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33 Abstract: The source of post orogenic A-type magmas from two distinct geodynamic 
 

34 settings  are  compared.  The  end  of  the  ca.  514  –  480  Ma  Delamerian  Orogeny, 
 

35 southeastern   South   Australia,   was   marked   by   ~10   Myr   of   bimodal   A-type 
 

36 magmatism, driven by convective removal of thickened lithosphere. Initial Os and Hf 
 

37 isotope ratios record a heterogeneous lithospheric mantle source, with some input 
 

38 from  aesthenospheric  mantle.  Mafic  parental  melts  fractionated  to  produce  the 
 

39 granites. In contrast, initial Os isotope ratios of the A-type magmas that comprise the 
 

40 ca. 1598 – 1583 Ma Mesoproterozoic Gawler Felsic Large Igneous Province, central 
 

41 South Australia, record a dominant evolved lower crust component. However, initial 
 

42 Hf isotope ratios from these samples are depleted, indicating a mantle source for 
 

43 lithophile elements. This voluminous, bimodal magmatism lasted for ~15 Myr, and 
 

44 ended  the  Wartakan  Orogeny.  In  both  cases  the  homogenisation  of  chemical 
 

45 (rheological)  heterogeneities,  inherited  from  terrain  amalgamation  and  orogenic 
 

46 thickening, strengthened the lithosphere. The contemporaneous fusion of 
 

47 heterogeneous mantle ± crust may represent a common, stabilizing influence on the 
 

48 lithospheric column regardless of tectono-magmatic setting. 
 

49 



50 Introduction: 
 

51 
 

52 A-type  magmas  form  a  distinctive  subset  of  igneous  rocks.  As  a  group,  A-type 
 

53 granitoids  are  recognized  as  possessing  a  large  number  of  mineralogical  and 
 

54 geochemical  affinities,  that  serve  to  clearly distinguish  them  from  I-  and  S-type 
 

55 granitoids in the majority of cases (e.g. Collins et al., 1982). Importantly, their initial 
 

56 radiogenic isotope ratios are most often juvenile (e.g. Kemp et al., 2009; Turner et al., 
 

57 1992), their temperatures high (e.g. King et al., 2001; Turner et al., 1992) and their 
 

58 emplacement depths shallow (Bonin, 2007). These features suggest a deep rooted 
 

59 mantle  source  region  and  influence  of  the  magmatic  system  across  the  entire 
 

60 lithospheric column. 
 

61 A-types  granitoids  (hereafter  termed  A-types)  occur  in  a  number  of  tectonic 
 

62 settings. First named as such by Loiselle and Wones (1979) due to their ‗anorogenic, 
 

63 anhydrous and alkalic‘ nature, A-types have subsequently been variably attributed to 
 

64 particular tectonic settings and melt source regions. Initially recognized as granites 
 

65 that occur along continental rift zones (Loiselle and Wones, 1979), A-types are also 
 

66 observed in post-collisional settings (Dargahi et al., 2010; Menuge et al., 2002) and as 
 

67 felsic portions of mafic large igneous provinces (e.g. Pankhurst et al., 2011a; Turner 
 

68 and Rushmer, 2009). Since A-types do not have one prevalent tectono-magmatic 
 

69 association (c.f. tholeiitic; mantle decompression melting, calc-alkaline; subduction 
 

70 zones),  it  is  inappropriate  to  ascribe  the  mere  presence  of  A-types  to  a  single 
 

71 geodynamic setting. 
 

72 An alternate approach is to use this apparently non-unique-setting magma type to 
 

73 highlight a potentially common influence upon the lithosphere, regardless of tectonic 
 

74 setting. Intriguingly, many A-type magmatic systems occur during the final stages of 
 

75 whichever tectono-magmatic expression they are a part of, and usually precede long 
 

76 periods of relative inactivity (e.g. Goodge and Vervoort, 2006; Puura and Flodén, 
 

77 1999; Rämö and Haapala, 1995). Are A-types a cause, or effect, of a strengthened 
 

78 lithosphere? If a common influence is discovered, A-type magmas may have greater 
 

79 utility in geodynamic models. 
 

80 It is widely accepted that rheological heterogeneity plays a fundamental role in 
 

81 determining the bulk strength of a lithospheric domain (e.g. Kelemen and Hirth, 2007; 
 

82 Paczkowski et al., 2012; Platt and Behr, 2011; Vissers et al., 1995). Often ‗runaway‘ 
 

83 deformation  is  observed  (or  modeled),  which  is  focused  within  shear  zones  that 
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accommodate strain by grain size reduction and/or involvement of a liquid (melt) 

phase (e.g. Kelemen and Dick, 1995; Paczkowski et al., 2012; Sundberg et al., 2010). 

Chemical (and isotopic) heterogeneity is a product of such processes (e.g. Homburg et 

al., 2010), as well as metasomatic processes. Thus all else being equal, a chemically 

heterogeneous lithospheric domain is weaker than a chemically homogeneous domain 

(e.g. Vissers et al., 1995). Removing heterogeneity from a lithospheric domain is, by 

extension, a mechanism for lithospheric strengthening. In this contribution we explore 

the potential role that high temperature magmatism plays in homogenizing a 

lithospheric  domain  by  causing  widespread  fusion  of  damaged,  heterogeneous 

material and promoting pathways for mixing between distinct sources 

(homogenization). This post-orogenic re-organisation of high chemical (physical) 

gradients into low chemical gradients may serve to promote a stronger local 

lithosphere. 

Should such magmatism play role in, or simply be a record of, lithospheric 

strengthening (and hence ―cratonisation‖), it is important to establish the ultimate 

source(s) and drivers of A-type provinces. These constraints can then be used to 

interrogate the geologic record in order to elucidate timing and duration of the onset 

of lithospheric stabilization. We explore the role of source in the petrogenesis of two 

adjacent, yet tectonically and temporally distinct A-type magmatic provinces from an 

isotopic perspective. Through a unique combination of Os and Hf isotopic techniques 

we evaluate the relative contributions of crust and mantle in the resultant granitoids 

and are able to highlight for the first time how a convergence of processes in the 

petrogenesis of these magmas can obscure some of the conventional isotopic signals 

relied upon in understanding the origin of these systems. We then comment on the 

implications of such magmatism in the formation of stable lithospheric columns and 

the preservation of continents. 
 
 
Characteristics and petrogenesis of A-types 
 
 
 
A-types most often display anhydrous mineralogy which is characterized by alkali 

feldspar + quartz > plagioclase > ferromagnesian + oxide minerals > accessory 

minerals (apatite, fluorite, zircon, titanite, other phosphates). A-types may display 

hypersolvus, transsolvus or subsolvus alkali feldspar (Bonin, 2007). Geochemical 

affinities include comparatively high Fe/Mg, (K+Na)/Al, Ga/Al and K/Na, elevated 
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rare earth and high field strength element (REE & HFSE) and F content, and light rare 

earth element (LREE) enrichment, resulting in ‗gull-wing‘ normalized REE patterns 

(e.g. Creaser et al., 1991; Whalen et al., 1987). They range from peraluminous to 

peralkaline to metaluminous, sometimes within a single province (e.g. Shellnutt and 

Zhou, 2007). Low O2 fugacity and high temperatures up to ~1100 ºC (Frost and Frost, 

1997; Whalen et al., 1987) are also common and important features. 
 

Eby (1992) suggested that two groups of A-types are observed. A1 are those with 

element ratios similar to ocean island basalts (OIB), and form via crystal fractionation 

from melts of the same sources. A2 are those that display geochemical affinities with 

post-collisional continental or island arc crust, and have been suggested to form by 

partial melting of a previously I-type-granite-depleted lower crust (e.g. Clemens et al., 

1986). However, Creaser et al. (1991) suggest this residual-source model is unlikely 

to account for all the mineralogical and geochemical observations. These authors 

demonstrated that A-types could be generated by partial melting of an undepleted, 

water poor crustal source with tonalitic-granodioritic composition. For a recent review 

of A-type petrogenesis, see Dall‘Agnol et al. (2012). 

Such geochemical variations within the group of granitoids termed ‗A-type‘ imply 

significantly different genesis in terms of their source, the degree of melting involved, 

and therefore thermal gradient. However, the most important factors in terms of 

physical  properties  of  A-type  felsic  liquids;  high  temperature,  alkali-rich  major 

element chemistry, concentration of water (low) and halogens (high), are key 

characteristics of the group. Further, the corollary is that the material left behind 

during A-type extraction by either partial melting or fractionation will also bear a 

chemical resemblance to each other (Turner and Rushmer, 2009), which implies 

similar physical properties. 

Importantly, the volume of material that is either cumulate or residue is also 

predicted to be relatively similar. For instance, Turner et al. (1992) modeled some A- 

types as the product of ~90% crystallization of a contemporary tholeiitic magma. The 

residual volume after extraction of an A-type liquid by partial melting is identical if 

the source is basaltic (Turner and Rushmer, 2009). Rocchi et al. (2009) estimated that 

~20% partial melting of intrusive lamprophyres at the base of the crust could produce 

the observed A-types (albeit not strictly anhydrous in this example). In both instances 

the formation of a depleted mafic body at depth is implied. The key difference is that 

A-types formed by extreme (closed system) fractionation require a coeval volume of 
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mafic magma ~10x that of the granite volume. A-types formed by partial melting do 

not require large mafic magma chambers, as their source region could plausibly 

accumulate by iterative addition of small volume mafic melts. 
 
 
Determining the source of A-type magmas 
 
 
 
Radiogenic isotope ratios from A-types are most often juvenile (e.g. Kemp et al., 
 

2009; Turner and Foden, 1996; Turner et al., 1992) —although not in every case (e.g. 

Huang et al., 2011)— and thus A-type magmas have been attributed with forming 

new granitic continental crust (c.f. recycling/maturation of older continental crust via 

I- and S- type magmatism; Villaseca et al., 2012). However, in many cases juvenile 

isotope ratios can also explained by the partial melting of juvenile crust and enriched 

mantle, and variable hybridization between these coeval magmas (e.g. Rutanen et al., 

2010). 
 

Traditional debate of A-types surrounds the role of mantle contributions to the 

crust over time, historically assessed by Nd-, and more recently Hf-isotope systems 

(e.g. Kemp et al., 2009). Both these systems reflect lithophile behaviour, but 

potentially may misrepresent a suspected mantle component, due to inheritance via 

magma assimilation or mingling (e.g. Pankhurst et al., 2011c). The Lu-Hf system 

broadly approximates the Sm-Nd, however due to the relative difference in D values, 

the  Lu-Hf  system  is  less  affected  by  AFC  processes  (following  the  models  of 

DePaolo, 1981). A distinct advantage for our purposes is that Hf in A-types (as in 

other granitoids) is primarily located within zircons. Thus inheritance of Hf can be 

clearly delineated through combined analysis with U-Pb geochronology. Zircons in 

granitoids contain Hf in concentrations of up to a few wt%, and contain comparatively 

little Lu (median = 150 ppm; Belousova et al., 2002) that would otherwise represent a 

source of uncertainty. Thus the initial Hf isotope ratio of the equilibrium liquid is 

preserved within magmatic zircon. Importantly, ingrowth of radiogenic Hf can be 

accurately age-corrected by U–Pb isotope analysis of the same region of zircon 

(Belousova et al., 2009). 

A novel approach to the problem of A-type source regions is to utilise the Re-Os 

system. The 187Re-187Os decay scheme is most commonly used to inform siderophile 

and chalcophile element, and hence mantle, behaviour (e.g. Schaefer et al., 2010). 

