
Open Research Online
The Open University’s repository of research publications
and other research outputs

Run-time generation, transformation, and verification
of access control models for self-protection
Conference or Workshop Item

How to cite:

Bailey, Christopher; Montrieux, Lionel; de Lemos, Rogério; Yu, Yijun and Wermelinger, Michel (2014). Run-
time generation, transformation, and verification of access control models for self-protection. In: SEAMS 2014
Proceedings of the 9th International Symposium on Software Engineering for Adaptive and Self-Managing Systems,
ACM, pp. 135–144.

For guidance on citations see FAQs.

c© 2014 ACM

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1145/2593929.2593945

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/82978128?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.1145/2593929.2593945
http://oro.open.ac.uk/policies.html

Run-Time Generation, Transformation, and Verification of
Access Control Models for Self-Protection

Christopher Bailey
School of Computing
University of Kent, UK

c.bailey@kent.ac.uk

Lionel Montrieux
Centre for Research in

Computing
The Open University, UK

lionel.montrieux@open.ac.uk
Rogério de Lemos
School of Computing
University of Kent, UK

CISUC, Coimbra, Portugal
r.delemos@kent.ac.uk

Yijun Yu
Centre for Research in

Computing
The Open University, UK
yijun.yu@open.ac.uk

Michel Wermelinger
Centre for Research in

Computing
The Open University, UK

michel.wermelinger@open.ac.uk

ABSTRACT
Self-adaptive access control, in which self-* properties are
applied to protecting systems, is a promising solution for
the handling of malicious user behaviour in complex infras-
tructures. A major challenge in self-adaptive access con-
trol is ensuring that chosen adaptations are valid, and pro-
duce a satisfiable model of access. The contribution of this
paper is the generation, transformation and verification of
Role Based Access Control (RBAC) models at run-time, as
a means for providing assurances that the adaptations to
be deployed are valid. The goal is to protect the system
against insider threats by adapting at run-time the access
control policies associated with system resources, and access
rights assigned to users. Depending on the type of attack,
and based on the models from the target system and its
environment, the adapted access control models need to be
evaluated against the RBAC metamodel, and the adapta-
tion constraints related to the application. The feasibility of
the proposed approach has been demonstrated in the con-
text of a fully working prototype using malicious scenarios
inspired by a well documented case of insider attack.

Categories and Subject Descriptors
D.4.6 [Software Engineering]: Security and Protection—
Access controls, Verification

General Terms
Security, Verification

Keywords
Adaptive security, RBAC, model verification, self-adaptation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SEAMS ’14, June 2-3, 2014, Hyderabad, India
Copyright 14 ACM 978-1-4503-2864-7/14/06 ...$15.00.

1. INTRODUCTION
The incorporation of self-adaptability into complex sys-

tems inevitably involves the creation and manipulation of
several diverse models related to the different viewpoints of
the system and its environment. In this paper, we show how
this can be achieved in the context of systems security, in
particular, how self-adaptive access control (the parametric
adaptation of permissions and user access rights) can be an
effective solution in protecting against insider threats [13].

Traditionally, organisations rely on audit trails and human
administrators to monitor access control systems for the pur-
pose of identifying and handling malicious behaviour, and
the consequences have been dire [9, 12, 13]. The application
of self-adaptation to access control is a promising solution
to improving management of access in organisations, in par-
ticular, the timely identification and response to malicious
user behaviour for better protecting an organisation’s set
of resources from internal attacks. However, the risk with
self-adaptive access control is the potential negative impact
to an organisation, should unnecessary or invalid adapta-
tion be carried out to systems that are of a critical nature.
The use of models, together with model transformation and
verification at run-time, is seen as a solution to ensure that
when handling malicious behaviour, we are able to obtain
a verified modelled state of access control that conforms to
the organisation’s own requirements.

Authorisation infrastructures, which implement access con-
trol, are typically deployed as a set of independent systems
that conform to an access control methodology, such as Role
Based Access Control (RBAC) [36]. For example, an autho-
risation infrastructure may contain an access control service,
which provides access decisions based on a set of access con-
trol rules, in addition to an identity service, which main-
tains a set of users and user assigned access rights. Users
use their access rights, which are evaluated by the access
control service, to assert whether or not the user should be
given access to a resource. When adapting authorisation in-
frastructures (e.g., the removal of a user’s assigned access
right to a database), it is necessary to maintain a model of
each type of system service to produce a complete model
of access that conforms to the system’s implemented access
control methodology. Model transformation for producing

access control models allows self-adaptive controllers to ab-
stract from implementation specific models, and verify ac-
cess control as whole, as opposed to individual verification
of models relating to independent systems.

The contribution of this paper is related to the provision
of assurances for complex self-adaptive systems that require
the manipulation of several diverse models. We propose
a run-time approach based on model generation, transfor-
mation, and verification for providing assurances that the
deployed adaptation conforms to the system requirements.
This approach is applied, specifically, to self-adaptive ac-
cess control systems in which adapted access control models
are verified before being deployed. The overall goal of our
approach is to identify malicious behaviour, in the form of
insider attacks, in order to automatically modify policies and
rules for mitigating ongoing attacks or prevent future ones.
In order to show the feasibility of the proposed approach,
we have developed a fully working prototype in which the
implementation specific models, including the solutions to
deal with the attacks, are transformed into an RBAC model
using the Atlas Transformation Language (ATL) [21]. This
RBAC model is then verified using the rbacDSML verifica-
tion tool [1, 27], which is able to verify a UML model of
RBAC against OCL constraints. To evaluate our approach,
we simulate a documented case of insider attack within our
own deployed self-adaptive authorisation infrastructure [4].
The simulation has demonstrated the ability of our proto-
type to handle multiple attacks using verified adaptations of
the authorisation infrastructure.

The rest of this paper is structured as follows. In Section
2, we present background to our work. Section 3 describes
our approach of model generation, transformation and ver-
ification in the context of a real life insider attack. In Sec-
tion 4, we describe an experiment involving our prototype,
demonstrating the handling of an insider attack. Section 5
discusses related work in terms of access control, verifica-
tion, and self-adaptation. Finally, Section 6 concludes by
summarising the work done so far, and indicates future di-
rections of research.

