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Abstract

In this paper, we investigate the use of web data resources in medicine, especially through medical classifications
made available using the principles of Linked Data, to support the interpretation of patterns mined from patient care
trajectories. Interpreting such patterns is naturally a challenge for an analyst, as it requires going through large
amounts of results and access to sufficient background knowledge. We employ linked data, especially as exposed
through the BioPortal system, to create a navigation structure within the patterns obtained form sequential pattern
mining. We show how this approach provides a flexible way to explore data about trajectories of diagnoses and
treatments according to different medical classifications.

Introduction

Since the concept appeared two decades ago, knowledge discovery in databases (KDD) has became increasingly
popular in the biomedical domain1. KDD is an iterative and interactive process of 9 steps2 aiming at “identifying
valid, novel, potentially useful, and ultimately understandable patterns in data”. KDD can be broadly divided in three
main stages: preprocessing of data, data mining and interpretation of results. Data mining is the application of specific
algorithms for extracting patterns from massive data. While it is only a step in KDD process, large efforts have
been devoted to the development of efficient and fast algorithms able to deal with huge amounts of data or complex
data. Though it has received less attention, the interpretation step can in many cases be as problematic. Indeed,
some methods such as association rule mining, frequent itemset search or sequential pattern mining can generate large
amounts of results, overwhelming the analyst and making it difficult to extract much insight from the data. Several
strategies have been employed to select interesting patterns, many of them based on quantitative metrics3. Subjective
evaluation of the patterns is usually carried out by the domain experts who might not be familiar with KDD methods.
Therefore, it is of much importance to improve the interpretability of the results to promote the adoption of KDD by
medical and healthcare professionals.
In the biomedical domain, the collection of enormous amounts of data in administrative or clinical information sys-
tems, as well as in clinical and fundamental research, has stressed the need for formalised and machine processable
knowledge in order to facilitate information management, interoperability and data sharing. Formally structured med-
ical knowledge, such as ontologies, terminologies, classifications, is now widely used to annotate, retrieve or reason
upon biomedical data4. Formalized knowledge can support the KDD process in different ways5, especially as a way
to organise patterns and therefore support domain experts in interpreting the results of the data mining step. In this
context, knowledge should ideally be accessible in distributed resources, without overloading the data management
task which is already very significant in KDD processes. Several initiatives led to the constitution of online reposito-
ries of biomedical knowledge6;7. In parallel, within the paradigm of the Semantic Web, Linked Data has emerged as
a set of principles for exposing, sharing, and connecting pieces of data, information, and knowledge.
In this paper, we present a method that exploits external information available as linked open data to support the
interpretation of data mining results, through automatically building a navigation/exploration structure in the results
of a particular type of data mining tool (namely, sequence mining). We demonstrate this method through a use case
based on the analysis of trajectories of care.
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Patient ID Stay Order Item

p1 1 C34.1

p1 1 I10

p1 1 GEQE007

p1 1 GEHE001

p1 2 C34.1

p1 2 C77.1

p1 2 GFFA022

p1 3 ...

... ... ...

Table 1: An exerpt of the trajectory databases

Mining sequential patterns in trajectories of care

With the increasing burden of chronic conditions, health care systems are facing the challenge of containing medical
expenditures while maintaining quality of care8. Patients with chronic conditions use more services and a greater array
of services than other consumers. Multiple encounters of chronic patients with the healthcare system define a so-called
“trajectory” of care. Lack of coordination along such trajectories, bad implementation of guidelines or inappropriate
organisation of the healthcare system may have a negative impact on quality and costs of care. In that context, the
analysis of trajectories of care could provide useful insights about the real patient’s journey in the health system, and
help practitioners and deciders to better manage chronic care.
Although originally designed for billing and financing purposes, claim databases routinely collect healthcare and ad-
ministrative data, potentially holding valuable information for the analysis of trajectories of care. In France, the PMSI∗