However, very high Re/Os ratios in continental crust also make this system a very 
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sensitive monitor of crustal contributions to mantle derived magmas (e.g. Gregory et 

al., 2008; Shirey and Walker, 1998). For example, average continental crust is ~20 

times more radiogenic than chondrite, and ancient lithospheric mantle contains sub- 

chondritic Os isotope ratios (Schaefer et al., 2000). A combined approach, using both 

Lu-Hf and Re-Os as a tool for mantle and crustal contributions to magmas, is 

underutilized despite this value (see Johnson et al., 1996). 
 
 
Geologic Setting: 
 
 
 
Undeformed plutons and associated volcanics of the Padthaway Ridge, southeastern 

South Australia, occur as an arcuate chain of A-type bodies that extends for ~300 km 

(Fig. 1a). These magmas represent the final tectono-thermal expression of the 

Delamerian Orogeny (~514-490 Ma; Foden et al., 2006), the first of a series of 

eastward-younging orogenies accreted to then Gondwanan margin, driven by a supra- 

subduction system (e.g. Kemp et al. 2009) The A-types are hypothesised to have 

formed when convective removal of overthickened lithospheric mantle led to rapid 

exhumation  of  the  fold  belt  (Turner  et  al.,  1996b).  Post-convergent  extension  is 

argued to have allowed mafic melts to ascend to shallow depths, where closed-system 

crystal fractionation, involving olivine, pyroxenes, plagioclase and Fe-oxides took 

place (Turner et al., 1992), without significant  crustal assimilation  (Foden et al., 

2002b). The predicted large volumes of intrusive mafic equivalents and cumulates are 

consistent with the presence of a gravity and aeromagnetic anomaly coincident with 

the Padthaway Ridge (e.g. Kennedy, 1989). 

Immediately west of the rocks of the Delamerian Orogeny is the Tasman Line, a 

largely inferred lithospheric scale structure dividing western Precambrian Australia 

from the younger eastern basement successions  (e.g. Arroucau et al., 2010). The 

closest occurrence of post-orogenic A-type magmatism in Proterozoic terranes west of 

the Tasman Line is that of the Hiltaba Event (1600-1560 Ma; Betts et al., 2002), 

which represents the last tectono-thermal episode of the central Gawler Craton (Fig. 

1b) (Betts and Giles, 2006). 
 

The Hiltaba Event is characterized by rapid, high temperature, voluminous and 

widespread bimodal A-type magmatism into and across a basement of 

Palaeoproterozoic and Archean rocks (Blissett et al., 1993; Pankhurst et al., 2011b). 

The voluminous Gawler Range Volcanics (GRV) were emplaced within 2 Myr at 
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1592 ± 2 Ma (Creaser, 1995; Fanning et al., 1988), extend for >25,000 km2 (Blissett 

et al., 1993) and are overwhelmingly felsic (Allen et al., 2003). Basalts and basaltic 

andesites outcrop in just a few localities (Allen et al., 2008). Hiltaba Suite granitoids 

are considered the shallow intrusive equivalent to the GRV, crop out across much of 

the Gawler Craton, and span a longer time interval of emplacement, 1598 ±2 to 1583 

± 7 (Flint, 1993). These granites display a provinciality in terms of Nd isotopes 

(Creaser, 1995), which are suggestive of appreciable crustal involvement, supported 

by the observation of inherited zircon cores (e.g. Creaser and Fanning, 1993 and 

references therein). 

Together the GRV and Hiltaba Suite Granitoids comprise the Gawler Felsic Large 

Igneous Province (FLIP). A large, elliptical, gravity high is coincident with the main 

GRV province (see data in Rajagopalan et al., 1993), which is consistent with 

significant volumes of mafic material predicted to exist at depth (Stewart, 1994). This 

anomaly was modeled by Phillips (2006) who filtered shallow sources and concluded 

the source of the gravity high was present at mid crustal levels. 

The Gawler FLIP was preceded by ~10-20 Ma of crustal shortening, termed the 

Wartarkan Orogeny, that took place immediately after arc magmatism on the southern 

Gawler Craton margin ceased (Stewart and Betts, 2010b). The geometry of this arc- 

related calc-alkaline magmatism, and that of the Musgrave arc to the north, places the 

Gawler FLIP within a post-back-arc environment (Swain et al., 2008; Wade et al., 

2006). Betts et al. (2009; 2007) used a synthesis of geologic, geochronological and 

geophysical data to propose a model that describes a plume head arrival as triggering 

the voluminous A-type magmatism, and progressed as hotspot-like magmatism across 

the eastern terranes of Proterozoic Australia. This plume-head-modified subduction 

was modeled by Betts et al. (2012), who found that the switching-off of subduction 

magmatism,  and  compression  in  the  overriding  plate,  was  likely  due  to  trench 

advance, and not flat subduction. In their model, the buoyant plume head opened a 

window in the subducting slab, and was therefore able to interact with the overriding 

plate, without major reorganization of the subduction zone. 
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Samples and analytical techniques: 
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The Delamerian A-type system is represented in this dataset by two granites, 

(Marcollat and Seismograph), a rhyolite (Mt. Monster Porphyry), and a coeval 

peridotite cumulate (Black Hill peridotite), encompassing ~300 km of orogenic strike 

length, see figure 1a. Details of these samples can be found in Turner et al. (1992) and 

Turner, (1996). We also analysed a representative sample of the ca. 525 Ma Truro 

Volcanics, which are small volume strongly undersaturated alkali basalts that erupted 

immediately prior to the Delamerian Orogeny (see Forbes et al., 1972; Turner and 

Foden, 1990), for Re-Os. This allows a comparison to be made on the nature of the 

lithospheric mantle, in terms of Re-Os, before and after the orogeny. 

The Gawler FLIP is represented by the most mafic portions of the GRV accessible. 

They  are  from  across  the  central  Gawler  Craton,  and  provide  a  ~350  km  wide 

footprint, to assess source homogeneity, see figure 1b. Samples are from Chitalinga 

Hill (a basaltic trachyandesite), White Hill (troctolite), and Roopena Volcanics (basalt 

and trachybasalt). We also analysed samples of the A-type ca. 1560 Ma Sybella 

Granite, Mt. Isa Inlier, Queensland Australia for Re-Os. This is considered a northern 

extension of the Mesoproterozoic hotspot trail (Betts et al., 2007), and allows us to 

compare Re-Os sources across the Proterozoic terranes of Australia. 
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In-situ zircon analysis 
 
 
 
Zircon fragments and complete crystals up to ~210 µm from the Marcollat Granite 

(n=33) and Mount Monster Porphyry (n=35) were separated, hand picked, mounted in 

resin, and polished. The structure of the zircons were assessed by cathodoluminesence 

(CL) and back-scattered electron (BSE) imaging using a Cameca SX100 Electron 

Microprobe (EMP), which was also used to analyse ~1µm spots upon the grains for 

major elements, see figure 3. 

A New Wave UP-213 laser ablation system (5 Hz repetition rate, 30 µm spot size, 

λ=213 nm) with a small format cell was used to ablate the grains, and an attached 

Agilent 7200 Series ICPMS measured trace element, U, Th and Pb isotope 

concentrations. After ≥60 s background count time, ablation intervals were 60-120 s 

per grain depending on the depth of available crystal. Several spots per single grain 

were analysed in order to explore any variation of age or trace elements within single 

grains.  Marcollat  (n=33)  and  Mt.  Monster  zircons  (n=35)  were  analysed  in  one 

session each. The total of 72 analyses of unknowns were bracketed into six runs by 
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the isotopically homogeneous GEMOC-GJ-1 zircon standard (n=16), used to correct 

for U/Pb fractionation. For details of the GEMOC-GJ-1 standard see Elhlour et al. 

(2006). Two well-characterised zircons; 91500 (n=8) and Mud Tank (n=4) were 

analysed as independent controls on reproducibility and accuracy of isotope ratios; 

each returned an average within 2σ of the long-term 207Pb/206Pb ratio mean reported 

by Belousova et al. (2009). The data was processed using GLITTER software 

(www.glitter-gemoc.com) to calculate isotope ratios. The analytical procedures for the 

U–Pb dating are described in detail in Jackson et al. (2004). Analyses of the NIST- 

610 glass trace element standard (n=8) bracketed the analyses at regular intervals. Hf 

concentrations, measured by EMP, were used as known values with which to equate 

ICPMS total counts with concentration. 

Hf, Lu and Yb isotopes were measured by a New Wave UP-266 laser ablation 

system (5 Hz repetition rate, 40 µm spot size) attached to a Nu-plasma multicollector 

ICP-MS. Typical ablation times were 100-120 s, and total Hf beams were between 1.5 

and 3 V, depending on the structure and size of the zircon and Hf content. Detailed 

analytical procedures including corrections for mass interference can be found in 

Belousova et al. (2009). A single session for each of the sample was bracketed by four 

analyses of the Mud Tank zircon standard (176Hf/177Hf = 0.282535 ±47, n = 12 and 

0.282539 ±16, n=7 for the Marcollat Granite and Mount Monster respectively). In 
 

addition the Temora standard was used for Mount Monster (176Hf/177Hf = 0.282732 
 

±39 n=7) and 91500 for the Marcollat (176Hf/177Hf 0.282352 ±9, n = 1), all errors 

reported are 1σ. Care was taken to ablate spots immediately adjacent to U-Pb and 

trace element determinations, within the same CL imaged zone. 
 
 
Whole rock Hf isotope analysis 
 

A whole rock digestion for Hf isotope analysis for the Seismograph Rocks sample 

used standard HF-HNO3 and purification was performed by standard anion exchange 

column separation techniques at the Geochemical Analysis Unit (GAU) of GEMOC, 

Macquarie  University.  The  method  was  the  same  as  that  used  for  Gawler  FLIP 

samples (Fricke, 2005). Hf isotope ratios were analysed by multi-collector ICP-MS 

(Nu plasma) also at the GAU and corrected to interpolated Lu and Hf values from 

Turner  et  al.  (1992).  BHVO-2  was  used  as  an  internal  standard  and  returned  a 
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176Hf/177Hf ratio of 0.283089 ±18 (2σ). JMC475 was used as an external standard and 

returned a 176Hf/177Hf ratio of 0.282157 ±27 (2σ). 
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Whole rock Re–Os isotopic analysis 
 
 
 
Re–Os methodology follows that of isotope dilution techniques described in Gregory 

et al. (2008). Whole-rock powders for each sample were spiked for Re and Os and 

digested in inverse aqua regia (8 ml 16N HNO3, 4 ml 12N HCl) by carius tube 

dissolution followed by solvent extraction using the methods of Shirey and Walker 

(1995) and Cohen and Waters (1996) as described in Lambert et al. (1998, 2000). 

Rhenium was purified following Os extraction using anion exchange chromatography 

(Lambert  et  al.  1998).  Osmium  was  analysed  by  N-TIMS  on  either  a  Thermo- 

Finnigan Triton at Macquarie University, Australia or at the Open University, UK. 

The Os samples were loaded onto Pt filaments and analysed using a combination of 

peak hopping or static collection depending on beam intensity for a minimum of 100 

ratios and more typically 250. 

Rhenium was determined using a Nu-Plasma multi-collector inductively coupled 

plasma mass spectrometer (MC-ICPMS) at the GAU or the Open University. A Re 

standard solution was analysed every five samples to monitor drift and fractionation. 

Mesoproterozoic samples were blank corrected using values of 1 pg Re and 1.4 pg Os 

with a 187Os/188Os ratio of 0.165 (GAU;  as per Gregory et al., 2008). Delamerian data 
 

were blank corrected using 0.23 pg Os with a 187Os/188Os ratio of 0.2713 (Open 

University). This corresponds to corrections of up to 22% and 7%, respectively. 

Whole-rock  standard  (WPR-1)  values  averaged  10.8  ppb  Re,  16.5  ppb  Os  with 
187Os/188Os ratio of 0.14473, reproducing accepted values (e.g., Cohen and Waters 
 

1996). 
 