2. BACKGROUND

2.1 Role Based Access Control (RBAC)
Role-Based Access Control (RBAC) is an access control

methodology that features roles as first-class citizens [36]. In
RBAC, users are not assigned permissions directly. Instead,
they are assigned roles, and those roles are in turn assigned
permissions, in order to facilitate the maintenance of large
access control policies. RBAC also features role hierarchies,
where a role inherits its ancestors’ permissions, as well as
constraints. Example of constraints are static separation of
duties (SSoD), in which two roles cannot be assigned to a
user, and dynamic separation of duties (DSoD), where two
roles cannot be activated at the same time by a user. RBAC
has been standardised by OASIS [30], and is composed of
four levels, each one adding new constructs on top of the
lower one.

2.2 RBAC Model Verification
Large access control models can be difficult to manage by

hand. Ensuring the consistency of the model, but also mak-
ing sure that the model conforms to the designers’ require-
ments can become a non-trivial and error-prone task when

Figure 1: rbacDSML metamodel in MOF

carried out manually. An automated verification mechanism
can greatly increase the quality of an access control model,
and reduce the number of errors as well as the time spent
maintaining access.

As a domain specific language, and a verification tool,
rbacDSML allows one to model RBAC policies that conform
to the RBAC standard [30], alongside scenarios, which are
instantiations of the designers’ requirements. rbacDSML is
implemented as a UML profile, and ensures the consistency
of the policy as well as its satisfaction of the scenarios using
OCL constraints [1, 27]. rbacDSML is available as an open-
source plugin for IBM Rational Software Architect [20]. A
standalone version is also available, currently with a limited
set of features.

Since rbacDSML is a UML profile, it is defined as an
extension of the UML metamodel that adds new stereo-
types and associations to standard UML models. Figure 1
shows the extension of the UML metamodel for rbacDSML,
in MOF, the OMG language for meta-model representa-
tion [33]. Users, roles, permissions and resources are rep-
resented by stereotypes attached to UML classes. Static
and dynamic separation of duty constraints are represented
as stereotyped associations between two roles. Role hierar-
chies are represented as class hierarchies. These constructs
are a one-to-one translation of the standard RBAC model.
In addition to standard RBAC, rbacDSML provides several
types scenarios, that are represented as stereotypes attached
to classes. User scenarios require that a user, given a set of
active roles, must be able to (resp. not be able to) access
a set of resources if stereotyped with Granted (resp. For-
bidden). User - role scenarios require a role to be assigned
to at least one user. Role - resource scenarios require a set
of resources to be accessible using the permissions given by
a role. Finally, resource scenarios require a resource to be
accessible by at least one user.

rbacDSML uses seven OCL constraints: two to verify that
SSoD and DSoD constraints are not violated; one to verify
that roles activated in a scenario have been assigned to the
user involved in the scenario; and finally, one constraint for
each type of scenario.

2.3 Self-Adaptive Authorisation
Authorisation infrastructures exist to control access to an

organisation’s electronic resources (e.g., web applications,
servers, databases). They are represented as a collection
of identity services [25], which maintain information about

Figure 2: SAAF conceptual design

users and their access rights, and authorisation services [14],
which enable access control (the evaluation of user access
rights). Management of authorisation infrastructures has
increased in complexity, as a result of large user bases and
federation [29], but typically rely on human administrators
to maintain the conditions of access, and identify when ac-
cess should change.

Previous work has proposed a Self-Adaptive Authorisa-
tion Framework (SAAF) as a solution to managing access
control autonomically [3]. SAAF is based on the MAPE-
K [23] feedback loop for identifying and responding to in-
sider threats [13], which are typically conducted through
user exploitation of legitimately assigned access rights. The
provision of self-adaptation to authorisation infrastructures
has shown to be a promising solution to respond to insider
threats [4, 5], as the adaptation of access control can pre-
vent or limit a malicious user’s ability to access protected
resources, thus mitigating the attack. The SAAF controller
performs adaptations when reacting to identified insider at-
tacks, either by modifying access control policies or user
access rights (e.g., the removal of user RBAC roles).

Figure 2 presents a conceptual view of SAAF in which
an autonomic controller monitors and adapts multiple sys-
tems within an authorisation infrastructure. This presents
a challenge since no single system provides a complete view
of access in terms of what users own in access rights, what
access control rules exist, and finally, how users are utilising
access rights. In addition to this, each system may differ
on their implementation of the access control methodology
that the system claims to conform to (e.g., the RBAC stan-
dard). As a result, it can be said that each authorisation
service has its own implementation specific model represent-
ing part of an access control model (such as, active RBAC
roles and permissions). Moreover, an existing limitation of
SAAF is its inability to verify an adapted state of access
before it is realised in an authorisation infrastructure. In
its current form, SAAF assumes that whatever adaptations
take place will not break conformance to the service’s im-
plemented access control methodology (RBAC), nor conflict
with application domain requirements (e.g., ensure access
to business critical systems). The use of models (to identify
state of access), and model verification at run-time, is seen
as a solution to the above existing SAAF limitations.

3. APPROACH
Authorisation infrastructures can be considered critical

for organisations, as they provide services to an organisa-
tion that enables their users to access resources and perform
their duties. A primary concern when adapting a user’s ac-

cess to resources is to obtain guarantees that the resulting
adaptation will resolve problems without creating additional
ones. It is also important to ensure that any adapted model
of access conforms to the authorisation infrastructure’s im-
plemented access control methodology (i.e., RBAC).

In the following, we take as an example, a well reported
case of IP theft involving a chemical research company [13],
where, as any modern organisation requires, there is a need
to provide secure access to organisational resources to rele-
vant employees. The chemical company at any given time
may need to modify its authorisation infrastructure due to
the organisation undergoing natural change (new users, or-
ganisational roles, resources), or as a result of access being
defined incorrectly, or due to the identification of malicious
activities exhibited by their users. As such, the chemical
company case study provides the basis to highlighting the
benefits of using models, and their run-time verification,
in self-adaptive authorisation infrastructures. We do not
discuss the detection of insider threats since in a previous
work [4] we have shown how the SAAF controller identi-
fies and responds to extreme usage of resources. Such de-
tection techniques can be improved upon with existing ap-
proaches, including, anomalous detection through machine
learning [10] to handle the detection of unknown attacks.

In this section, we detail our approach in which a SAAF
controller makes use of models for capturing the current
state of access control, and of model transformation for sup-
porting the verification of those models. Verification enables
a controller to identify whether the adapted modelled state
of access conforms to the authorisation infrastructure’s im-
plemented access control methodology (i.e., RBAC), as well
as ensuring the model of access meets the application do-
main’s requirements.