is a nationwide information system, adapted from the Diagnoses Related Groups9, that covers all hospitalisations in
the field of acute care.
In this work, we recomposed the sequences of hospitalisations of patients living in the French region of Lorraine.
Patients were selected in the PMSI database if they had a stay in surgery for Lung cancer. An observation window
of 2 years centred on this surgical stay was used to recompose the trajectory of care of the selected patients. The
trajectory of care for each patient was then modelled as a sequence of stays, each stay being characterised by its main
diagnosis, possible co-morbidities and clinical procedures delivered during the stay. In the PMSI, medical problems
are coded with the 10th International Classification of Diseases (ICD10). Medical and surgical procedures are coded
with a French nomenclature: the CCAM†. The set of trajectories, composed of these ICD10 and CCAM items, were
then mined using a sequential pattern mining algorithm.
Sequential pattern mining was first introduced by Agrawal and Srikant10. It is a popular approach to discover patterns
in ordered data and has multiple application in the biomedical domain11;12;13;14. The task of sequential pattern mining
can be defined as follows:
Let I be a finite set of items. A subset of I is called an itemset. A sequence s = 〈t1t2 . . . tk〉 (ti ⊆ I) is an ordered list
of itemsets. A sequence α = 〈a1a2 . . .an〉 is a subsequence of a sequence β = 〈b1b2 . . .bm〉 if and only if ∃i1,i2, . . . in
such that i1 ≤ i2 ≤ . . . ≤ in and a1 ⊆ bi1 ,a2 ⊆ bi2 . . .an ⊆ bin . We note α ⊆ β and also say that β contains α . Let
D = {s1,s2 . . .sn} be a database of sequences. The support of a sequence α in D is the proportion of sequences of D
containing α . Given a minsup threshold, the problem of frequent sequential pattern mining consists in finding the set
of sequences whose support is greater than minsup.
In this work, each patient is represented by its trajectory of care, i.e. as an ordered sequence of hospital stays. Each
stay is an itemset containing diagnosis codes and procedure codes. An excerpt of the trajectory database is shown in
table 1 for illustration.
In this table, patient p1 had 3 stays. The first stay with diagnoses of malignant neoplasm of upper lobe, bronchus or
lung (C34.1) and hypertension (I10). During this stay, the patient underwent a bronchoscopy (GEQE007) with biopsies
(GEHE001). During a second stay, p1 underwent a lobectomy (GFFA022) and was diagnosed with intrathoracic lymph
node metastasis (C77.1). The trajectory of care of p1 can be written as follow :

〈{C34.1,I10,GEQE007,GEHE001}{C34.1,C77.1,GFFA022}...〉

The trajectory database contained 828 sequences. Mining this database with a support threshold of 300 returned a
set of 379 sequential patterns. Beyond the number of extracted patterns, the interpretation of the results can also be
cumbersome because of their format, as sequential pattern have basically the same form as input sequences.
∗Programme de médicalisation des Systèmes d’Information
†Classification Commune des Actes Médicaux
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Interpretation of sequential patterns with linked data

Linked Data15 is a set of principles and technologies that rely on the architecture of the Web (URIs and links) to
share, model and integrate data. The basic idea is that data objects (e.g., a surgical procedure) are identified by web
addresses (URIs), and the information attached to these objects are represented through links (themselves labeled with
URIs) to values (e.g., an anatomical site) or other URIs representing other objects (e.g., a patient). Besides this simple
technological model, the main novelty introduced by linked data is this idea that raw data is represented and exposed
directly on the Web, making the Web a collective data space connecting contributions from any possible sources.
In the biomedical domain, large scale data generation and high-throughput technologies leveraged the development
of structured knowledge and ontologies facilitating the management of data and scientific findings6. Accessing for-
malised biomedical knowledge stored into shared and public repositories has become essential for researchers who can
now exploit data resources from miscellaneous domains16. Initiatives such as Bioportal7 conform to the principles of
Linked Data by providing access to more than 330 ontologies through a SPARQL endpoint.
Considering the potential development and availability of biomedical Linked Data, it seems natural to investigate it
as a source of additional information to support the interpretation of the results of a data mining process, such as
the ones presented in the previous section. Below, we describe an approach using several linked data endpoints to
collect descriptive dimensions about the items that constitute the sequential patterns. Theses dimensions are used to
automatically classify the extracted patterns, thus generating a structure that can support exploration and navigation
into the results of the data mining step . Figure 1 gives an overview of this approach, which relies on a linked data-based
description of the data mining results, on extracting from external linked data sources selected information about these
items and on organising the extracted patterns in a hierarchy. This hierarchy is obtained by applying Formal Concept
Analysis (FCA)17 on the patterns and their description.

Figure 1: Overview of the approach to using Linked Data in interpreting the results of data mining.
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Linking patterns to terminologies through SPARQL endpoints

Enriching extracted patterns with external information includes two aspects: 1- modelling the data mining results in
RDF, in accordance with the principles of linked data and 2- ensuring that the items in the patterns are identified with
URIs in reference to existing Linked Data sources.
The first step was achieved by creating a generic model of sequential patterns inspired by the “Sequence” Ontology
Design Patterns‡. This model is represented in Figure 2. It defines three main classes ( sequentialPattern, itemSet and
item) and their properties.