 
 
Results 
 
 
 
In-situ U–Pb and Lu–Hf data from the Marcollat and Mt. Monster samples are 

presented in Table 1a and 1b respectively. In-situ trace element data from the Mt 

Monster zircons is also presented in Table 1b. For Marcollat zircon images, trace 
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element results and discussion see Pankhurst (2012). Whole rock Re–Os and Lu–Hf 

data, and a summary of the in-situ Lu-Hf data are presented in Table 3. 
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In situ zircon results 
 
 
 
Strong oscillatory CL zoning is ubiquitous in the Marcollat Granite zircons (Fig. 2a), 

as is almost total absence of macro-inclusions, see Pankhurst (2012). Where 

geochronological information was obtained on both a core and rim, U–Pb ages are 

within error of each other, and common Pb correction was not required (Table 1a). 

The age of the Marcollat Granite is determined to be 480 ±2.5 Ma n=28 (Fig. 3a). 

The Mount Monster Porphyry zircons typically have metamict and/or fractured 

cores and cleaner rims (Fig. 2b). The often complex fracturing resulted in U–Pb ages 

that  are  mostly  discordant,  probably  due  to  a  combination  of  both  Pb-loss  and 

presence of common Pb (Fig. 3b). The age of the Mt Monster Porphyry is determined 

to be 485.2 ±6.9 Ma n=11, the greater error reflecting the large number of discordant 

grains, which were discarded. One zircon core (rounded and non-metamict) from the 

Monster Porphyry returned a concordant age of 3034 ± 58 Ma. The individual age of 

the rim of this grain is 474 ± 10.9 Ma (concordant), which demonstrates that the 

presence of this Archean-aged zircon core is not a result of lab contamination. 

The Mt. Monster zircons contain U, Th, Y, Hf and Yb abundances are typical of 

crustal granitoids (see Belousova et al., 2002). Rare earth elements vary by up to three 

orders of magnitude, La; 0.77-168 ppm, Ce; 3.8-1842 ppm, Pr; 0.37-58 ppm, Er; 3.3- 

2175 ppm, Tm; 3.4-496 ppm. The varying degree of fracturing and metamictisation 

most likely contributes to elevated REE (e.g. Belousova et al., 2006). Results of trace 

element abundances, including REE of the Marcollat zircons, are discussed in 

Pankhurst (2012). With the possible exception of Ti, trace elements do not correlate 

Hf isotope variation. 

The Marcollat Granite zircon measured 176Hf/177Hf ratios range from 0.282554 to 
 

0.282776, with an average of 0.282603 ± 0.000108 2σ. There is no correlation with 
 
176Yb/177Hf, which ranges from 0.03385 to an outlier of 0.1849, indicating the small 
corrections applied due to Yb interference on mass 176 are appropriate. The Mt. 

Monster zircon measured 176Hf/177Hf ratios range from 0.282525 to 0.282986, with an 

average of 0.282652 ± 0.000212 2σ. There is no correlation with 176Yb/177Hf, which 
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ranges from 0.0393722 to an outlier at 0.252503, indicating these slightly larger 

corrections applied due to Yb interference are also appropriate. 

The Marcollat zircons εHfi, calculated using a 176Lu decay constant of 1.93 x10-11; 
 

Siguigna et al, (1982) from Blichert-Toft and Albarède (1997), range from +2.2 to 
 

+10.4, at 480 Ma. Mount Monster Porphyry zircon εHfi ranges from +0.1 to +17.5, at 
 

485 Ma. Both the Marcollat and Mt. Monster zircons are similarly aged, and contain a 

similar average and range of εHfi values. 
 
 
Whole rock Lu-Hf results 
 
 
 
The Seismograph Granite has a 176Hf/177Hf ratio of 0.282701, and a 176Lu/177Hf ratio 
of 0.002310 (calculated from Turner et al. 1992 using reasonable Yb/Lu and Zr/Hf 

ratios in A-types, see Table 3), resulting in an εHfi of 3.97. The Gawler FLIP samples 

measured 176Hf/177Hf ratios range from 0.282168 at Chitanilga Hill, to 0.282397 at 

Roopena, and correspond to εHfi values of -1.73 and 4.95 respectively (Fricke, 2005). 

Whole rock Re-Os results 

187Os/188Osi  for Delamerian samples ranges from 0.1051 to 0.1977. Compared with 

C1 chondrite and DMM at ca. 485 Ma, 0.124 and 0.121 respectively, these values 

range from sub- to slightly supra- chondritic. Intriguingly the highest 187Os/188Osi 

value was from the most primitive sample: the Black Hill peridotite. The sample of 

Truro Volcanics yielded ratios of 0.1825 and 0.1875 and Os concentrations of 17.642 

and 18.190 ppt in duplicate analyses respectively. The Black Hill Peridotite has the 

highest Os concentration of 405 ppt, while the granites have Os concentration of 

between 0.211 and 0.800 ppt. 

Proterozoic samples have 187Os/188Osi  ratios that range from 0.9467 to 15.71, and 
 

Os concentrations range between 1.40 and 145 ppt, with no obvious correlation. A 

clear distinction is observed between Hiltaba A-types that exhibit radiogenic initial Os 

ratios and relatively high Os concentrations, and Delamerian A-types that exhibit 

unradiogenic initial Os ratios and low Os concentrations. 
 
 
Discussion 
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New zircon ages 
 
 
 
The Marcollat Granite age of 480 ± 2.5 Ma is slightly younger than Foden et al.‘s 

(2006) 487.1 ± 1.2 Ma conventional single zircon age for the same granite. However, 

the Mount Monster Porphyry age of 485.2 ±6.9 Ma overlaps both. A single inherited 

concordant zircon dated at 3034 ±58 Ma represents the first Archean signal detected 

in the Delamerian granites. This grain was unlikely to have been assimilated near- 

surface, given the absence of an age peak in regional sedimentary zircon data (Ireland 

et al., 1998), thus we propose the existence of deep crustal Archean rocks, equivalent 

to the ~3.1 Ga Cooyerdoo Granite of the eastern Gawler Craton (Fraser et al., 2010) 

and/or  Archean-derived  rocks  at  significant  depth.  A  single  inherited  concordant 

zircon is dated at 519 ±6 Ma, which may indicate the Marcollat Granite has interacted 

with Truro Volcanics aged material. However, significant crustal contamination to the 

granites is ruled out by Os isotope constraints, discussed in a later section. 
 
 
Hf isotope constraints 
 
 
 
The maximum recorded εHfi  of the Marcollat and Mt. Monster samples (+10.4 and 
 

+17.5) approach values for the contemporary depleted MORB mantle (DMM) (Fig. 
 

4). The range (average +4.5, +5.7 respectively) is interpreted to be the result of 

complex magma mixing and mingling processes, which is reflected by the 

Seismograph Granite whole rock εHfi of +3.97. Their source, therefore, is likely to be 

mantle, which accounts for the maximum values and also the prevalence of positive 

values approaching CHUR. However, the Hf isotope constraints alone do not rule out 

crustal contamination. 

An additional constraint on the degree of crustal contamination in A-type magmas 

may be obtained following the approach of Heinonen et al. (2010). These authors 

linked magmatic cooling with assimilation of crustal material. Assimilation-related 

cooling was inferred by a correlation between decreasing Ti in zircons (lower 

temperature, lower Ti concentration; Watson et al., 2006) and less radiogenic Hf 

isotopes, as illustrated by figure 5. Assimilation of crust cools the magma, and by the 

same  processes  contributes  relatively  more-evolved  Hf  isotopic  ratios.  Zircons 
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crystallizing during the early stages of this process are predicted to contain relatively 

high Ti concentrations and high Hf isotope ratios. Assuming comparable Ti activity 

and an isotopically homogeneous assimilant, later zircons must contain relatively less 

Ti and lower Hf isotope ratios (see Fig. 5). In our samples, which have not interacted 

with crust (see discussion of Os isotopes below), this same approach can be used for a 

different purpose – to evaluate the range of initial Hf isotope ratios in the mantle 

source. 

Absolute temperatures for our zircons were not calculated, as the Ti-in-zircon 

thermometer is calibrated assuming a rutile —and therefore Ti activity— buffer 

(Watson et al., 2006). Since rutile is not observed within the Marcollat or Mt. Monster 

samples, we use the measured Ti abundances as a relative guide only. We also include 

the caveat that Ti-bearing mineral inclusions within the zircons may introduce a 

degree of scatter. To  minimise  this effect  close attention  was  paid  to  the signal 

quality, to identify spikes that may indicate the presence of an inclusion. However, 

evenly distributed micro-inclusions well below the scale of the laser-spot diameter 

may present an inherent source of uncertainty (see Pankhurst, 2012). 

The Mt. Monster zircon population does not suggest a trend (see Fig. 5), and 

includes several outliers at high 176Hf/177Hf. One interpretation is that these zircons 

crystallised ‗early‘, prior to crustal assimilation, which suggests the Hf isotope ratios 

are a robust reflection of a mantle source. However, these ‗early‘ zircons may have 

crystallised from a liquid that could have had different Ti activity. Therefore 

comparisons between Ti abundance in such zircons are problematic. A cluster of 

several analyses is present at high Ti contents, and may well indicate the presence of 

Ti-oxide  micro-inclusions.  Therefore  we  consider  these  Ti  abundances  to 

overestimate the real Ti content in the zircons. 

Ti abundances in the Marcollat zircons show a broad positive correlation with 

measured 176Hf/177Hf (Fig. 5), which may indicate an assimilation process similar to 

that described by Heinonen et al. (2010). However, unlike Heinonen et al.‘s (2010) 

data  that  define  smooth  trends,  our  data  contain  many  instances  of  different 
176Hf/177Hf  at  similar  Ti  abundance,  as  well  as  many  instances  of  different  Ti 
 

abundances with similar 176Hf/177Hf. Notwithstanding the possibility of minor 

influences from Ti-oxide micro-inclusions, this observation could indicate that mixing 

of magmas with different cooling and assimilation histories, each contributed zircons 

that record those different magmatic conditions. Since the data in this study spans a 
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range  in  176Hf/177Hfi   at  comparable  Ti  concentrations,  it  would  seem  that  no 

significant crustal involvement is implied from the Hf data. 

Mingling of mafic and felsic magmas is observed within the Padthaway Suite — 

and indeed in many A-type magmatic systems— most evident where swarms of mafic 

enclaves  occur  within  granites  and  show  varying  degrees  of  hybridisation  (e.g. 

Holden et al., 1991; Turner and Foden, 1996). This causes additional complexities to 

the interpretation of whole-rock isotope ratios. 

Pankhurst et al. (2011c) traced the sources of both mafic enclave and felsic host 

within the Delamerian A-type Mannum Granite by conducting in-situ analysis of Nd 

isotope ratios within titanite. Those authors demonstrated that while the major and 

trace element chemistry is distinct between granite-hosted and enclave-hosted titanite, 

isotope  ratios  are  variable  outside  of  analytical  error,  and  the  range  of  initial 
143Nd/144Nd is similar. One possibility is that a range of sources melted to form 
 

geochemically similar, yet isotopically distinct mafic magmas. 
 

The  resulting  magmas  (containing  isotopically  distinct  titanite  crystals)  were 

readily mixed due to similar viscosities. A similar process produced granites 

containing chemically similar yet isotopically dissimilar titanite crystals, which also 

mixed readily. Mingling occurred between the granite and mafic magmas due to 

different  viscosities  at  comparable  temperatures  (Turner  and  Foden,  1996).  This 

model,  suggestive  of  complex,  multi-sourced  and  multi-staged  processes  could 

plausibly result in a wide spread of initial 176Hf/177Hf values within zircons, dependent 
 

upon the source of melting, and crystallisation conditions each zircon. 
 

Initial Hf isotope ratios from Gawler FLIP samples are range from -1.73 to +4.95. 