3.1 Chemical Company Case Study
In late 2005, a chemical research company was a victim

to an insider attack [13] in which an attacker stole around
22,000 sensitive documents from an ElectronicLibrary. The
attacker, at the time, was an employee of the chemical com-
pany, whereby it was assumed he had legitimate access rights
to the ElectronicLibrary. The attack was committed over a
period of 4 months, and only identified once the attacker
had ended his contract and begun working for a competitor.

From the account of the attack it is difficult to surmise
a complete picture of the system, however it is likely the
chemical company operated an authorisation service to man-
age access to their ElectronicLibrary, and utilised identity
services to maintain access rights of their users. For the
purpose of demonstrating our approach, we make the as-
sumption that the chemical company implements RBAC
(due to RBAC’s popularity in industry) as their access con-
trol methodology, as shown in Figure 3, where users have
relevant roles, such as Researcher, who have permissions,
such as Get Document from ElectronicLibrary. To imple-
ment RBAC, we provide an identity service referred to as
LDAP [25], which is a directory service commonly used to
hold information (including user roles) about users within an
organisation, and an authorisation service known as PER-
MIS [14], a standalone service used to generate RBAC ac-
cess control decisions based on roles owned by users. It
is assumed the attacker would have utilised his role stored
within the LDAP directory for gaining access to the Elec-
tronicLibrary, whereby the ElectronicLibrary would request

Figure 3: Interpreted chemical company class dia-
gram

an access control decision from the PERMIS authorisation
service. The PERMIS authorisation service would in turn
check permissions held within its own access control policy,
to see if the accessing user has the relevant roles for access.

Although the identification of the attack is not clearly dis-
cussed in the account, we will classify the properties of the
attack in terms of the attacker’s usage of the ElectronicLi-
brary. Notably, the attacker’s usage was 15 times higher
than the next highest user downloads, and many of the
downloaded documents were not related to the attacker’s
role [13]. Had a SAAF-like controller been deployed in this
case, it would have been possible for the attack to be de-
tected (and thus responded to) using a set of predefined rules
that enable the controller to detect unacceptable patterns of
user behaviour [28].

3.2 Model Generation
Before the SAAF controller can begin to identify and re-

spond to the insider attack the chemical company was victim
to, it must generate a set of implementation specific models
representing the active identity services, and authorisation
services within the authorisation infrastructure. The SAAF
controller generates these models via its monitor component
within the MAPE-K loop, whereby probes obtain informa-
tion about the services, which is in turn injected into a model
of the service. A model generated from the LDAP iden-
tity service provides a view of active users and user role
assignments. A model generated from the PERMIS au-
thorisation service provides a view of active RBAC access
control rules, such as the permissions of each role. Both
models generated conform to implementation specific meta-
models, which describe what can exist in terms of LDAP and
PERMIS. The PERMIS metamodel is automatically gener-
ated from PERMIS’s own proprietary access control policy
schema, whereas the LDAP metamodel has been defined
solely to capture the necessary user information in terms of
how LDAP views a user’s set of assigned roles. A benefit in
utilising implementation specific models is that a service’s
model can be adapted and easily realised against the de-
ployed service. However, a limiting factor is that the SAAF
controller must maintain an understanding of each type of
service it is to control, in order to identify how the service
implements RBAC.

3.3 Model Transformation
Relying on implementation specific models is useful since

it is easier to understand and adapt the current state of the
LDAP and PERMIS services, considering that each model
is independent to each other and is subject to independent
change. However, for verifying a modelled state of access,
the SAAF controller combines the implementation specific
models into a single model, which embodies the authorisa-
tion infrastructure’s access control methodology (RBAC).
Figure 4 portrays the use of models within the SAAF con-
troller as a set of model to model transformations, conform-
ing to the model driven engineering framework [11]. The
transformation diagram describes two domains, the first is
the SAAF controller’s domain, where it maintains metamod-
els of the LDAP identity service (LDAPUser) and the PER-
MIS authorisation service (PERMIS). The RBAC metamodel
is an implementation of the RBAC standard, relevant to
SAAF. The second domain is RBACDSML [27], which main-
tains a metamodel to model RBAC in UML for the purpose
of verification, which is described in Section 3.5.

The RBAC model represents the SAAF controller’s knowl-
edge of the current state of access. It combines a view
of the active RBAC access control rules maintained in the
PERMIS authorisation service, as well as current user role
assignments held in the LDAP directory. In the chemi-
cal company’s case it represents a combined view of the
active RBAC access control rules maintained in the PER-
MIS authorisation service, as well as active user role assign-
ments held in the LDAP directory. The RBAC model is
produced as a result of an Atlas Transformation Language
(ATL) [21] transformation program, referred to as PER-
MIS+USER2RBAC. The PERMIS+USER2RBAC transfor-
mation takes as input a model generated from what is in-
jected from the LDAP directory, and a model generated from
what is injected from the PERMIS active access control pol-
icy. Each time the implementation specific models are up-
dated, via injection of data collected by probes in the au-
thorisation infrastructure, the SAAF controller performs the
PERMIS+USER2RBAC transformation. This ensures that
the SAAF controller maintains an up-to-date modelled state
of access that exists within the authorisation infrastructure.
Once the implementation specific models have been trans-
formed into the RBAC model, the SAAF controller is able
to reason about the state of access and adapt the RBAC
model in light of detected attacks.

Whenever the RBAC model undergoes adaptation, the
RBAC model must be transformed back into the implemen-
tation specific models, and then deployed back into the rel-
evant services of the authorisation infrastructure. Transfor-
mation programs are beneficial here, as the SAAF controller
is not concerned with how to adapt implementation spe-
cific models, rather, relies on the transformation program
to transform the changes made against the RBAC model,
into the relevant LDAP or PERMIS model. Two separate
transformation programs have been created to enable this:
1) RBAC2PERMIS, which creates a new PERMIS access
control policy model, capturing new RBAC access control
rules, and 2) RBAC2USER, which creates a new user model
specifying new user role assignments.

3.4 Adaptation
Figure 5 depicts a partial view of the SAAF controller

capturing the process of analysis, verification and selection

Figure 4: Model transformation in SAAF

of a verified RBAC model. The SAAF controller comprises
the analysis, which generates new access control models (in
terms of RBAC), and the planning, which selects the most
appropriate access control model amongst the valid ones.
For each identified attack, and depending on the type of at-
tack and current access control model, obtained by inspect-
ing the authorisation infrastructure, the SAAF controller se-
lects a subset of solutions applicable to a particular attack.
The solutions are tailored and incorporated into the current
access control model. In order to ensure that the adapted
access control models are relevant for the user identified as
malicious and the resources they are accessing, each adapted
RBAC model is verified against the the rbacDSML verifica-
tion tool. Depending on a positive output of the verification
tool, the adapted RBAC models are collated into a set of
verified adapted RBAC models, applicable for planning.

