ A4) indicate from which facts and domain knowledge the trust assumptions (e.g.,
DK2, DK4) are in question, whilst the downwards arrows show whether inconsistencies arise from the newly
introduced knowledge, but not how (which will be explained step by step with the theorem prover).

3. Explaining the Rebuttals

We have seen that the OpenArgue system allows one to construct security arguments and
display these diagrammatically. However, the reasoning service that supplies informa-
tion on rebuttals relies on detecting inconsistencies through failure to find a model for
a formula that captures the logical content of the argument. Currently, we are exploring

the addition of a further reasoning service, the ALLIGATOR theorem prover [8].6 It will
allows us to identify the premises and reasoning that lead to an inconsistency. In this
section, we briefly describe the prover, illustrate its use with the PED example, and argue
why it is particularly suited for the current task.

3.1. Propositions as Types – Proofs as Objects

The ‘propositions as types and proofs as objects’ (PTPO) idea underpins the ALLIGATOR

theorem prover. It goes back to the work of Curry, Howard and De Bruijn [6,7]. We
describe the idea briefly in this subsection

In logic, the semantic notion of a valid argument from premises P1, . . . ,Pn to a con-
clusion C, written P1, . . . ,Pn |= C, holds if the truth of the premises carries over to the
conclusion. This is complemented by a syntactic notion of derivability of the conclusion
from the premises, written P1, . . . ,Pn ` C. To trace the reasoning behind an argument,
following PTPO, we associate each premise Px with an object px. The notation for this
is px : Px. The object px represents the proof (or evidence) for the premise. Similarly,
the conclusion C is associated with an object c. In contrast with the premises, this object
is, however, a construction: it is constructed from (some of the) proofs of the premises.
Thus, we now write: p1 : P1, . . . , pn : Pn ` c : C.

This approach allows us to pose two different questions. Firstly, we can ask the
straightforward yes/no-question whether p1 : P1, . . . , pn : Pn ` c : C. We are asking
whether, given the premises, c is a proof of C. This is a type checking problem: given
the premises (and the proofs for each of them), is the object c of type C? We treat the
proof c as an object and the proposition C as a type, hence the slogan ‘proofs as objects,
propositions as types’. Secondly, there is the harder question which asks for a proof of
the conclusion: p1 : P1, . . . , pn : Pn `?x : C. In other words, we require a proof object c
which, when substituted for the variable ?x, gives us a valid argument. This is a theorem
proving problem. A solution, i.e a value for ?x, represents a proof of C. In fact, c is very
compact representation of a natural deduction proof for C. It is beyond the scope of this
paper to provide the full set of rules for constructing proof objects for conclusions.7 The
following two examples, however, illustrate the idea.

(1)
p : P ∈ Γ

Γ ` p : P
start

This rule says that if the proposition P and its evidence is part of the set of premises
(notation Γ), then we can derive P as a conclusion from those same premises, with p as
the evidence. Modus ponens is covered by the following rule:

(2)
Γ ` p : P Γ ` f : P→C

Γ ` f · p : C arrow− elimination

This rule allows us to construct a proof f · p for C from the proof p for P and f for P→C.
The constructed proof is obtained through (function) application (signified by ‘·’) of the
proof for P→C to the proof for P.

6http://mcs.open.ac.uk/pp2464/alligator/
7But see the documentation at http://mcs.open.ac.uk/pp2464/alligator/

3.2. The PED example revisited

To adapt the PED example for processing by the theorem prover, we added proof objects
for each of the PED propositions. We used mnenonic names, so for instance the proof
for a proposition F1 becomes p f 1. Thus we obtained the PED premises ΓPED. We then
asked the prover to construct a proof for the contradiction (represented by the symbol
⊥): ΓPED `?x : ⊥. On an Intel Core i7 processor the following solution was returned
(within less than 0.000 seconds): pdk4impliesndk2 · pdk4 · pi1(pa9impliesdk2andna4 ·
(p f 10and f 11impliesa9 · pair(p f 10, p f 11))). This object can be expanded into the fol-
lowing natural deduction proof:

(3)

dk4→¬dk2 dk4
¬dk2

a9→ (dk2∧¬a4)
(f 10∧ f 11)→ a9

f 10 f 11
f 10∧ f 11

a9
dk2∧¬a4

dk2
⊥

The proof shows that a contradiction arises from proofs for both dk2 and ¬dk2, where
dk2 stands for ‘Defeating the tamper proofing mechanism costs more than $25,000’. The
argument against this proposition (on the left-hand side) is based on dk4 – i.e. ‘Incentive
and expertise (with some imagination) represent enough ingredients to overcome tamper
proofing mechanism ’ – implying ¬dk2. The right-hand side of the tree provides a break-
down of the argument for dk2 (which can be explicated in English along similar lines).