Crustal contamination is likely to play a limited role in contributing to these isotopic 

ratios, since the bulk rock compositions are relatively primitive (46.5 – 53.6 wt% 

SiO2, 4.43 – 7.1 wt% MgO). The more mafic Gawler FLIP samples contain more 

evolved Hf isotope ratios, which suggest their source was also evolved (Fricke, 2005) 

relative to depleted mantle, consistent with a plume-like source (e.g. Nelson et al., 

2012). These magmas are consistent with being derived from a plume source as 

implied by Betts et al. (2009), but could also originate from enriched lithospheric 

mantle, which could also explain their alkalic compositions and Hf isotope ratios 

ranging across CHUR. 

The Hf isotope data from both the Delamerian and Gawler FLIP samples are 

suggestive of mantle sources. However, the Delamerian samples contain evidence of 
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appreciably depleted and juvenile material, which has likely mixed with relatively 

evolved material, either enriched lithospheric mantle or potentially crustal sources. 
 
 
Os isotope constraints 
 
 
 
Os isotopes are particularly distinctive between the A-type rocks of the Delamerian 

and Gawler FLIP (see Fig. 6). The 187Os/188Osi of the Delamerian peridotite and felsic 

samples are extremely similar, and unradiogenic (Fig 6a). While their total Os 

concentrations range over 3 orders of magnitude (0.211 – 405 ppt), their 187Os/188Osi 

have a comparatively narrow range from 0.1049 to 0.1977. The dramatic difference in 

Os concentration is consistent with the ~90% fractionation from a mafic mantle melt 

to produce the granitic compositions (Turner et al., 1992). The rhenium-depletion age 

of the most unradiogenic sample is 3.29 ± 0.4 Ga. The pre-Delamerian samples (Truro 

Volcanics) also contain relatively unradiogenic and homogeneous Os. 187Os/188Osi 

range from 0.1825 – 0.1875 and concentrations between 1.7 – 1.8 ppt. These ratios 

are consistent with a weakly enriched lithospheric mantle source, supporting the 

conclusions of Turner et al. (1996a) and Foden et al. (2002a), who describe these 

HREE  depleted,  yet  LREE  enriched  alkali  basalts  as  originating  from  the  upper 

lithospheric mantle. 
 

Importantly, significant crustal contamination of the Delamerian magmas is ruled 

out by the Os data. The concentrations of Os are so low in the granites, that mixing 

with any reasonable average crustal component (Fig. 6a) will rapidly produce liquids 

that have both Os concentrations and 187Os/188Osi  significantly higher than measured 

in  the  Delamerian  A-types.  In  fact,  in  order  to  be  able  to  assimilate  significant 

amounts of crust prior to closed system fractionation, any crustal component requires 

anomalously low levels of Os; of the order of sub ppt levels. The extremely low 

concentrations of Os and unradiogenic 187Os/188Osi of the felsic samples support a 

petrogenesis dominated by closed system fractionation at high crustal levels, 

effectively bypassing an evolved lower crustal source. 

Mt Monster is the only felsic sample which may contain up to a maximum of ~2% 

contamination (Fig. 6a) prior to fractionation, and intriguingly, this is the sample that 

contains the 3.1 Ga zircon core. The most radiogenic of the Delamerian samples is the 

Black Hill Peridotite, which on these models can be accounted for by assimilating a 

maximum of 5% crust. Since the Black Hill Peridotite is a significantly larger body 
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than the Marcollat and Seismograph Granites (Turner, 1996), it presumably spent 

more time at temperature in the crust, and therefore a greater degree of crustal 

assimilation is predicted. 

Significantly, the other Delamerian samples are subchondritic, and therefore 

potentially record heterogeneities in the magma source. Such Os signatures are 

confined almost exclusively to the mantle, and therefore we interpret the primary 

magmatic source for the Delamerian A-types as the lithospheric mantle with only 

minor crustal modification. This is consistent with the conclusions of Foden et al. 

(2002b). 

In contrast, the Gawler FLIP samples are highly variable and radiogenic 

(187Os/188Osi between 0.9467 and 15.71), and have less variable Os concentrations: 

between 11.8 and 145 ppt (Fig. 6b). These ratios clearly demonstrate the magmas‘ Os 
budget was derived from an ancient, evolved source. The high silica end of our 
Proterozoic A-type dataset, the Sybella Granite, also contains highly radiogenic Os 

(187Os/188Osi  between 2.036 and 4.912), and contains comparatively little Os (1.4 – 

1.7 ppt), consistent with fractionation from an  Os source similar to that of the Gawler 
 

FLIP. 
 

Since prevailing models for the Gawler FLIP invoke a mantle plume genesis (e.g. 

Betts et al., 2009), the Os isotopes point clearly towards assimilation of substantial 

amounts of continental crust into a plume derived magma. However, since the nature 

of the Archaean continental crust is poorly constrained, it is not yet possible to 

construct detailed models regarding the relative proportions of such crust. Since the 

lithophile isotopes (particularly Nd isotopes) do preserve evidence of a mantle-like 

component (Fricke, 2005), it is probable that the Os budget in the assimilated crust 

dominates any mantle signature. 
 
 
Combined U–Pb, Lu–Hf and Re–Os constraints 
 
 
 
Pankhurst et al. (2011c) found that multiple sources are required to account for the Nd 

isotopic variability within a Delamerian A-type granite exhibiting obvious mingling 

textures between host granite and mafic enclaves. In our Marcollat Granite- and Mt 

Monster Porphyry- examples that lack clear mingling textures, evidence for multiple 

sources is demonstrated by the large range of Hf isotope ratios within zircons. Thus 

multiple isotopic sources appear to be a feature of this system. 
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The U–Pb data implies a very low level of shallow crustal involvement since only 

one of the 68 zircon grains analyzed in this study was clearly inherited, most likely 

from a lower crustal source. In addition, the Os isotope data effectively rules out 

significant crustal contamination, especially of granites whose Os concentrations are 

extremely sensitive to any external source Os. 

Initial Hf isotope data contains examples of DMM-like ratios, although most 

examples are less radiogenic (Fig. 4). Importantly, none are less radiogenic than 

CHUR. The spread of initial Hf isotope values appear to be unrelated to 

straightforward assimilation of cooler, evolved material (Fig. 5), and since the Os data 

rules out crustal contamination (Fig. 6a), this spread is most likely to reflect mantle 

source heterogeneity. 

The sub-chondritic Os values must reflect a lithospheric mantle source, since 

contemporary DMM is more radiogenic (see Fig. 6a). The significant heterogeneity of 

the source, as required by the spread of Hf data on the positive side of CHUR (Fig. 4), 

must therefore have been within the lithospheric mantle. Thus a source dominated by 

material from heterogeneous lithospheric mantle is constrained by the combination of 

lithophile and chalcophile systems within the Delamerian A-types. 

The rarity of DMM-like Hf isotope ratios recorded by zircons, and the sub- 

chondritic Os isotope ratios argue strongly for a dominant lithospheric mantle source. 

The range in both Hf and Os isotope ratios are consistent with a variably enriched and 

heterogeneous lithospheric mantle, potentially due to metasomatic processes during 

the preceding orogenesis. This interpretation is consistent with both Turner et al. 

(1992) and  Foden  et  al.  (2002b) who also  invoked a metasomatised  lithospheric 

mantle source for the Delamerian A-types on the basis of major and trace element and 

Sr and Nd isotope constraints. 

Initial Hf isotope ratios from the Gawler FLIP samples are similar to those of the 

Delamerian, as they cluster at the radiogenic side of CHUR. In terms of lithophile 

elements, both the Gawler FLIP and the Delamerian A-types point to a dominant 

mantle component. Such a source for the Gawler province has been suggested on the 

basis of high magmatic temperatures (950-1100 °C) and Nd isotopes (Stewart and 

Foden, 2001). However, distinct provinciality, reflecting variable and significant 

assimilation of crust on a pluton scale has been described (e.g. Swain et al., 2005). In 

support of a significant crustal contribution, the initial Os isotope ratios are extremely 



618 
 

619 
 

620 
 

621 
 

622 
 

623 
 

624 
 

625 
 

626 
 

627 
 

628 
 

629 
 

630 
 

631 
 

632 
 

633 
 

634 
 

635 
 

636 
 

637 
 

638 
 

639 
 

640 
 

641 
 

642 
 

643 
 

644 
 

645 
 

646 
 

647 
 

648 
 

649 
 

650 
 

651 

radiogenic, which can only be reasonably attributed to the involvement of an ancient, 

evolved source (Fig. 6b). Assimilation or melting of Archean crust is one possible 

explanation, supported by the recent discovery of gneissic Archean granites within the 

Gawler Craton (Fraser et al., 2010). Another possibility is the involvement of 

metasomatised, highly radiogenic portions of the source region. In either scenario, it 

is clear that the Os budget of the Gawler samples are not dominated by an 

aesthenospheric mantle signature. 
 
 
Do A-type magmas play a role in strengthening lithosphere? 
 
 
 
Granitic magmatism plays an important role in the distribution of heat-producing 

elements in the lithosphere, and long-term stability of crustal domains (Sandiford and 

McLaren, 2005). The observation that A-type magmas are virtually always post- 

kinematic invites speculation as to whether there exists a genetic link between the end 

of orogenesis and A-type magmatism on shorter time frames as well. Since the 

majority of these post-orogenic magmas remain undeformed, this suggests their 

presence within stable crustal domains is not a coincidence. Rather their presence may 

be reflective of a strengthening process that either drives or is driven by A-type 

magmatism. Removal of heat-producing elements from lithospheric mantle sources 

via A-type magmatism may promote the longer-term strength and thus stability of 

those source regions. 

For instance, Puura and Flodén (1999) describe the well-studied 1.65-1.50 Ga 

rapakivi magmatism of the Svecofennian Domain as being directly related to crust 

thickened by the ~300 Ma older Svecofennian Orogeny. This gravitationally unstable 

crust is the driver of mantle diapirism, which causes major crust and mantle melting, 

producing the A-type magmas. The magmatism effectively stabilizes the lithospheric 

column by resetting the Moho depth and thinning the crust (Puura and Flodén, 1999). 

Another  well-documented  example  is   the  Tasmanide  orogenies   of   eastern 

Australia, beginning with the Delamerian. A series of eastward-younging orogenies 

accreted to then Gondwanan margin, driven by a supra-subduction system. Within 

this cyclical amalgamation of continental mass, pulses of mantle input over time are 

recorded by positive excursions of Hf and Nd isotope ratios (e.g. DeCelles et al., 

2009) via A-type magmatism that post-date peak deformation of each orogeny (Kemp 

et al., 2009). This contrasts with negative Hf and Nd excursions of the syn-orogenic I- 
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and S-type granite record (Kemp et al., 2009). These observations imply the same 

process occurred to terminate each of these Phanerozoic orogenies, and promoted 

later deformation outboard to continue the cycle. We have progressed the work of 

Kemp et al. (2009) to include the Delamerian A-types. Our data definitively establish 

that the source of these magmas is a heterogeneous lithospheric mantle. Whole-rock 

Os isotope data from the A-types of the subsequent Tasminides would serve as an 

authoritative test of whether the same sources were melting at the closing stages of 

each orogeny, and therefore the same processes were operating to terminate each 

orogeny. 

Our isotopic evidence from the Delamerian suggests that a heterogeneous 

lithospheric mantle was the most important source of the magmas. The magmatic 

system produced high-crustal level granites that were ultimately sourced from various 

portions of the underlying mantle, representing a significant homogenizing influence 

across the lithospheric column. This process may have been driven by convective 

removal of orogenic-thickened lithosphere (Turner et al., 1996b), which represents a 

fundamental change in the orogenic stress field, terminating the Delamerian Orogeny. 