At deployment-time, the SAAF controller is loaded with
a set of predefined solutions to respond to malicious events.
The solutions match a finite set of actions that can be per-
formed within the application domain, and are parametric
in order to tailor the solutions to specific cases of insider
attacks. Given a detected attack, a solution is selected from
the following alternatives: 1) increasing, limiting or remov-
ing access rights owned by an individual, 2) increasing or
limiting the scope of access defined by RBAC access control
rules, 3) warning the individual(s) of their behaviour, and
4) monitoring the behaviour further. Associated with each
solution is an impact, since depending on the type of action
invoked could cause either negligible or severe consequences
to the system (which may be warranted given the severity
of the attack detected). Which solution is selected depends
on how severe the SAAF controller deems the identified be-
haviour to be, in terms of utility, for example: the number
of non malicious users impacted negatively by the solution
(thus losing access to resources). This may be necessary for
cases where many users are identified as being malicious in
relation to specific resources or roles, where changing RBAC
access control rules provide a more effective means to re-
sponding to the attack.

A simple case of adaptation can be made in terms of the
RBAC metamodel (Figure 1). Adaptation can be performed
against an RBAC model in terms of removing associations
from users and roles, resources and permissions, and roles
and permissions. For example, removing the role Researcher
from user Bob to prevent Bob from accessing resource Elec-
tronicLibrary.

Figure 5: SAAF controller model verification

Before the state of access control can be adapted to handle
an attack, solutions applicable to the problem are verified for
their conformity to the RBAC standard, as well as, against
adaptation constraints. Adaptation constraints represents
the application domain’s mandatory requirements for access
that should be maintained when responding to an attack.
For example, the chemical company may specify that access
to the ElectronicLibrary must be maintained for a specific
role, regardless of identified attacks, or that each resource
should be accessible by at least one user. In order to per-
form verification, the application’s adaptation constraints
are modelled at development-time as scenarios, in confor-
mance to rbacDSML (Figure 1) and captured by the CON-
STR M model (Figure 4). For the SAAF controller to make
use of the rbacDSML verification tool, which is capable of
verifying RBAC in UML with OCL constraints, the adapta-
tion constraints have to be transformed into a UML model of
RBAC by invoking RBAC+CONSTRAINTS2RBACDSML.

The final part of the adaptation engine is to select an opti-
mum verified RBAC model to be deployed in the target au-
thorisation infrastructure. This differs to previous work [4,
5] whereby all solutions were assumed to result in a verified
state of access, and adaptation constraints were not consid-
ered.

3.5 Verification
The purpose of the verification step is twofold: to make

sure that the adapted RBAC model is consistent, i.e. that

it conforms to the RBAC standard and that separation of
duty constraints are not violated, and to make sure that the
RBAC model does not violate the adaptation constraints.
To this end, a transformation combines the adapted RBAC
model with the application’s adaptation constraints into an
rbacDSML model. The standalone version of the rbacDSML
tool’s OCL constraints carry out the verification process.

Each OCL constraint has been defined on the rbacDSML
profile metamodel. Each constraint has a context : a stereo-
type on which the constraint applies. The verification pro-
cess will evaluate each OCL constraint on every instance
of its context stereotype present in the model. For exam-
ple, the SSoD constraint’s context is the User stereotype.
If there are 20 users in the model, this constraint will be
evaluated 20 times, once for each user.

rbacDSML returns a list of violated constraints, together
with their context elements. Therefore, if the SSoD con-
straint has been violated for user Bob, then rbacDSML will
return (WF SSoD, Bob) as an element of the list. If no con-
straints have been violated, rbacDSML returns an empty
list.

If the verification has succeeded (i.e., an empty list is re-
turned), the adapted RBAC model is acceptable, and it will
be deployed. If one or several errors are detected, the RBAC
model is not acceptable, and the SAAF controller will select
another candidate RBAC model. If the SAAF controller
runs out of candidates, the adaptation is simply cancelled,
and the state of access remains the same. The failure to han-
dle an adaptation is simply logged by the SAAF controller,
however this could be improved with a mail notification to
human administrators.

4. EXPERIMENTS
In this section, we evaluate our approach through a scaled

simulation inspired by the chemical company insider attack
within an RBAC self-adaptive authorisation infrastructure.
A SAAF controller is deployed in order to identify the insider
attack, and attempt to handle the attack by adapting the
state of access. We focus our evaluation on verification, by
demonstrating that the SAAF controller considers several
solutions while handling the simulated attack, whereby only
a verified solution is selected. To showcase the evaluation of
complex solutions, we extend the insider attack scenario to
consider the case of multiple collaborating attackers. This
enables the demonstration of solutions involving adaptations
against access control policies. Evidence is provided by way
of a table in which we capture the escalation of the attack
and the increasing set of solutions relevant to resolving the
attack. For each phase of the attack, the available solutions
are verified, restricting the overall set of solutions for the
SAAF controller to select, and deploy. Finally we provide
scalability measures in regards to the verification of access
control models at run-time.

4.1 Scenario Setup
To simulate the insider attack, we deploy an RBAC autho-

risation infrastructure containing an LDAP directory with
several users, a PERMIS authorisation service with an ac-
cess control policy, and a SAAF controller. We refer to this
deployment as a self-adaptive authorisation infrastructure
and is based on Figure 3. The authorisation infrastructure’s
state of access (pre-adaptation) is identified in Figure 6. At
deployment-time, 8 users are active, with assigned roles held

Figure 6: Deployed state of access (RBAC)

in the LDAP directory. The PERMIS authorisation service
has one active access control policy, which states users with
the role Supervisor, Researcher and Administrator can ac-
cess the ElectronicLibrary GetDoc resource. Note in this
case, multiple roles have access to the same permission ex-
pressed in the PERMIS access control policy.

The properties of the chemical company case suggest a
long term attack, whereby a single user downloaded a high
volume of documents over a period of 4 months. In addition,
the detection of the attack suggests it was made through
calculating the deviation of the attacker’s historic usage of
the ElectronicLibrary to other users, where the attacker’s
usage was 15 times greater [13]. For the purpose of the
paper, we scale down the attack and simulate usage of the
ElectronicLibrary within a period of 4 hours (as opposed
to the 4 months in which the attack was conducted), and
instead of 22,000 documents downloaded, we assume 240.
We also assume that the acceptable number of downloaded
documents within that period of 4 hours is 16, which is 15
times less than 240.