Figure 2: RDF Model of the pattern 〈{GEQE007}{C34.1,FCFA017}{ZBQK002}〉 with support 289.

The second step of the representation is the one that connects the generic pattern mining representation described
above with Linked Data-based external information characterising the patterns. Here, we used two external sources of
information relying on the controlled vocabularies employed to code diagnoses and medical procedures in the PMSI
system: the ICD10 and the CCAM.
The ICD10 is available as an RDF graph on Bioportal through a SPARQL18 query endpoint (http://sparql.
bioontology.org/sparql/). ICD10 codes, such as C34.1 are identified by a URI of the form http://purl.

bioontology.org/ontology/ICD10/C34.1. The hierarchical structure of the ICD10 is modelled by the
rdfs:subClassOf property. This property allows to link a code to its ancestors at different levels: chapter, block,
category. For example, the block Extrapyramidal and movement disorders can be reached by chaining the
rdfs:subClassOf property from the code G21.0:Malignant neuroleptic syndrome through the category
G21:Secondary parkinsonism. The Bioportal SPARQL endpoint provides additional properties about ICD10 con-
cepts such as their label, their UMLS Concept Unique Identifier and semantic types. . . Among these, mappings towards
other terminologies (e.g., SNOMED-CT) can constitute an interesting alternative way to explore the ICD10 items,
and therefore sequential patterns made of them. From a technical point of view, ontologies and inter-terminological
mappings are hosted in two separate SPARQL endpoints (http://sparql.bioontology.org/sparql/ and http:

//sparql.bioontology.org/mappings/sparql/).
The CCAM is a nomenclature of clinical procedures that has been developed in France, following the principles
established by the European Galen project19. CCAM concepts are identified by a semistructured 7 digits code (4 letters
and 3 numbers) corresponding to a multi-axial construct. The first two letters give the topography site of procedure, the
third one represents the action and the fourth one the approach or technical device. The last three (numeric) characters
allow to distinguish procedures of similar type. Furthermore, the CCAM is independently organised in an arborescent
structure, grouping procedures according to anatomical systems and their diagnostic/therapeutic nature. To the best of
our knowledge, the CCAM is not available through Linked data technologies. However, CISMeF, a French initiative
indexing health Internet resources, has developed a health multi-terminology portal20. The website§ delivers HTML
content including the CCAM, so we reconstructed the CCAM as a RDF graph, reusing the model and names adopted
by CISMeF, and setup a local RDF store that is accessible through a SPARQL query endpoint.

‡see http://ontologydesignpatterns.org/wiki/Submissions:Sequence
§http://pts.chu-rouen.fr/
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Selection of dimensions for pattern exploration

In our system, once the patterns are linked to external data, the analyst is provided a choice among possible directions
of exploration. Indeed, considering the existing data endpoints (in our case, the two BioPortal ones and the local
store containing the CCAM), the properties attached to the items represent as many descriptors that enrich the initial
sequences used as input of the data mining process. This applies not only to properties that are directly attached to
the items, but also indirectly to any path that can be built from them in the linked data graph (i.e., any property chain)
starting with the items. For example, the analyst can exploit the hierarchical structure of the ICD10 to chain the C34.1
ICD10 code to the label of its block. This operation can be achieved based on the following RDF triples :
ICD10:C34.1 rdfs:subClassOf ICD10:C34

ICD10:C34 rdfs:subClassOf ICD10:C30-C39.9

ICD10:C30-C39.9 skos:prefLabel “Malignant neoplasms
of respiratory and intrathoracic organs”

In order to help the analyst in selecting the property chain he wants to apply as a dimension for exploration, we built
an interface that allows him/her to check what properties apply to items in the mined patterns (see Figure 3). A series
of SPARQL queries are used to find out, in the available linked data endpoints, what properties first apply to any of the
items forming the patterns. Subsequently, the analyst can select what properties apply to the values of these properties.
By repeating this process, he/she can build a chain of properties linking to a set of new descriptors for the patterns. In
the example Figure 3, the top left frame show the properties that can be selected as the next link in the property chain.
On this example, the user has already selected rdfs:subClassOf, meaning that he/she is navigating upward in the
ICD10 tree. The user then has the possibility to apply rdfs:subClassOf to go one level upper in the ICD10, to select
the inter-terminological mappings corresponding to the actual level with the skos:closeMatch property, or to select
another dimension included in the ICD10 (e.g., the corresponding UMLs TUI code).