We  suggest  that  the  homogenizing  influence  of  the  A-type  magmatic  system 

promoted, and potentially drove, local strengthening of this lithosphere via chemical 

and therefore physical reorganization/resetting, which directed future deformation 

outboard. 

The decoupling of the Hf and Os isotope systems implies the Gawler FLIP was 

produced from a number of sources. Radiogenic initial Nd and Hf isotope ratios 

strongly argue for a mantle source, which is consistent with the prevailing plume- 

head-arrival model for the province as a whole (Betts et al., 2009). However, an 

evolved source must also contribute significant material in order to dominate the Os 

budget, which is consistent with the observed skewing of Hf isotope values towards 

CHUR. Future work characterizing the Os isotope signature of Gawler Craton crustal 

rocks is required to constrain whether the source of the radiogenic Os is crustal, or can 

be attributed to highly metasomatised portions of the lithospheric mantle. This 

determination has implications for the degree of source heterogeneity within the 

Gawler FLIP. In either case, the source of Os is clearly different from that of the 

Delamerian samples. 

The Gawler  FLIP  contains  both  mantle and  crustal  isotopic signatures,  which 

points to a significant depth range of melting and operation of the magmatic system. 
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The voluminous, high temperature and rapid nature of the GRV emplacement points 

to wholescale melting of the fusible portions of the lithospheric column, effectively 

homogenizing  pre-existing  chemical   gradients.   This,   hypothesized,   widespread 

‗resetting‘ of rheological properties via the A-type magmatism could cause relatively 

strengthening of the lithospheric domain, which explains its position as an enduring 

stable block today. 
 
 
Conclusions 
 
 
 
The Delamerian and Gawler FLIP A-type systems have numerous similarities. They 

share distinctive chemistry and produce bimodal provinces characterized by high 

temperature (≤ 1100º C) shallow granites and rheoignimbrites/lavas and mid-crustal 

mafic  intrusions.  They  both  define  1)  transient  periods  of  anomalous  thermal 

gradients, 2) the terminus of their respective orogenies (Delamerian, Wartakan), and 

3) have occupied stable lithospheric blocks since. These observations suggest a 

common tectono-magmatic process. 

There are also important differences. The Delamerian system has a comparatively 

small total volume, and its architecture is relatively long and narrow. The Gawler 

FLIP has a large total volume, and its architecture is elliptical. These features, 

independent of chemistry or source, are consistent with normal supra-subduction zone 

dynamics producing the Delamerian Orogeny (Kemp et al., 2009), and plume head 

involvement in the Gawler FLIP (Betts et al., 2009). 

Our Hf and Os measurements constrain the dominant source regions of each. The 

Delamerian is appreciably depleted, containing DMM like Hf isotope ratios as well as 

Os isotope evidence of a lithospheric mantle source. Assimilation of continental crust 

plays  a  minor  role,  leaving  a  dominant  portion  of  the  signal  attributed  to 

heterogeneous lithospheric mantle. Critically, it is the combined approach of in-situ 

Hf analysis and whole rock Os analysis that allow us to confidently rule out crustal 

contamination,  and  instead  attribute  the  range  of  Hf  isotope  ratios  to  be  truly 

reflective of a heterogeneous lithospheric mantle source. 

The Gawler FLIP is similarly juvenile in terms of Hf, yet much more evolved in 
terms of Os. Partial melting in an ancient lower crust is one explanation for the 

extremely  radiogenic  187Os/188Osi,  although  metasomatised  portions  of  a  mantle 

source may also satisfy the data. Our isotopic data is consistent with widespread 
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melting and significant transfer of material from mantle to crust, caused by the arrival 

of a mantle plume head. 

We observe the same style of magmatism, range of sources and empirical 

observation of a stable post-magmatic lithosphere in both the Delamerian and Gawler 

FLIP. The geodynamic end-member examples presented here (convective 

thinning/plume head arrival) suggest the spectrum of A-type magmatism is indicative 

of  similar  high  temperature  regimes,  which  can  lead  to  the  strengthening  of 

lithosphere. If the thermal regime is adequately persistent, coeval fusion of crust and 

mantle, resetting of the moho, and removal of heterogeneities is suggested to promote 

long-term stability of lithospheric domains. 
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Figure captions: 
 
 
 
Figure 1. Location and geologic context of samples. a) The Padthaway Suite extends 

for ~500 km in a north-northwest direction, parallel with the coastline of southeast 

South Australia. The intrusions are exposed by the unroofing of Delamerian orogenic 

rocks since ~480 Ma. b) The Gawler Craton, central South Australia, is comprised of 

amalgamated  Archean,  Palaeo-  and  Mesoproterozoic  terranes.  The  Gawler  FLIP 

(Allen et al., 2008) represents the final tectono-magmatic event in the central Gawler 

Craton, before tectonic and magmatic activity continued on the northern margin 

(Stewart and Betts, 2010a). 
 
 
Figure 2. Cathodoluminesence images of zircons and analytical spots in this study. a) 

Marcollat, b) Mt. Monster Porphyry. 
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Figure 3. Age concordia from selected analyses of the a) the Marcollat Granite and b) 

the Mt. Monster Porphyry. Discordant data (filled, greyed) were rejected from age 

calculations. 
 
 
Figure 4. Initial Hf isotope ratios for the Delamerian and Gawler FLIP magmatic 

rocks with respect to emplacement age. In both provinces the initial Hf isotope ratios 

are more juvenile than CHUR, and a small number of zircons from the Mt. Monster 

Porphyry are similar to contemporary DMM. Error bars are smaller than the lines 

displayed. 
 
 
Figure 5. Measured 176Hf/177Hf ratios with respect to Ti concentration. As the Ti-in- 

zicron thermobarometer is calibrated using a rutile (and therefore Ti activity) buffer, 

and no rutile is observed within the Marcollat Granite or Mt. Monster Porphyry, we 

present Ti concentration as a temperature proxy only. Despite scatter due to probable 

micro-inclusions of Ti-oxides, a cooling trend can be observed within the Marcollat 

data (dashed lines). Mt. Monster Porphyry data is much more scattered and do not 

show a meaningful trend. 1Zircon data from a biotite granite and a diabase within a 
 

comparable  A-type  system  (Heinonen  et  al.,  2010)  are  plotted  for  comparison. 

Symbol size is generally larger than the plotted error. 
 
 
Figure 6. Initial 187Os/188Os ratios against inverse of Os concentration. a) Delamerian 

samples occupy a limited range from subchondritic to suprachondritic. The ratios 

cannot be explained by crustal assimilation, since mixing between a 10% partial melt 

of a DMM source (calculated following the approach of Roy-Barman and Allègre, 

1995) and  an  average crustal  component  (Os  concentration  of 100-50  ppt  and  a 
 

187Os/188Os ratio of 10) i) trend to far more radiogenic values than those measured and 

ii) do not approach the extremely low concentrations of Os measured. The data are 

best explained by closed system fractionation from a depleted lithospheric mantle 

source. b) The highly radiogenic values displayed by the Proterozoic samples are 

similar to  a range of reasonable 3.1  Ga Archean  Crustal  values,  which  suggests 

mixing between mantle plume components and these ancient rocks could explain our 

data. Another possibility is that the high 187Os/188Os is due to high Re/Os metasomatic 

agents (such as subduction fluids; Widom et al., 1999) present in the source. Future 
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work constraining the Re and Os signature of Gawler basement rocks will allow 

meaningful tests of these hypotheses. Error bars are smaller than the symbol size. 
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Table 1 
In situ major, trace and isotopic data from the Marcollat Granite zircon population. 

 

Analysis z01 z02.1 z03.1 z03.2 z04 z05.1 z05.2 z05.3 z06.1 z06.2 z06.3 z07.1 z08 z09 z10 
ZrO2 (wt.%) 66.51 67.38 67.26 67.57 66.64 67.70 67.35 62.21 66.62 66.88 66.91 67.20 67.62 66.99 67.77 
SiO2 32.50 32.77 32.75 32.78 32.61 32.61 32.93 31.94 32.67 32.77 32.71 32.45 32.89 32.80 32.73 
HfO2 1.03 0.96 1.07 1.16 1.08 0.90 1.09 3.75 1.45 1.08 1.01 0.91 1.04 1.06 1.47 
Tia  (ppm) 5.60 3.64 2.91 2.40 3.29 16.13   4.85   5.50 5.42 4.75 9.76 
Ya 910.91 2118.56 2060.21 1237.84 1260.09 2070.31 1938.44 2438.62 868.98 2153.00 1539.62 
Yba 242.91 509.49 513.40 325.21 336.33 529.10   481.53   584.79 248.30 537.77 435.51 
Hfa 8710.44 8135.51 9110.68 9110.68 9157.32 9281.97   8542.54   7675.05 8812.19 9024.19 12457.65 
Tha 97.28 162.95 222.74 146.06 189.22 190.86   341.08   376.10 100.60 167.08 155.30 
Ua 140.77 179.81 399.44 247.13 279.44 313.25   361.00   350.09 140.19 180.75 205.38 
207Pb/206Pb 0.0568 0.0579 0.0563 0.0561 0.0568 0.0598   0.0574   0.0764 0.0590 0.0579 0.0564 
1σ 0.0012 0.0009 0.0008 0.0008 0.0009 0.0010   0.0009   0.0012 0.0011 0.0010 0.0010 
207Pb/235U  0.5890 0.5986 0.5966 0.5950 0.5906 0.6923 0.6233 0.8381 0.6354 0.6080 0.6103 
1σ 0.0119 0.0098 0.0087 0.0093 0.0093 0.0120   0.0101   0.0132 0.0120 0.0107 0.0113 
206Pb/238U  0.0752 0.0750 0.0768 0.0770 0.0754 0.0839 0.0788 0.0795 0.0781 0.0762 0.0785 
1σ 0.0009 0.0009 0.0009 0.0009 0.0009 0.0011   0.0009   0.0009 0.0010 0.0009 0.0010 
208Pb/232Th  0.0246 0.0243 0.0252 0.0249 0.0244 0.0278 0.0248 0.0292 0.0252 0.0242 0.0248 
1σ 0.0007 0.0006 0.0006 0.0006 0.0006 0.0009   0.0007   0.0009 0.0006 0.0006 0.0006 
176Hf/177Hfm  0.282565 0.282638 0.282581 0.282583 0.282580 0.282615 0.282610 0.282585 0.282596 0.282556 0.282600 0.282657 
1σ 0.000011 0.000012 0.000009 0.000008 0.000010 0.000012  0.000009   0.000012 0.000009 0.000006 0.000007 0.000017 
176Lu/177Hfm 0.000667 0.001682 0.001826 0.001078 0.001129 0.003582  0.001871   0.001348 0.001287 0.001164 0.001589 0.003223 
176Yb/177Hfm 0.034890 0.095212 0.108550 0.063080 0.063840 0.147714  0.105373   0.074513 0.072220 0.064868 0.087574 0.111338 
206Pb/238U age  (Ma) 467 466 477 478 469 519   489   493 485 474 487 
1σ 6 5 5 6 5 6   6   6 6 6 6 
176Hf/177Hfi  

Ma)  0.282559 0.282622 0.282564 0.282573 0.282569 0.282582 0.282593 0.282572 0.282584 0.282545 0.282585 0.282627
 (480 

εHf 3.39 5.64 3.58 3.89 3.77 4.20  4.59 3.87   4.28 2.91 4.33 5.81 
1σ 0.39 0.42 0.32 0.29 0.33 0.42  0.33 0.42   0.30 0.22 0.26 0.60 

Major elements expressed in wt% oxides were analysed by EMP with a 15  kV accelerating voltage and 20  nA beam. 
EMP standards used had the following composition; Hf: Hf wire (Hf,  100%); Zr, O: zircon (O, 34.78%; Si, 15.26%; P, 0.04%;  Y, 0.05%;  Zr, 48.97%; Hf, 
0.9%); and Y: YAG (Y, 44.93%; O, 32.34%; Al, 22.73%). Pb, Th and U isotopes were measured by quadropole ICPMS. Each  mass had a dwell time of 10  ms  
except 238U and 206Pb (15 ms) and 207Pb (30 ms). 
Hf, Lu and Yb isotope ratios were measured by 
multicollector ICPMS. bd  = below detection limit. 
A 176Lu decay constant of 1.93 × 10− 11  (Blichert-Toft and Albarède, 1997) was used to calculate initial 176Hf/177Hf ratios. 
A CHURt = 0 value of 0.282772 and 176Lu/177Hf ratio of 0.0332 (Blichert-Toft and Albarède, 1997) was used to calculate εHf. 
Hf isotope ratios with no  direct corresponding major element analysis were corrected using the data from within the same grain. 
aData from the same spots analysed, see  Pankhurst (2012). 