4.2 Deployment
The self-adaptive authorisation infrastructure is hosted

across two virtual machines, each with 1024MB of RAM and
running Ubuntu 12.04.3 LTS. The virtual machines repre-
sent an identity service, containing an LDAP directory, and
an authorisation service, containing a deployment of PER-
MIS. The SAAF controller is also deployed on the authori-
sation service machine, where it is best suited to managing
PERMIS access control policies. Finally, the existence of the
ElectronicLibrary is simulated via access requests made in
the form of HTTP requests from a Windows 7 machine (2GB
of RAM). Access is simulated through the use of an auto-
mated script, sending access requests to PERMIS, whereby
user access rights are evaluated. Each granted request to
download a document from the ElectronicLibrary is seen as
synonymous with a user downloading a document.

4.3 Application Domain Requirements
The application domain represents the victim organisa-

tion (the chemical company), whereby the organisation owns
the authorisation infrastructure, its deployed services, the

SAAF controller, and the protected resources (i.e., Electron-
icLibrary). The application domain’s requirements are nec-
essary in governing the extent of adaptation, regardless of
what malicious behaviour is detected, and are modelled as
rbacDSML scenarios (adaptation constraints) as described
in Section 2.2. In these cases, it may be that the chemi-
cal company is only willing to risk automated adaptation
where only low level workers are impacted. To reflect these
concerns, we deploy the following adaptation constraints:

• C1 Administrator role must maintain access to all re-
sources (Role Resource Scenario)

• C2 At least one user must be assigned the Administra-
tor role (User Role Scenario)

• C3 Each resource should be accessible by at least one
user (Resource Scenario)

4.4 Identification
The SAAF controller is capable of identifying malicious

behaviour within an authorisation infrastructure, either via
signature, pattern, or deviation based behaviour rules. Be-
haviour rules denote pre-defined conditions which represent
malicious behaviour within the target authorisation infras-
tructure. Signature based refers to access or usage of a re-
source from blacklisted subjects or IP addresses. Pattern
based refers to a pattern of usage of access or a resource,
conducted by a user over time, for example, the rate of ac-
cess requests to a resource in a given period of time. Finally,
deviation based refers to a user’s pattern of usage in compar-
ison to historical usage of a user or other users, for example,
how one user’s activity compares to that of another user
with the same role.

Considering the properties of the attack, the SAAF con-
troller is deployed with a single deviation type behaviour
rule, whereby should it detect usage of the ElectronicLibrary
from users with the role of Researcher as greater than 3
times the frequency of average number of downloads (within
the 4 hour interval), malicious behaviour is detected. We
assume for the purpose of the experiment that the average
number of downloads is considered to be at most 16, as dis-
cussed in the adaptation scenario. In addition, to classify
severe behaviour, a composite rule is applied [4], which in-
dicates after the deviation rule has been broken multiple
times, the behaviour is severe enough to warrant adapta-
tions to policies (which generate greater impact).

4.5 Solutions
The SAAF controller is deployed with a set of solutions,

tailorable to detectable attacks. All of the below solutions
are considered to be capable in resolving malicious behaviour
detected by the deviation type behaviour rule expressed in
Section 4.4. These solutions are expressed in XML and
parsed into the SAAF controller once initiated. Solution
S1 indicates adaptation to the individual, where as, solu-
tions S2 to S5 indicates policy adaptation, impacting many
individuals. They remain fixed throughout run-time.

• S1 Remove all roles from <user>

• S2 Remove <permission> from <role>

• S3 Remove all permissions to <resource>

• S4 Remove all permissions from <role>

• S5 Remove all permissions from all roles

4.6 Execution
To demonstrate the flexibility of adaptation and verifica-

tion, we simulate the properties of the chemical company
insider attack as a coordinated attack between 4 users with
the Researcher role, with the intent to carry out IP theft
against the ElectronicLibrary. There are 4 stages of the at-
tack, capable of demonstrating simple adaptation against
individual users, followed by adaptation against access con-
trol policies. In each stage a new user is simulated to break
the SAAF controller’s behaviour rules, allowing SAAF to
identify the malicious behaviour and respond to it accord-
ingly. All but three users of the Researcher role and the
one user owning the Administrator role take part in the at-
tack. As each stage is simulated, the number of solutions
applicable to the behaviour increases, identifying that the
ElectronicLibrary is under persistent attack.

The first stage demonstrates the user Anne breaking the
deviation type behaviour rule by downloading a high number
of documents at the start of the 4 hour attack period, using
her assigned Researcher role. The second and third stage
introduce users John and Mary carrying out similar activity
to stage one, again within the same 4 hour window and
using the Researcher role. Finally, the forth stage simulates
the user Bob breaking the same behaviour rule, using his
Researcher role. Each stage considers a set of solutions,
whereby the set of verified solutions is captured, and the
result of the adaptation engine is shown in terms of a selected
verified solution.

4.7 Scenario Results
We have simulated the attack over a period of 4 hours,

in accordance to the 4 stages described in Section 4.6. A
set of solutions ({S1, S2, S3, S4, S5}) were deployed in the
SAAF controller, relevant to handling the deviation based
behaviour rule. The solutions were chosen to demonstrate
the verification of invalid and valid RBAC models at run-
time. To gain a performance average for the response to
each attack stage, the experiment was executed 30 times.
For practical reasons, performance averages were obtained
from simulating the attack in a reduced attack period of 5
minutes, where adaptation and verification results showed
negligible difference to the 4 hour simulation.

Table 1 portrays the 4 stages of attack. In the first two
stages, the SAAF controller considers the malicious behaviour
to be minor, only identifying solution S1 as a relevant solu-
tion. At this point solution S1 has been tailored to the role
the user is activating (Researcher), and the resource they are
accessing (ElectronicLibrary). In both stages, the tailored
solutions result in a verified RBAC model since there is no
conflict with the 3 constraints described in Section 4.3. Solu-
tion S1, which removes Anne and John’s access rights, thus
their ability to access the ElectronicLibrary, is chosen as it is
the only valid solution available. The solution is realised by
transforming the adapted RBAC model into a LDAP user
model, which is then used to update the current state of
access rights within the LDAP. The adaptation, from de-
tection to response within the authorisation infrastructure,
took an average of 18.70 seconds to complete in the first
stage, and a average 10.74 seconds to complete in the sec-
ond stage. The difference in time is assumed to be as result

Table 1: Verification and adaptation results

Stage User Identified Solutions Valid Solutions Selected Solutions Avg. Response Time (sec) Standard Dev.