Figure 3: Creating a property chain for exploring the patterns.

Once a chain of properties has been created, patterns can be reorganised and explored according to the new dimension
of exploration. The new descriptors characterising the patterns can be retrieved using, in principle, a mechanism
similar to executing the following SPARQL query¶:

PREFIX pat: <http://mdnj.kmi.org/pattern#>

SELECT distinct ?sp ?v WHERE {

¶Because chains of properties might span over more than one SPARQL endpoint, the actual implementation is technically more complex than
this, but the query illustrates the basic underlying idea.
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?sp pat:hasItemSet ?is.

?is pat:hasItem ?item.

?item p0 ?v1.

?v1 p1 ?v2.

...

?vn pn ?v

}

Where pat denotes the prefix of our RDF model for sequential patterns and p0...pn the chain of properties selected
by the analyst. The result is a set of pairs ?sp ?v associating sequential patterns with their new descriptors.

Classification and pattern exploration with Formal Concept Analysis

At this stage, we have a set of patterns enriched with a set of new attributes that were absent from the initial data. The
new attributes can be used to meaningfully organise the patterns into a hierarchy, structured according to the chosen
dimension. This can be achieved with Formal Concept Analysis (FCA), a theory of data analysis introduced in21.
FCA is tightly connected with data-mining and especially the search for frequent itemsets22. This method organises
information into a concept lattice representing inherent structures existing in data.
FCA starts with a formal context K = (G,M,I) where G is a set of objects, M is a set of attributes, and the binary
relation I = G×M specifies which objects have which attributes. Two operators, both denoted by ′, connect the power
sets of objects 2G and attributes 2M as follows:

′ : 2G→ 2M,X ′ = {m ∈M|∀g ∈ X ,gIm}
′ : 2M → 2G,Y ′ = {g ∈ G|∀m ∈ Y,gIm}

The composition of the ′ operators, noted ′′, defines a closure operator. For any A ⊆ G and B ⊆ M, A′′ and B′′ are
closed sets whenever A = A′′ and B = B′′.
A formal concept of the context K = (G,M,I) is a pair (A,B)⊆G×M where A′ = B and B′ = A. A is called the extent
and B is called the intent. A concept (A1,B1) is a subconcept of a concept (A2,B2) if A1 ⊆ A2 (which is equivalent
to B2 ⊆ B1) and we write (A1,B1) ≤ (A2,B2). The set of all concepts of a formal context K together with the partial
order relation ≤ forms a lattice and is called concept lattice of K. This lattice can be represented as a Hasse diagram
providing a visual support for interpretation.
In our application, the formal context represents the relation between the set of sequential patterns and the set of new
descriptors. Formally, a sequential pattern p is related to a descriptor d if p contains an item that can be linked to d
with the chaining process previously described.
Since the built lattice constitutes a hierarchy, it is natural to use it for navigating the data upon which it was built. This
has been explored before in several different domains23. Here however, we use the lattice to provide a further level of
abstraction with respect to the original data: First, the sequential pattern mining method provides an additional struc-
ture over individual sequences and second, the lattice provides a way to classify and explore these patterns according
to dimensions brought through Linked Data.
Following this idea, Figures 4(a) and 4(b) show the previously introduced interface with the navigation structure
created. In (a), the chain of properties links patterns to the label of ICD10 blocks (refs:subClassOf twice followed
by skos:prefLabel) as the navigation dimension. The upper-right part of the interface now shows an expandable
hierarchy based on the built lattice, starting from the top concept (the one with an empty extension and all the patterns
in the intension).
Next to each concept are indicators of their size/importance. The first number is the size of the concept extension (the
number of patterns). For example, there are 3 sequential patterns including a diagnosis of a “Malignant neoplasm of
respiratory and intrathoracic organs”. Next is the number of more general concepts, and the number of more specific
concepts (e.g., the previous concept has 1 more general concept, the top of the hierarchy, and 1 more specific ones, as
displayed on the interface).
Finally, each concept in the hierarchy can be selected, to show the details that relate to it. In the lower part of
Figure 4(a), the concept “Chronic lower repiratory disease” has been selected, showing the 3 corresponding sequential
patterns extracted in the data. The first one has the focus: it is a sequence of 2 items and is supported by 300 patients.
Similarly, Figure 4(b) shows the classification of sequential patterns along the “organe” (anatomic) axis of the CCAM.
In that case, patterns including a procedure on the trachea and bronchial tree, as well as a procedure on the lymph
nodes have been filtered. The selected pattern represents trajectories containing a stay with a bronchospy followed by
a stay with a mediastinal lymph node resection.
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(a)

(b)

Figure 4: Screenshots of the interface with the lattices built along (a) the ICD10, (b) the CCAM “organe” axis.