 
 
 
 
 
 
 
 
 
 
 
 
Table 1 (continued) 

 

Analysis z11.1 z11.2 z12 z13 z14 z15.1 z15.2 z16.1 z17.1 z18.1 z18.2 z19 z20.1 z20.2 z20.3 z21.1 
ZrO2 (wt.%) 68.03 68.07 66.77 66.93 67.64 66.97 67.94 67.37 67.37 67.09  67.31 67.62   66.85 
SiO2 32.92 32.82 32.67 32.65 32.60 32.62 32.84 32.62 32.63 32.73  32.49 32.69   32.71 
HfO2 1.03 0.90 1.43 0.89 1.51 0.99 1.47 1.15 1.20 1.06  1.86 1.16   1.25 
Tia  (ppm) 5.95 5.37 4.92 4.80 6.25 8.26 6.91 2.90 6.66 2.49  10.34 6.99   5.47 
Ya 1538.43 962.64 1007.52 1068.86 1694.32 1197.27 1296.31 1613.67 1024.57 2602.57 2510.65 2149.02 1230.94 
Yba 350.39 254.80 289.30 281.35 462.13 320.04 359.63 421.65 280.87 634.21  675.08 544.76   337.61 
Hfa 7591.95 8698.57 12141.36 7505.46 12844.33 8400.92 12447.48 9742.43 10213.05 8957.20  15788.51 9818.74   10570.90 
Tha 152.69 112.91 91.44 127.56 251.08 143.59 94.15 151.66 108.23 208.56  337.33 267.45   127.36 
Ua 160.20 155.54 168.24 164.11 367.44 172.47 127.40 253.17 156.85 261.61  528.16 416.39   175.46 
207Pb/206Pb 0.0595 0.0576 0.0580 0.0573 0.0568 0.0553 0.0555 0.0572 0.0576 0.0570  0.0568 0.1176   0.0578 
1σ 0.0011 0.0010 0.0011 0.0010 0.0009 0.0011 0.0012 0.0010 0.0011 0.0009  0.0009 0.0016   0.0011 
207Pb/235U  0.6343 0.6119 0.6248 0.6198 0.6098 0.5871 0.6051 0.6198 0.6136 0.6240 0.6014 1.6011 0.5886 
1σ 0.0112 0.0110 0.0122 0.0111 0.0098 0.0112 0.0134 0.0109 0.0121 0.0102  0.0096 0.0228 0.0107 
206Pb/238U  0.0774 0.0771 0.0781 0.0784 0.0779 0.0771 0.0790 0.0786 0.0773 0.0794 0.0767 0.0988 0.0739 
1σ 0.0009 0.0009 0.0010 0.0010 0.0009 0.0010 0.0010 0.0010 0.0010 0.0009  0.0009 0.0012 0.0009 
208Pb/232Th  0.0249 0.0241 0.0255 0.0242 0.0240 0.0241 0.0254 0.0240 0.0246 0.0250 0.0241 0.0875 0.0229 
1σ 0.0006 0.0006 0.0007 0.0007 0.0007 0.0007 0.0008 0.0008 0.0008 0.0006  0.0006 0.0023 0.0007 
176Hf/177Hfm  0.282572 0.282544 0.282578 0.282679 0.282665 0.282556 0.282555 0.282706 0.282776 0.282587 0.282723 0.282638 0.282576 0.282599 
1σ 0.000008  0.000010 0.000012 0.000009 0.000012  0.000010 0.000011 0.000014 0.000014 0.000009 0.000015 0.000008 0.000009 0.000009 
176Lu/177Hfm 0.001161  0.000608 0.000865 0.001571 0.001677  0.001008 0.000748 0.002064 0.002008 0.000852 0.001345 0.000991 0.001010 0.000781 
176Yb/177Hfm 0.063857  0.033852 0.047294 0.093548 0.095373  0.059210 0.041535 0.119998 0.123863 0.052390 0.084752 0.061841 0.060226 0.046954 
206Pb/238U age  (Ma) 480 479 485 487 484 479 490 488 480 493  477 607   460 
1σ 6 6 6 6 6 6 6 6 6 6  5 7   5 
176Hf/177Hfi  

Ma)  0.282561 0.282538 0.282570 0.282664 0.282649 0.282547 0.282548 0.282687 0.282757 0.282579 0.282710 0.282629 0.282567 0.282592
 (480 

εHf 3.48  2.67 3.79 7.13 6.60  2.96 3.01 7.92 10.42 4.11 8.76 5.87 3.67 4.56 
1σ 0.28  0.35 0.42 0.30 0.42  0.35 0.39 0.49 0.49 0.31 0.53 0.29 0.33 0.31 



(480 

 
 
 
 
 
 
 
 
 
 
 
Table 1 (continued) 

 
Analysis z22  z23  z24.1 z25  z26  z27.1 z27.2 z27.3 z28  z29  z30  z31  z32  z33 

 
ZrO2 (wt.%) 67.33 67.28 67.94 67.11 67.16 67.09 67.07 66.74 67.87 67.34 66.40 67.22 66.61 67.11 
SiO2 32.74 32.61 32.77 32.74 32.84 32.86 32.77 32.61 32.31 32.64 32.57 32.71 32.64 32.73 
HfO2 1.02 1.06 0.91 1.03 1.05 1.23 1.11 1.48 1.23 1.12 1.14 1.07 1.25 1.08 
Tia  (ppm)  7.15 3.77 5.12 5.06 21413.19  4.90 4.01 2.45 9.14 2.84 1.87 20.19 26.94 
Ya 1207.98 1264.00 909.79 1952.85 1048.84 1036.24 1555.97 1103.91 4683.60 2776.13 468.44 4727.19 1594.32 
Yba 327.51 333.88 236.28 485.68 298.13 297.54 444.05 317.80 1096.71 691.73 142.79 1125.63 434.97 
Hfa 8621.40 9014.86 7746.28 8722.31 8885.97 10430.14 12565.35 10390.28 9503.30 9634.74 9077.61 10564.97 9191.24 
Tha 145.26 163.74 103.38 158.81 86.03 133.08 190.52 130.90 589.28 363.28 55.56 799.19 161.86 
Ua 170.25 243.02 128.75 178.36 146.39 172.81 358.72 285.68 408.29 576.50 130.50 1276.19 193.76 
207Pb/206Pb  0.0582 0.0573 0.0583 0.0566 0.0592 0.0567 0.0560 0.0564 0.0556 0.0563 0.0574 0.0564 0.0588 
1σ  0.0011 0.0010 0.0012 0.0011 0.0012 0.0011 0.0009 0.0010 0.0009 0.0009 0.0010 0.0010 0.0011 
207Pb/235U  0.6120 0.6145 0.6086 0.5909 0.6414 0.6228 0.5876 0.6030 0.6011 0.6085 0.5944 0.6242 0.6507 
1σ  0.0115 0.0107 0.0124 0.0117 0.0132 0.0120 0.0096 0.0102 0.0103 0.0095 0.0107 0.0110 0.0117 
206Pb/238U  0.0763 0.0778 0.0757 0.0757 0.0786 0.0797 0.0761 0.0776 0.0785 0.0784 0.0751 0.0803 0.0802 
1σ  0.0009 0.0009 0.0010 0.0009 0.0010 0.0010 0.0009 0.0009 0.0009 0.0009 0.0009 0.0010 0.0010 
208Pb/232Th  0.0236 0.0243 0.0240 0.0238 0.0254 0.0260 0.0240 0.0252 0.0253 0.0251 0.0237 0.0257 0.0251 
1σ  0.0007 0.0008 0.0008 0.0008 0.0009 0.0007 0.0007 0.0008 0.0007 0.0008 0.0008 0.0010 0.0009 
176Hf/177Hfm  0.282636 0.282565 0.282555 0.282663 0.282566 0.282554 0.282563 0.282571 0.282552 0.282603 0.282643 0.282545 
1σ  0.000010 0.000010 0.000008 0.000011 0.000010 0.000008 0.000007 0.000010 0.000009 0.000009 0.000008 0.000026 
176Lu/177Hfm  0.001964 0.000779 0.001083 0.001643 0.001976 0.000950 0.000910 0.001384 0.001644 0.001400 0.003067 0.002063 
176Yb/177Hfm  0.114020 0.043178 0.059067 0.091227 0.110493 0.048968 0.047125 0.072097 0.090061 0.079231 0.184937 0.101426 
206Pb/238U age  (Ma)  474 483 471 470 488 492 469 479 478 483 474 493 509 
1σ  6  6  6  6  6  8  6  6  7  6  7  7  7 
176Hf/177Hfi 

Ma)  0.282618 0.282558 0.282545 0.282648 0.282548 0.282545 0.282555 0.282558 0.282537 0.282590 0.282614 0.282526 
εHf  5.48 3.35 2.90 6.54 3.00 2.91 3.24 3.37 2.61 4.49 5.36 2.22 
1σ  0.34 0.34 0.27 0.39 0.34 0.28 0.25 0.35 0.32 0.33 0.29 0.91 



Table 2 
In situ major, trace and isotopic data from the Mt  Monster Porphyry zircon population. 