1 Anne S1 S1 S1 18.70 1.11
2 John S1 S1 S1 10.74 0.64
3 Mary S1, S2, S3, S4, S5 S1, S2, S4 S1 45.12 1.30
4 Bob S1, S2, S3, S4, S5 S1, S2, S4 S4 44.79 1.31

of the Java virtual machine warming up, in which both the
SAAF controller and verification tool runs on.

Once the third stage of the attack was executed, the SAAF
controller identified that there was a continuous malicious
activity regarding the role of Researcher, and the resource
ElectronicLibrary. As a result, the SAAF controller selects
a more severe set of solutions ({S1, S2, S3, S4, S5}). In this
case, the SAAF controller builds multiple RBAC models in
accordance to the tailored solutions, and verifies them using
the rbacDSML tool, resulting in solutions S3 and S5 verified
as invalid. This is due to the fact that solution S3 removes
all access to the ElectronicLibrary, violating adaptation con-
straints: C1, and C3. The same violation of constraints
C1 and C3 occurred when the SAAF controller deactivated
all permissions within the RBAC model, for solution S5.
Solution S1 is ultimately chosen as the solution with the
optimum utility, given the severity of the attack and the so-
lutions available (Section 3.4). This is a result of the SAAF
controller calculating that stronger adaptations (S2 and S4)
would cause greater impact than allowing the attack to con-
tinue, whereas S1 does not, as it only impacts the attacker.
As with stage 1 and 2, Marys’s access right to the Elec-
tronicLibrary has now been removed, preventing her from
further access. The adaptation of stage 3, from detection to
response, took a total average of 45.12 seconds. This is due
to additional RBAC models undergoing adaption, transfor-
mation into a rbacDSML UML model, and verification using
the rbacDSML verification tool.

Finally, in the last stage of the attack, the same solutions
are identified and verified similarly to stage 3; however, so-
lution S4 is selected. Solution S4 removes all permissions
from the Researcher role, preventing any future user with
the same role from activating it. The solution is realised by
transforming the adapted RBAC model into a new PER-
MIS model, which is then deployed as a new access control
policy. This has a negative consequence on the remaining 3
users with the Researcher role, as they are no longer capable
of accessing the ElectronicLibrary. However, the SAAF con-
troller has selected this solution due to the persistent attacks
against the ElectronicLibrary. A contributing dimension of
utility to this is that in stage 4, there are more malicious
users that own the Researcher role when compared to non-
malicious users.

4.8 Scalability of Verification
To demonstrate the scalability of verification in terms of

RBAC models, we randomly generated models with up to
10000 elements (where an element could be of type sub-
ject, role, permission, and constraint scenario). Each model
increased in size, and verified on the same environment de-
scribed in Section 4.2. For consistency, each model gener-
ated contained a ratio of 50% subject elements, 15% role
elements, 10% permission elements, 10% resource elements,
and 15% constraint scenario elements. The verification of

100000 2000 4000 6000 8000

8

10

12

14

16

18

20

Model	 size	 (number	 of	 elements)

Av
er

ag
e

re
sp

on
se

 (s
)

Figure 7: Scalability of model verification

each model was repeated 10 times to obtain an average and
standard deviation. The scalability results are shown in
Figure 7, where as the model size increased, the verifica-
tion times were shown to follow a linear pattern. Note that
these performance measures only capture the time it takes
to complete a verification cycle, and does not represent a
complete adaptation cycle (as shown in Table 1).

4.9 Discussion
The results have enabled us to demonstrate the verifica-

tion of RBAC models, which has prevented invalid tailored
solutions from being deployed in the target authorisation
infrastructure. In addition, we have shown the escalation
of attack to be met with the verification and application
of stronger solutions, ultimately stopping the collaborated
attack through an adaptation to the access control policy.

One restriction in our approach is that verification is con-
fined to mandatory constraints that must always be verified
per adaptation. In some cases it can be argued that dif-
ferent levels of verification are needed, given the attack or
solutions available. For example, given a minor attack on
the ElectronicLibrary, the application domain may require
a constraint guaranteeing at least one researcher maintains
access to the resource. However, should the attack continue
and becomes severe, the application domain may require
that the constraint is no longer applicable since the Elec-
tronicLibrary has suffered a severe attack. One solution to
this is to classify identified attacks against available con-
straints, indicating which constraints should be verified per
attack (in addition to mandatory constraints).

In regards to performance, solution verification is a re-
source intensive operation, and as a result, it takes longer
when processing multiple solutions. As SAAF serialises the
solution analysis when reacting to attacks, the set of solu-
tions applicable to each attack can be verified in parallel (as
each solution is independent of one another).

5. RELATED WORK

5.1 Access Control and Verification
Role Based Access Control (RBAC) is arguably one of the

most researched access control models; however, recently,
Attribute-Based Access Control (ABAC) models [40] have
been receiving more interest from the research community.
Sandhu argues that the move from role-based to attribute-
based access control opens up new possibilities, as well as
new research challenges [35]. RBAC models can be repre-
sented using ABAC models, where the roles are defined as
attributes. One of the best known ABAC policy languages,
XACML [31], features a profile to represent RBAC mod-
els [32]. The focus of this paper is on RBAC, both for its
standardised and well-understood model, and for its support
by PERMIS.

The conformance of XACML policies to designers’ require-
ments has received a lot of interest. Fisler et al. trans-
form access control policies into decision diagrams that can
be queried [17]; Hughes and Bultan use a SAT solver on
XACML policies to verify that the policy conforms to some
properties [19]. Gofman et al. verify properties of RBAC
and ARBAC (another RBAC extension) models using RBAC-
PAT [18]. The Ponder2 framework also provides policy ver-
ification capabilities, using event calculus [6].