Discussion

The method presented above is generic in the sense that it only requires the results of the pattern mining method to
be represented in accordance with Linked Data principles, and some relevant external Linked Data sources providing
information about the considered items to function. Modelling topological relationships between items in a pattern
could support the analyst for advanced querying, reasoning and classification tasks. The sequential model presented
here is well suited to hospitalisation data and sufficient to express the results of the sequence mining algorithms
family10. It allows the representation of both sequential and simultaneous facts in the form of ordered lists of itemsets.
For expressing more elaborated temporal relationships such as Allen’s interval algebra24, several approach have been
proposed in the field of Linked Data25. However, our approach is not restricted to the exploration of sequential
patterns. This principle could be extended to other kinds of patterns by adapting the pattern RDF model. In our
particular use case, Linked Data provides a highly customisable interface to navigate into patterns representing care
processes. Different views are proposed to the analyst, e.g., classifications of patterns according to diagnoses or to
procedures. In each case, the granularity of the classification can be adjusted using the hierarchical structure of the
ICD10 and the CCAM. The exploration can also take advantage from the multidimensional nature of ontologies like
the CCAM. Flexibility is in our view the core benefit of this approach. The possibility to easily map descriptors
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to patterns by traversing a chain of properties across distant sources of biomedical knowledge illustrates the vast
potential of Linked Data for KDD. This stresses the importance of publicly accessible repositories exposing structured
biomedical knowledge such as BioPortal. It also enables the fusion of private/local and public data and knowledge.
Besides, its obvious integration capabilities of Linked Data, the proposed approach can also reduce data management
costs, which are usually significant in the KDD process.
The idea of using domain knowledge in the KDD process is not new26. In the biomedical field, Pathak & al.27

show the potential of Semantic Web technologies for federating heterogeneous data into an input dataset. Regarding
sequential pattern mining, the seminal work of Srikant and Agrawal10 already considered the possibility of using
taxonomic data. However, these approaches focus on the incorporation of knowledge at the preprocessing or data-
mining step. Our approach makes it possible to identify relevant dimensions in the data at the time of interpretation.
Indeed, it is possible to select any dimension after having produced the sequential patterns, and to compare how
different dimensions produce different navigational structures in the results. These dimensions could of course be
included originally in the data being mined, but at the price of increased computational costs and number of patterns.
Besides, it is not always possible to identify in advance what dimensions are relevant. Our method can be seen as
complementary and as a way of selecting knowledge in combination with other techniques14, thus closing the loop of
the KDD process.
Of course, there are some limitations in the system presented in this paper. As we propose a classification of patterns,
and not individuals, the metrics associated with patterns can be misleading when exploring dimensions that were not
in the input dataset. For example, the support of patterns would change if a different ICD10 level of granularity
was used to code diagnoses. Our approach was designed to suggest such adaptations but anticipating the impact of
changing viewpoints on patterns metrics could clearly improve the system. Another limitation is related to technical
implementation in the federation of queries on multiple SPARQL endpoints. Indeed, while a simplified illustration of
the way in which multiple data endpoint can be used was described above, the actual technical implementation requires
to build the results of querying each step of the chain of properties individually through querying each endpoints,
therefore increasing the complexity and resource requirements of the overall approach.

Conclusion

In this paper, we have described and illustrated on a KDD process related to the mining of patients’ trajectories, an
approach to supporting the analyst in interpreting the results of data mining (especially, sequential pattern mining). The
main contribution of this approach is not necessarily purely technical, but also in demonstrating how the availability
of publicly available medical resources, exposed in a form that makes them easily connectable and integrated, can
significantly impact on our ability to exploit data in a KDD process, to gain insight into the quality and effectiveness
of healthcare in a particular domain.
As discussed above, the tool presented above only constitutes a first preliminary investigation into the possibilities of
injecting background knowledge from Linked Data into the KDD process, with a high number of potential applications
in the medical domain, but current limitations coming form the emerging field of Linked Data that will have to be
tackled.
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