 
Analysis monzr5.1 monzr6.1 monzr7.1 monzr8.1 monzr9.1 monzr10.1 monzr10.2 monzr11.1 monzr12.1 monzr13.1 monzr14.1 monzr14.2 monzr15.1 monzr15.2  monzr16.1 

 
ZrO2 (wt.%) 63.14 64.85 65.22 63.42 64.57 59.55 63.72 64.49 64.28 64.73 63.92 64.41 63.06 63.98 61.17 
SiO2 31.09 31.87 32.03 31.82 31.96 30.52 31.66 31.70 31.86 31.59 31.31 31.19 31.63 31.82 31.03 
HfO2 1.42 1.52 1.25 1.84 1.66 1.40 1.65 1.46 1.08 1.10 1.20 1.47 1.78 1.73 1.83 
Y2O3 0.70 0.31 0.19 0.62 0.15 2.67 0.52 0.21 0.84 0.30 0.55 0.18 0.69 0.40 1.47 
P (ppm)  391.66 488.11 575.37 494.17 450.2 1146.22 408.61 834.89 457.49 789.96 421.11 428.93 681.57 
Ti 30.32 12.12 17.33 50.79 14.31 22.11 36.11 42.97 363.28 9.73 34.05 10.64 110.33 
Y 2818.55 2087.36 691.33 6210.86 2052.16 5067.97 3801.04 2279.63 5674.21 2989.23 13433.08 6941.82 7547.79 
Nb  23.91 15.97 9.6  43.25 12.42 26.45 52.42 21.14 15.13 11.86 39.23 23.95 134.62 
La 9.85 8.55 6.38 27.2 46.26 21.47 7.19 164.61  50.16 167.53  166.26  34.23 19.86 
Ce  117.68 68.94 47.54 388.17 277.4 111.37 105.94 380.87 483.41 243.05 1605.89 698.82 348.75 
Pr  6.75 3.47 2.6  17.8 13.05 9.44 4.06 32.39 14.3 31.06 59.77 29.54 9.33 
Nd  35.38 15  11.56 91.19 49.98 50.7 23.07 125.97  68.12 125.06  258.55  140.2 43.39 
Sm  19.68 9.71 7.14 54.13 22.63 27.11 16.57 27.19 42.97 34.06 138.42  81.97 27.99 
Eu  1.06 0.48 0.317 2.59 1.14 0.8  0.68 1.08 2.74 2.63 10.04 4.59 1.08 
Gd  55.19 38.54 14.57 135.56 41.82 80.32 63.76 49.92 145.4 76.63 312.36 157.95 115.86 
Tb  22.03 14.47 5.2  47.9 16.32 33.08 24.18 17.93 51.29 23.72 110.33  58.5 41.97 
Dy  265.47 179.15 61.41 555.36 179.51 432.28 318.35 196.93 579.18 266.55 1165.2 622.9 561.93 
Ho  91.88 69.54 21.72 193.07 64.91 169.43 122.98 71.37 199.35 98.98 369.77 211.12 220.56 
Er  413.73 320.46 101.73 803.24 295.77 785.09 583.6 323.64 842.5 418.73 1474.94 869.77 1044.83 
Tm  89.95 69.94 22.95 165.88  66  170.17 133.66 69.07 170.05 81.18 288.83 175.11 224.36 
Yb  858.4 670.09 219.12 1501.31 684.77 1723.93 1322.48 644.83 1521.56 730.56 2417.95 1561.59 2070.54 
Lu  143.74 116.85 41.23 234.72 115.1 299.38 223.23 114.61 257.05 128.52 346.79 239.33 352.25 
Hf  12042.99 12912.17 10592.95 15627.4 14114.6 11900.53 13951.79 12398.3 9126.79 9348.96 10158.78 12455.96 14653.92 
Ta  4.5  4.14 2.21 11.45 9.19 7.35 16.58 4.55 2  2.27 8.62 8.84 37.08 
Pb  28.8 30.18 11.48 53.3 19.04 107.69 72.35 47.43 89.37 24.83 67.73 44.22 168.61 
Th  509.34 637.99 107.64 1044.21 406.5 2016.36 1347.41 713.55 876.38 452.6 1124.7 664.48 3451.88 
U  917.12 1066.84 269.27 2146.79 1123.71 3064.94 2843.25 1075.79 851.39 679.41 1113.98 1293.27 5834.43 
207Pb/206Pb  0.0461 0.0636 0.0461 0.0461 0.0504 0.0697 0.0713 0.0477 0.0461 0.0620 0.1389 0.0625 0.0727 0.1915 
1σ  0.0066 0.0038 0.0087 0.0048 0.0035 0.0046 0.0049 0.0145 0.0209 0.0039 0.0120 0.0042 0.0056 0.0097 
207Pb/235U  0.4581 0.7058 0.4272 0.4304 0.5381 0.8775 0.8142 0.4713 0.4603 0.6361 1.0852 0.6906 0.9033 1.6561 
1σ  0.0645 0.0401 0.0798 0.0440 0.0361 0.0549 0.0532 0.1421 0.2081 0.0386 0.0878 0.0447 0.0677 0.0790 
206Pb/238U  0.0722 0.0806 0.0673 0.0678 0.0775 0.0914 0.0828 0.0716 0.0725 0.0744 0.0567 0.0802 0.0902 0.0628 
1σ  0.0015 0.0020 0.0020 0.0017 0.0021 0.0023 0.0023 0.0020 0.0029 0.0018 0.0019 0.0021 0.0027 0.0014 
208Pb/232Th  0.0231 0.0380 0.0233 0.0262 0.0284 0.0347 0.0349 0.0227 0.0273 0.0262 0.0163 0.0284 0.0313 0.0244 
1σ  0.0021 0.0059 0.0045 0.0044 0.0051 0.0061 0.0066 0.0032 0.0061 0.0038 0.0035 0.0045 0.0058 0.0034 
176Hf/177Hfm  0.282753 0.282960 0.282805 0.282986 0.282525 0.282610 0.282673 0.282622 0.282606 0.282584 
1σ  0.000011 0.000024 0.000012 0.000018 0.000033 0.000012 0.000040 0.000017 0.000018 0.000013 
176Lu/177Hfm  0.002193 0.004653 0.001665 0.003142 0.006677 0.002794 0.005446 0.002150 0.001002 0.003413 
176Yb/177Hfm  0.074749 0.167258 0.057288 0.137790 0.231365 0.096793 0.252503 0.075609 0.039372 0.150460 
206Pb/238U age  (Ma)  449 499 420 423 481 564 513 446 451 462 356 497 557 393 
1σ  9  12  12  10  13  14  13  12  17  11  12  12  16  8 
176Hf/177Hfi (485  Ma)  0.282732 0.282916 0.282789 0.282956 0.282462 0.282584 0.282622 0.282602 0.282597 0.282552 
εHf  9.65 16.16 11.67 17.58 0.09 4.39 5.74 5.03 4.84 3.26 
1σ  0.39 0.84 0.42 0.63 1.16 0.42 1.40 0.60 0.63 0.46 

 
Pb isotope ratios are  common Pb corrected.  Major elements expressed in wt.% oxides were analysed by  EMP with a 15  kV accelerating voltage and 20  nA beam. 
EMP standards used had the following composition; Hf: Hf wire (Hf,  100%); Zr, O: zircon (O, 34.78%; Si, 15.26%; P, 0.04%;  Y, 0.05%;  Zr, 48.97%; Hf, 0.9%); and Y: YAG (Y, 44.93%; O, 
32.34%; Al, 22.73%). 
Concentrations calculated by quadropole ICPMS on  measured isotopes as follows;  31P, 49Ti, 89Y, 93Nb, 139La, 140Ce, 141Pr,  146Nd,  147Sm,  151Eu, 157Gd,  159Tb, 163Dy, 
165Ho,  166Er, 169Tm,  173Yb, 175Lu, 178Hf, 181Ta, 208Pb,  232Th  and 238U. Each  mass had a dwell time of 10  ms  except 238U and 206Pb (15 ms) and 207Pb (30 ms). 
Hf, Lu and Yb isotope ratios were measured by multicollector  ICPMS. 
A 176Lu decay constant of 1.93 × 10− 11  (Blichert-Toft and Albarède, 1997) was used to calculate initial 176Hf/177Hf ratios. 
A CHURt = 0 value of 0.282772 and 176Lu/177Hf ratio of 0.0332 (Blichert-Toft and Albarède, 1997) was used to calculate εHf. 



 
 
 
Table 2 (continued) 

 

Analysis monzr16.2 monzr17.1 monzr17.2 monzr18.1 monzr19.1 monzr20.1 monzr21.1 monzr22.1 monzr23.1 monzr24.1 monzr25.1 monzr25.2 monzr26.1 monzr27.1 monzr27.1 monzr27.1 
ZrO2 (wt.%) 62.53 64.82 64.77 62.93 64.01 63.14 63.96 62.59 62.40 63.11 62.00 64.85 61.16 63.16 60.66 60.34 
SiO2 31.12 30.52 32.09 30.99 30.93 31.39 31.26 30.75 30.94 30.46 31.96 30.90 30.15 30.60 29.86 29.94 
HfO2 1.53 1.20 1.52 1.74 1.71 3.12 1.61 1.12 1.58 1.10 1.72 1.40 1.01 1.87 1.81 1.76 
Y2O3 0.27 0.34 0.25 0.91 0.40 0.19 0.41 1.44 0.96 1.16 0.99 0.20 2.07 0.77 1.94 1.85 
P (ppm) 7198.93 438.99 353.7 573.81 361.88 202.11 346.27 553.41 1314.43 574.62 232.58  786.91 1670.52  412.46 
Ti 287.15 11.99 14.1 76.85 231.35 28.44 35.58 16.62 238.74 54.29 267.42  25.59 15.09  6.24 
Y 12919.22 3080.3 1680.24 4189.85 5503.85 2563.22 2063.13 4146.13 9941.12 5919.92 1687.95  9567.09 13663.27  2272.54 
Nb 56.08 6.9 5.24 53.78 80.63 66 31.67 36.23 85.68 23.44 26.29  66.16 86.51  14.97 
La 72.77 0.802 0.774 15.14 18.54 9.54 3.01 20.37 61.96 4.94 3.42  18.08 1.7  3.33 
Ce 1842.44 37 19.55 87.28 371.18 106 47.26 290.88 448.62 87.67 98.14  295.42 74.93  74.56 
Pr 39.83 0.746 0.367 4.6 13.12 5.43 1.88 14.23 22.38 3.33 1.76  9.31 1.4  1.45 
Nd 214.98 7.4 3.84 23.05 67.37 21.48 8.94 68.46 99.81 23.46 11.44  57.36 12.15  9.27 
Sm 133.66 13.36 6.43 14.31 49.99 12.82 7.57 38.39 63.93 32.67 8.44  64.69 29.04  9.59 
Eu 8.67 1.5 0.649 0.426 2.54 1 0.48 1.46 2.63 3.99 0.72  3.09 0.5  0.499 
Gd 307.04 66.11 32.66 61.37 126.39 32.47 32.59 88.25 192.19 153.9 30.87  244.76 176.71  38.71 
Tb 109.34 25.69 12.14 24.7 42.31 13.31 11.51 32.56 71.38 51.92 13.41  90.36 79.01  14.77 
Dy 1188.82 289.69 153 325.78 489.42 168 158.68 376.17 843.87 586.89 148.12  1012.91 1069.96  182.8 
Ho 380.94 108.7 58.92 136.19 174.19 62.39 66.66 132 314.27 209.9 57.55  356.13 450.14  72.73 
Er 1530.84 466.58 260.98 660.19 755.17 299.74 331.4 600.75 1446.79 880.3 253.01  1447.31 2174.86  349.58 
Tm 310.29 94.07 53.6 150.71 160.67 81.36 78.57 125.66 303.73 170.19 58.75  276.81 495.86  77.2 
Yb 2962.93 868.8 497.88 1460.3 1545.97 955.31 788.47 1148.63 2811.93 1505.29 584.59  2451.35 4895.93  751.85 
Lu 423.16 153.89 91.99 262.94 254.62 185.22 139.32 201.41 490.92 261.5 96.65  389.29 845.65  134.83 
Hf 15519.71 10163.87 10163.87 14748.05 14512.31 26462.87 13655.85 9508.38 13437.92 9300.63 14608.98  8575.6 15836.84  13536.28 
Ta 11.91 1.99 1.538 18.77 13.4 218 9.28 5.07 16.94 3.51 5.58  10.91 28.6  5.11 
Pb 91.81 28.4 20.65 118.37 57.44 11.4 26.87 47.8 192.88 57.29 16.55  200.05 270.56  36.65 
Th 1917.67 557.32 376.87 2139.3 1066.62 138.09 674.94 885.55 3821.98 1131.7 353.21  4042.98 6476.62  714.01 
U 1648.38 627.9 475.25 4173.12 2262.44 2656.37 1521.76 1232.45 5349.61 1002.46 747.42  2763.75 13851.59  1251.86 
207Pb/206Pb  0.0671 0.0618 0.0605 0.0461 0.0608 0.0556 0.0536 0.0728 0.0595 0.0717 0.0711 0.0560 0.0583 
1σ  0.0024 0.0035 0.0026 0.0192 0.0033 0.0035 0.0116 0.0045 0.0040 0.0066  0.0051 0.0040  0.0041 
207Pb/235U  0.7359 0.6791 0.6657 0.4264 0.6640 0.6082 0.5674 0.7856 0.6134 0.7640 0.8116 0.6182 0.6821 
1σ  0.0249 0.0369 0.0270 0.1763 0.0350 0.0371 0.1217 0.0466 0.0386 0.0662  0.0548 0.0414  0.0457 
206Pb/238U  0.0795 0.0797 0.0799 0.0672 0.0793 0.0794 0.0768 0.0783 0.0747 0.0776 0.0827 0.0801 0.0849 
1σ  0.0013 0.0018 0.0014 0.0031 0.0019 0.0021 0.0018 0.0019 0.0020 0.0028  0.0022 0.0021  0.0022 
208Pb/232Th  0.0258 0.0269 0.0268 0.0458 0.0499 0.0263 0.0240 0.0231 0.0262 0.0329 0.0354 0.0316 0.0361 
1σ  0.0020 0.0033 0.0031 0.0222 0.0080 0.0049 0.0016 0.0041 0.0051 0.0088  0.0070 0.0070  0.0074 
176Hf/177Hfm  0.282651 0.282606 0.282631 0.282662 0.282623 0.282640 0.282643 0.282554 0.282621 
1σ  0.000015  0.000017  0.000025 0.000018 0.000014 0.000027 0.000018 0.000017  0.000023    176Lu/177Hfm  0.001850  0.002267  0.002896 0.002685 0.001984 0.004544 0.001991 0.002299  0.002943    176Yb/177Hfm  0.065366  0.094357  0.088906 0.102672 0.082077 0.149879 0.078271 0.081486  0.100981    206Pb/238U age  (Ma)  493 495 495 419 492 492 477 486 465 482  512 496  525 
1σ  8 11 8 19 11 12 11 11 12 17  13 13  13 
176Hf/177Hfi (485 Ma)  0.282634  0.282585  0.282604 0.282637 0.282604 0.282597 0.282624 0.282532  0.282593    
εHf  6.15  4.42  5.10 6.27 5.12 4.87 5.82 2.57  4.73    1σ  0.53  0.60  0.88 0.63 0.49 0.95 0.63 0.60  0.81    