Many approaches have also been proposed that allow one
to model authorisation policies, and sometimes verify them
against requirements, as part of a Model-Driven Engineer-
ing approach. rbacDSML is one of them. A few of these
approaches use UML profiles to represent RBAC policies,
and often query then using OCL constraints; they include
UMLsec [22], SecureUML [8], Shin and Ahn’s approach [2],
and Cirit and Buzluca’s UML profile [15]. Kim et al. repre-
sent RBAC policies as UML patterns that are then instanti-
ated on a model, using UML template diagrams [24]. Song
et al. use Aspect-Oriented Modelling to represent RBAC
policies as crosscutting concerns in a UML model, and pro-
vides support for verifying properties that the model should
satisfy [38]. Sun et al. translate UML models to Alloy in
order to verify properties using a SAT solver [39]. Finally,
Sohr et al. concentrate on the satisfaction of constraints
such as separation of duty, using OCL [37], as well as dy-
namic, time-based constraints [26], using a domain-specific
modelling language (DSML) for RBAC. rbacDSML was very
well suited for this paper, because of its open source im-
plementation, and because we were able to define a partial
rbacDSML model to represent the application’s adaptation
constraints, and to merge it at run-time with the rest of
the RBAC model in order to form and verify a complete
rbacDSML model.

5.2 Self-Adaptive Access Control
To the best of our knowledge model driven approaches

have not been used to enable adaptation of authorisation
infrastructures, specifically in the establishment of security
concerns and assignment of access to better protect an or-
ganisation’s resources. The concept of modelling authori-
sation, specifically security, is not new [7]. System designs
and security concerns can be modelled together, to create
authorisation infrastructures. The use of metamodels, in
this paper, can be likened to efforts in security requirements
engineering, whereby models of systems are expressed to re-
fine and generate security policies [16]. However, in our spe-

cific case the metamodel is used to aid run-time generation
of a model view of an authorisation infrastructure, relating
existing models of security concerns and subject privileges.

The concept of utilising model driven approaches [11] to
enable self-* properties is not new. Works such as [34]
outline a model driven approach in enabling self-managing
systems, particularly at an architectural level, whereby the
role of models is discussed both during design time and run-
time of a system. Whilst our work applies model driven
approaches in order to achieve self-adaptive properties, the
purpose of our models differ. Rather than modelling archi-
tectural state and properties, we focus on modelling volatile
parameters of structural components that control compo-
nent execution. For example, modelling a security concern
used to govern authorisation decisions executed by an au-
thorisation service.

6. CONCLUSIONS
In this paper, we have presented the first model-driven

self-adaptive approach to access control, capable of handling
multiple insider attacks whilst maintaining user-defined ap-
plication constraints. Assurances that the adaptations to be
deployed are valid are obtained through the usage of mod-
els, model transformation, and model verification at run-
time. We describe the generation of implementation specific
models of multiple deployed systems that implement differ-
ent aspects of access control. These implementation specific
models are transformed into a single model of access control,
whereby adaptation is carried out and evaluated using model
verification. We have demonstrated our approach by de-
ploying a self-adaptive authorisation infrastructure in which
we simulate and respond to a well documented case of in-
sider attack against a chemical research company [13], whilst
considering several application constraints. The simulation
has captured the process of model verification, whereby only
verified models are used to adapt the current state of access
control within the authorisation infrastructure.

From the evaluations, we have shown that we are able to
prevent the simulated attack from continuing, and handling
the attack in a more timely manner if compared with ap-
proaches that rely on human administrators. There are some
limitations with this approach, notably that model verifica-
tion at run-time is a time consuming operation. The time it
takes for our self-adaptive authorisation infrastructure to re-
spond to attack is dependent on the number of solutions that
must be verified, as each insider attack could be resolved by
multiple solutions. Despite the time it takes to verify adap-
tations, we consider this to be faster than traditional human
based approaches.

Our future work involves the further development of the
Self-Adaptive Authorisation Framework (SAAF), specifically,
with an aim to improve the performance of verification. As
we have currently adopted a brute force approach to verify-
ing all applicable solutions to an attack, we aim to improve
upon this by using change impact analysis to only verify a
subset of the adapted access control model, depending on
the changes made compared to the previous model.

7. ACKNOWLEDGEMENTS
Co-financed by the Foundation for Science and Technol-

ogy via project CMU-PT/ELE/0030/2009 and by FEDER
via the “Programa Operacional Factores de Competitivi-

dade” of QREN with COMPETE reference: FCOMP-01-
0124-FEDER-012983.

8. REFERENCES
[1] rbacDSML tool, 2009-2014.

http://computing-research.open.ac.uk/rbac/ [accessed January
2014].

[2] G.-J. Ahn and M. E. Shin. Role-Based Authorization
Constraints Specification Using Object Constraint Language. In
Proceedings of the 10th IEEE International Workshops on
Enabling Technologies: Infrastructure for Collaborative
Enterprises, WETICE ’01, pages 157–162. IEEE Computer
Society, 2001.

[3] C. Bailey, D. W. Chadwick, and R. de Lemos. Self-adaptive
authorization framework for policy based rbac/abac models. In
Proceedings of the 2011 IEEE Ninth International Conference
on Dependable, Autonomic and Secure Computing, DASC ’11,
pages 37–44, Washington, DC, USA, 2011. IEEE Computer
Society.

[4] C. Bailey, D. W. Chadwick, and R. de Lemos. Self-adaptive
federated authorization infrastructures. Journal of Computer
and System Sciences, 2014.

[5] C. Bailey, D. W. Chadwick, R. de Lemos, and K. W. S. Siu.
Enabling the autonomic management of federated identity
providers. In Proceedings of the 7th IFIP WG 6.6
International Conference on Autonomous Infrastructure,
Management, and Security: Emerging Management
Mechanisms for the Future Internet - Volume 7943, AIMS’13,
pages 100–111, Berlin, Heidelberg, 2013. Springer-Verlag.

[6] A. K. Bandara, E. C. Lupu, and A. Russo. Using event calculus
to formalise policy specification and analysis. In Proceedings of
the 4th IEEE International Workshop on Policies for
Distributed Systems and Networks, POLICY ’03, pages 26–.
IEEE Computer Society, 2003.

[7] D. Basin, M. Clavel, and M. Egea. A decade of model-driven
security. In Proceedings of the 16th ACM symposium on
Access control models and technologies, SACMAT ’11, pages
1–10. ACM, 2011.

[8] D. Basin, J. Doser, and T. Lodderstedt. Model driven security:
From UML models to access control infrastructures. ACM
Trans. Softw. Eng. Methodol., 15(1):39–91, Jan. 2006.

[9] BBC. Credit card details on 20 million south koreans stolen.
BBC, January 2014.
http://www.bbc.co.uk/news/technology-25808189 [accessed
January 2014].