For the current application, we have restricted ourselves to the proposition logic.
However, the actual prover can also deal with predicate and higher order logics. This
makes it possible, at least in principle, to analyse arguments at a finer level of granularity.
The proposed proof object-based representations lend themselves particularly well for
modeling the content of natural language sentences, including anaphors and presuppo-
sitions, which are difficult to model in classical predicate logic (see e.g. Piwek & Krah-
mer [9], Ranta, [10] and Cooper et al. [2]).

3.3. Arguments with Natural Language Descriptions and Natural Deductions

The combination of visual diagramatic OpenArgue arguments and the Alligator struc-
tured proof objects provide a natural way to reason about the security requirements. The
naturalness is reflected in two perspectives. First, the natural language descriptions can
appear next to the elements in the argument diagram shown in Figure 1. Second, we have
seen that the prover delivers a compact representation of a natural deduction proof. Apart
from the fact that natural deduction proofs are more suitable for human consumption
than, for instance, resolution and tableaux proofs, there are further benefits to the proof
object representation. This representation can be checked by an independent short pro-
gram for correctness, thus satisfying the de Bruijn criterion: A proof assistant satisfies
the de Bruijn criterion if it generates proof-objects (of some form) that can be checked
by an easy algorithm. [1].

4. Discussions

We have shown, using a concrete example, that a prover with explicit proof objects can
supply details on why claims are rebutted, and is therefore a valuable addition to tool
support for security arguments. In future work, we aim to fully integrate OpenArgue

with ALLIGATOR and perform further evaluations. This will include developing assur-
ance arguments for the translation between OpenArgue and ALLIGATOR notations and
a natural language generation front end to articulate the proof objects.

As an alternative to the traditional PED, recently Apple Pay was announced to be
“usable, secure and private”8. Although this is a bold new claim, it is yet to be seen
whether legal and technical evidence supports it, and whether there are any hidden trust
assumptions of which consumers should be made aware. Our contention is that by codi-
fying arguments into a form that can be readily analysed by the argumentation and rea-
soning tools that are described in this paper will allow one to separate hype from reality.

Acknowledgement Financial support of the ERC (Adv. Grant ASAP No. 291652
project), and SFI (grant 03/CE2/I303 I) are gratefully acknowledged.

References

[1] H. Barendregt and H. Geuvers. Proof-assistants using Dependent Type Systems. In A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning. Elsevier, 2001.

[2] R. Cooper, S. Dobnik, S. Lappin, and S. Larsson. A Probabilistic Rich Type Theory for Semantic Inter-
pretation. In Proceedings of the EACL 2014 Workshop on Type Theory and Natural Language Semantics
(TTNLS), pages 72–79, Gothenburg, Sweden, 2014. Association for Computational Linguistics.

[3] S. Drimer, S. Murdoch, and R. Anderson. Thinking Inside the Box: System-Level Failures of Tamper
Proofing . In SP’2008, pages 281–295. IEEE Press, May 2008.

[4] V. Franqueira, T. Tun, Y. Yu, R. Wieringa, and B. Nuseibeh. Risk and Argument: A Risk-based Argu-
mentation Method for Practical Security. In RE’11 Proceedings, pages 239–248. IEEE Press, 2011.

[5] B. Haley, C. Laney, D. Moffett, and B. Nuseibeh. Using trust assumptions with security requirements.
Requir. Eng., 11(2):138–151, Feb. 2006.

[6] W. Howard. The formulae-as-types notion of construction. In J. Seldin and J. Hindley, editors, To H.B.
Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pages 479–490. Academic
Press, Inc., Boston, MA, 1980.

[7] R. P. Nederpelt, J. H.Geuvers, and R. C. de Vrijer, editors. Selected Papers on Automath. Studies in
Logic and the Foundations of Mathematics. North-Holland, Amsterdam, 1994.

[8] P. Piwek. The ALLIGATOR Theorem Prover for Dependent Type Systems: Description and Proof Sam-
ple. In Proceedings of the Inference in Computational Semantics Workshop (ICoS-5), Buxton, UK,
2006.

[9] P. Piwek and E. Krahmer. Presuppositions in Context: Constructing Bridges. In P. Bonzon, M. Cav-
alcanti, and R. Nossum, editors, Formal Aspects of Context, volume 20 of Applied Logic Series, pages
85–106. Kluwer Academic Publishers, Dordrecht, 2000.

[10] A. Ranta. Computational semantics in type theory. Mathematics and Social Sciences, 165:31–57, 2004.
[11] Y. Yu, T. T. Tun, A. Tedeschi, V. N. L. Franqueira, and B. Nuseibeh. OpenArgue: Supporting Argumen-

tation to Evolve Secure Software Systems. In RE’11, pages 351–352. IEEE press, 2011.

8http://www.bbc.co.uk/news/technology-29107449