 
 
 
 
Table 2 (continued) 

 

Analysis monzr27.4 monzr27.5 monzr28.1 monzr28.2 monzr29.1 monzr30.1 monzr31.1 monzr31.2 monzr32.1 monzr33.1 monzr34.1 monzr35  
ZrO2 (wt.%) 63.49 64.67 64.03 62.76 63.94 64.01 62.76  64.28 63.67 64.63 63.24 
SiO2 30.88 30.87 30.87 31.10 30.16 30.86 30.36  30.67 31.55 31.79 30.27 
HfO2 1.60 1.39 1.35 1.82 1.42 1.47 1.44  1.58 1.01 1.45 1.23 
Y2O3 0.51 0.25 0.44 0.62 0.42 0.39 0.46  0.29 1.05 0.23 1.25 
P (ppm)   192.16 590.7 288.87 773.26 598.49  388.35 446.32 310.96 565.21 47.49 52.18 47.57 
Ti   33.87 46.86 84.1 68.65 37.18  270.87 1113.21 9.53 124.01 12.43 23.93 11.47 
Y   581.5 2097.13 2991.78 4227.69 3253.09  6381.11 9036.57 1897.11 4294 3.68 3.73 3.67 
Nb   3.89 23.08 16.02 44.94 29.94  40.13 39.75 9.19 87.07 4.44 5.66 4.19 
La   1 9.88 45.24 12.42 6.3  53.08 163.96 1.8 33.74 5.79 10.59 4.98 
Ce   18.51 133.21 364.98 137.72 99.32  1375.29 1510.76 51.84 444.29 3.84 4.21 3.84 
Pr   0.567 5.18 15.02 5.46 3.43  41.96 50.53 1.375 16.8 5.90 11.99 4.99 
Nd   2.69 29.07 57.23 29.39 23.14  183.72 192.74 7.45 80.8 5.99 10.78 5.27 
Sm   2.23 16.42 48.07 20.77 20.33  86.61 91.09 7.07 49.5 6.84 12.91 6.27 
Eu   0.414 0.72 1.64 1.07 0.74  4.49 5.91 0.391 2.66 14.30 27.08 14.00 
Gd   8.87 46.16 62.47 74.23 66.42  153.17 224.18 30.03 108.04 4.84 7.13 4.55 
Tb   3.74 15.41 27.16 27.98 21.7  60.08 80.83 12.29 39.08 4.00 5.19 3.89 
Dy   44.52 177.54 286.99 352.46 272.7  663.54 912.53 152.18 385.31 3.72 4.48 3.71 
Ho   17.65 65.57 97.94 135.66 105.61  206.79 302.39 59.71 123.01 3.52 3.96 3.51 
Er   90.03 295.72 425.73 640.35 487.86  868.99 1163.7 279.52 497.07 3.34 3.60 3.30 
Tm   21.54 63.92 90.82 142.64 101.14  186.66 231.31 61.01 100.4 3.45 3.78 3.42 
Yb   233.21 603.22 843.94 1368.77 948.61  1678.71 2012.58 593.75 914.42 3.69 4.25 3.71 
Lu   50.47 108.85 125.17 238.1 179.15  252.17 295.85 104.05 141.51 3.32 3.52 3.30 
Hf   11471.45 11471.45 12071.82 12483.09 12204.11  13393.82 8534.05 12333.85 8479.79 3.17 3.18 3.17 
Ta   0.869 4.28 2.52 11.37 7.13  5.68 8.6 3.29 10.07 4.97 8.33 4.66 
Pb   33.11 25.24 45.14 85.5 48.91  50.4 71.86 22.49 51.74 4.29 6.23 4.09 
Th   112.28 467.61 324.28 1686.28 912.24  483.19 930.24 491.98 1744.5 3.55 3.80 3.54 
U   423.54 937.36 466.05 2782.79 1410.6  1176.73 1161.05 851.3 1353.94 3.30 3.49 3.33 
207Pb/206Pb  0.2273 0.04605 0.0461 0.0614 0.0590 0.0461 0.0461 0.0550 0.1062 
1σ  0.0134 0.011 0.0071 0.0046 0.0062  0.0294 0.0296 0.0042 0.0094 
207Pb/235U  18.7428 0.47015 0.4258 0.6587 0.6328 0.3293 0.3820 0.5861 1.1481 
1σ  1.0530 0.11157 0.0648 0.0474 0.0632  0.2092 0.2443 0.0423 0.0947 
206Pb/238U  0.6010 0.07405 0.0671 0.0781 0.0782 0.0519 0.0602 0.0774 0.0785 
1σ  0.0145 0.00209 0.0019 0.0022 0.0030  0.0032 0.0034 0.0021 0.0026 
208Pb/232Th  0.1469 0.02382 0.0286 0.0293 0.0297 0.0250 0.0320 0.0265 0.0321 
1σ  0.0267 0.00395 0.0063 0.0069 0.0100  0.0139 0.0133 0.0056 0.0086 
176Hf/177Hfm  0.282595 0.282629 0.282604 0.282649 0.282589 0.282655 0.282545 0.282622 0.282600 
1σ    0.000018 0.000031 0.000015 0.000017 0.000019 0.000033 0.000073 0.000012 0.000015    176Lu/177Hfm    0.003105 0.001493 0.003866 0.001703 0.003245 0.002687 0.003616 0.001746 0.001761    176Yb/177Hfm    0.098094 0.060729 0.150997 0.068288 0.103692 0.126253 0.151482 0.063832 0.052047    206Pb/238U age  (Ma)   3034 461 418 485 486  326 377 481 487    
1σ   58 13 11 13 18  20 21 13 16    176Hf/177Hfi (485 Ma)    0.282566 0.282615 0.282568 0.282633 0.282558 0.282630 0.282511 0.282606 0.282583    
εHf    3.75 5.49 3.82 6.13 3.49 6.02 1.81 5.16 4.38    1σ    0.63 1.09 0.53 0.60 0.67 1.16 2.56 0.42 0.53    



2σ 0.000670 0.01 0.01 0.000360 0 0 1.1634 0.02 0.03 0.06 0.01 0.004420 
 

 
 
 
 
 
 
 
 
 
Table 3 
Re–Os  and Lu–Hf isotope data from Delamerian and Gawler FLIP (and related) A-type systems. 
Seismograph Granite Lu/Hf  isotope ratios calculated from values in Turner et al. (1992), using Yb/Lu  = 4.24 and Zr/Hf  = 16.7.  GRV Hf and Os data from Fricke (2005). White Hill Hf data from Frost (2009). MGO3009 from Gregory et al. 
(2008), age  from references therein. Seismograph Granite, Black  Hill peridotite ages from Turner et al. (1992). Truro Volcanics age  from Foden et al. (2002a). 

 
Cambrian–Ordovician samples Proterozoic samples 

 

Name  Marcollat 
Granite  Mt  Monster 

Porphyry  Seismograph 
Granite  Black  Hill 

peridotite  Truro 
Volcanic  Truro Volcanic  Sybella 

Granite  Sybella 
Granite  Chitanilga Roopena Roopena White Hill 

Sample #  PG11-2727  2001  2000    876–1013  876–1013  7820–5068  MGO3009  C-CH-16 697440 697443 WTH101 
            (dup)          
Age (Ma)  480 ± 2.5  485 ± 7.9  490  490  522  522  1560  1560  1592 1592 1592 1592 
Os (ppb)  0.000800  0.000518  0.000211  0.405300  0.017642  0.018190  0.001700  0.001400  0.115700 0.145000 0.098000 0.011800 
2σ  0.0000100  0.0000026  0.0000011  0.0020265  0.0000882  0.0000909  0.0000085  0.0000070  0.0005785 0.0007250 0.0004900 0.0000500 
Re (ppb)  0.00125  0.00350  0.00101  0.17983  0.02144  0.02144  0.01044  0.01373  0.82515 0.83689 0.47645 0.02076 
2σ  0.00002  0.00005  0.00002  0.00270  0.00032  0.00032  0.00016  0.00021  0.01238 0.01255 0.00715 0.00031 
187Os/ 

188Osm 

0.268857 0.82521 0.58663 0.242445 0.23431 0.23786 6.31870 3.83774 18.89474 6.74690 8.77818 1.567800 

 
187Re/ 

188Osm 

 
19.19 85.73 56.41 5.46 5.93 5.76 53.40 70.10 118.50  51.80 49.80 23.13 

1σ  0.37 1.36 0.89 0.09 0.09 0.09 0.84 1.11 1.87 0.82 0.79 0.36 
187Os/188Osi       0.114813 0.129723 0.105155 0.197673 0.182511 0.187547 4.912663 2.036327 15.709744  5.354639 7.439681 0.946996 

 
In-situ zircon In-situ zircon Whole rock 

 
Max  Min  Average Max  Min  Average Seismograph Granite  Chitanilga Roopena  Roopena  White Hill 

 
Hf (ppm)  15.0 5.91 4.00 4.23 0.07 
Lu  1.5  0.53 0.49 0.50 0.03 
176Hf/177Hfm  0.282776 0.282544 0.282603 0.282986 0.282525 0.282652 0.282701 0.282168 0.282356 0.282397 0.283533 
1σ  0.000028 0.000020 0.000036 0.000066 0.000020 0.000011 0.000011 0.000020 0.000033 
176Lu/177Hfm  0.002008 0.000608 0.003142 0.006677 0.013925 0.015400 0.017405 0.016699 0.057683 
176Hf/177Hfi  0.282757 0.282538 0.282590 0.282956 0.282462 0.282625 0.282569 0.281687 0.281813 0.281875 0.281733 
εHf (t)  10.42 2.67 4.50 17.58 0.09 5.74 3.97 − 1.73 2.73 4.95 − 0.10 
1σ  0.49 0.35 0.63 1.16 0.71 0.40 0.37 0.69 1.16 
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