[10] E. Bertino, A. Kamra, E. Terzi, and A. Vakali. Intrusion
detection in rbac-administered databases. In Proceedings of the
21st Annual Computer Security Applications Conference,
ACSAC ’05, pages 170–182, Washington, DC, USA, 2005. IEEE
Computer Society.

[11] J. Bézivin. Model driven engineering: An emerging technical
space. In R. Laemmel, J. Saraiva, and J. Visser, editors,
Generative and Transformational Techniques in Software
Engineering, volume 4143 of Lecture Notes in Computer
Science, pages 36–64. Springer Berlin Heidelberg, 2006.

[12] R. Booth, H. Brooke, and S. Moriss. Wikileaks cables: Bradley
manning faces 52 years in jail. The Guardian, 30 November
2010.

[13] D. M. Cappelli, A. P. Moore, and R. F. Trzeciak. The CERT
Guide to Insider Threats: How to Prevent, Detect, and
Respond to Information Technology Crimes. Addison-Wesley
Professional, 1st edition, 2012.

[14] D. Chadwick, G. Zhao, S. Otenko, R. Laborde, L. Su, and
T. A. Nguyen. Permis: A modular authorization infrastructure.
Concurr. Comput. : Pract. Exper., 20(11):1341–1357, Aug.
2008.

[15] Ç. Cirit and F. Buzluca. A UML profile for role-based access
control. In Proceedings of the 2nd international conference on
Security of information and networks, SIN ’09, pages 83–92.
ACM, 2009.

[16] R. Craven, J. Lobo, E. Lupu, A. Russo, and M. Sloman. Policy
refinement: Decomposition and operationalization for dynamic
domains. In Proceedings of the 7th International Conference
on Network and Services Management, CNSM ’11, pages
115–123, Laxenburg, Austria, Austria, 2011. International
Federation for Information Processing.

[17] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C.
Tschantz. Verification and change-impact analysis of
access-control policies. In Proceedings of the 27th

international conference on Software engineering, ICSE ’05,
pages 196–205. ACM, 2005.

[18] M. Gofman, R. Luo, A. Solomon, Y. Zhang, P. Yang, and
S. Stoller. RBAC-PAT: A Policy Analysis Tool for Role Based
Access Control. In Tools and Algorithms for the Construction
and Analysis of Systems, volume 5505 of Lecture Notes in
Computer Science, pages 46–49. Springer, 2009.

[19] G. Hughes and T. Bultan. Automated verification of access
control policies using a sat solver. Int. J. Softw. Tools Technol.
Transf., 10(6):503–520, Oct. 2008.

[20] IBM. Rational Software Architect 8.0.4, 2012.

[21] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev. Atl: A model
transformation tool. Sci. Comput. Program., 72(1-2):31–39,
June 2008.

[22] J. Jürjens. Secure Systems Development with UML.
Springer-Verlag, 2005.

[23] J. O. Kephart and D. M. Chess. The vision of autonomic
computing. Computer, 36(1):41–50, Jan. 2003.

[24] D.-K. Kim, I. Ray, R. France, and N. Li. Modeling Role-Based
Access Control Using Parameterized UML Models. In
M. Wermelinger and T. Margaria-Steffen, editors, Fundamental
Approaches to Software Engineering, volume 2984 of Lecture
Notes in Computer Science, pages 180–193. Springer Berlin
Heidelberg, 2004.

[25] V. Koutsonikola and A. Vakali. Ldap: Framework, practices,
and trends. IEEE Internet Computing, 8(5):66–72, Sept. 2004.

[26] M. Kuhlmann, K. Sohr, and M. Gogolla. Comprehensive
Two-Level Analysis of Static and Dynamic RBAC Constraints
with UML and OCL. In Proceedings of the 2011 Fifth
International Conference on Secure Software Integration and
Reliability Improvement, SSIRI ’11, pages 108–117. IEEE
Computer Society, 2011.

[27] L. Montrieux. Model-Based Analysis of Role-Based Access
Control. PhD thesis, The Open University, 2013.

[28] H. M. Moore. Andrew and M. David. A pattern for increased
monitoring for intellectual property theft by departing insiders.
Technical Report CMU/SEI-2012-TR-008, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh,
Pennsylvania, 2012.

[29] R. L. Morgan, S. Cantor, S. Carmody, W. Hoehn, and
K. Klingenstein. Federated security: The shibboleth approach.
EDUCAUSE Quarterly, 27(4):12–17, 2004.

[30] NIST. INCITS 359-2004 - Role Based Access Control, 03 2004.

[31] OASIS. eXtensible Access Control Markup Language
(XACML). https://www.oasis-open.org/committees/xacml
(Last accessed May 2013).

[32] OASIS. XACML v3.0 Core and Hierarchical Role Based Access
Control (RBAC) Profile, 2010.

[33] OMG. Meta Object Facility (MOF) 2.0.

[34] M. Rohr, M. Boskovic, S. Giesecke, and W. Hasselbring.
Model-driven development of selfmanaging software systems. In
ACM/IEEE MoDELS Workshop on Models@Runtime, 2006.

[35] R. Sandhu. The authorization leap from rights to attributes:
maturation or chaos? In Proceedings of the 17th ACM
symposium on Access Control Models and Technologies,
SACMAT ’12, pages 69–70. ACM, 2012.

[36] R. Sandhu, D. Ferraiolo, and R. Kuhn. The NIST model for
role-based access control: towards a unified standard. In
Proceedings of the fifth ACM workshop on Role-based access
control, RBAC ’00, pages 47–63. ACM, 2000.

[37] K. Sohr, G.-J. Ahn, and L. Migge. Articulating and enforcing
authorisation policies with UML and OCL. ACM SIGSOFT
Software Engineering Notes, 30(4):1–7, 2005.

[38] E. Song, R. Reddy, R. France, I. Ray, G. Georg, and
R. Alexander. Verifiable composition of access control and
application features. In SACMAT ’05: Proceedings of the
tenth ACM symposium on Access control models and
technologies, pages 120–129. ACM, 2005.

[39] W. Sun, R. France, and I. Ray. Rigorous Analysis of UML
Access Control Policy Models. In Proceedings of the 2011
IEEE International Symposium on Policies for Distributed
Systems and Networks, POLICY ’11, pages 9–16. IEEE
Computer Society, 2011.

[40] L. Wang, D. Wijesekera, and S. Jajodia. A logic-based
framework for attribute based access control. In Proceedings of
the 2004 ACM workshop on Formal methods in security
engineering, FMSE ’04, pages 45–55. ACM, 2004.

