
Open Research Online
The Open University’s repository of research publications
and other research outputs

Self-adaptation through incremental generative model
transformations at runtime
Conference or Workshop Item
How to cite:

Chen, Bihuan; Peng, Xin; Yu, Yijun; Nuseibeh, Bashar and Zhao, Wenyun (2014). Self-adaptation through
incremental generative model transformations at runtime. In: 36th International Conference on Software Engineering,
Hyderabad, ACM/IEEE.

For guidance on citations see FAQs.

c© 2014 ACM

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://2014.icse-conferences.org/accepted#

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/82978037?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://2014.icse-conferences.org/accepted
http://oro.open.ac.uk/policies.html

Self-Adaptation through Incremental Generative Model
Transformations at Runtime

Bihuan Chen*, †, Xin Peng*, †, Yijun Yu‡, Bashar Nuseibeh‡, § and Wenyun Zhao*, †
*School of Computer Science, Fudan University, China

†Shanghai Key Laboratory of Data Science, Fudan University, China
‡Department of Computing and Communications, The Open University, UK

§Lero-The Irish Software Engineering Research Centre, University of Limerick, Ireland
{bhchen, pengxin, wyzhao}@fudan.edu.cn, {y.yu, b.nuseibeh}@open.ac.uk

ABSTRACT
A self-adaptive system uses runtime models to adapt its ar-
chitecture to the changing requirements and contexts. How-
ever, there is no one-to-one mapping between the require-
ments in the problem space and the architectural elements
in the solution space. Instead, one refined requirement may
crosscut multiple architectural elements, and its realization
involves complex behavioral or structural interactions mani-
fested as architectural design decisions. In this paper we pro-
pose to combine two kinds of self-adaptations: requirements-
driven self-adaptation, which captures requirements as goal
models to reason about the best plan within the problem
space, and architecture-based self-adaptation, which cap-
tures architectural design decisions as decision trees to search
for the best design for the desired requirements within the
contextualized solution space. Following these adaptations,
component-based architecture models are reconfigured using
incremental and generative model transformations. Com-
pared with requirements-driven or architecture-based ap-
proaches, the case study using an online shopping bench-
mark shows promise that our approach can further improve
the effectiveness of adaptation (e.g. system throughput in
this case study) and offer more adaptation flexibility.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Design—Methodologies;
D.2 [Software Engineering]: Requirements/Specifications;
D.2 [Software Engineering]: Software Architectures

General Terms
Design, Management

Keywords
Self-adaptive system, runtime model, requirements, archi-
tecture, design decisions, model transformation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14, May 31 - June 7, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2756-5/14/05 ...$15.00.

1. INTRODUCTION
In software engineering, requirements analysis seeks to

“solve the right problem”while design space exploration seeks
to “solve the problem right” [46]. Both activities tradition-
ally happen at development time. After a software product
is deployed, changes to the problem or to the solution re-
quire a time-consuming, at best iterative, development ac-
tivity [34]. Increasingly, however, software systems are re-
quired to respond quickly to changing environments and re-
quirements by dynamically adapting their architectures to
their perception of customers’ satisfaction.

Model-based approaches have been proposed as one way
to achieve runtime self-adaptation [20]. Instead of relying
on low-level and error-prone scripts for every possible adap-
tation, with models at runtime, a system can query, ana-
lyze and manipulate them to realize dynamic adaptations [7,
31]. Specifically, requirements models (e.g., [18, 6]) and ar-
chitecture models (e.g., [22, 19]) have been used for self-
adaptation. However, some problems still remain.

Requirements-driven approaches usually assume that re-
quirements elements (e.g., goals or features) can be simply
and directly mapped to architectural elements (e.g., com-
ponents), and thus neglect the complexity of architectural
design. Architecture-based approaches, on the other hand,
assume that requirements are well-understood at design time
and unchanged at runtime, and thus are unable to sup-
port dynamic adaptations to changing requirements specifi-
cations. In any case, both these two kinds of self-adaptation
approaches have a role to play and should be combined. In
the prior attempts to combine them (e.g., [43, 45]) following
Kramer and Magee’s reference architecture [28], architec-
tural elements are regarded as a collection of interfaces to
functional requirements, hence lacking consideration of more
complex architectural concerns.

A software architecture is not just a collection of func-
tionalities but also a collection of design decisions concern-
ing how those functionalities are structured and interacting
with each other [25]. In that sense, architectural adapta-
tions must also reflect the adaptations of design decisions.
Manifest as the adapted design decisions, architectural adap-
tations may crosscut simultaneously multiple parts of a sys-
tem; for instance, adding a logger function before any access
to confidential information for better security. Architectural
adaptations may also involve restructuring of existing func-
tionalities to change the runtime structures or behaviors [35];
for instance, changing the structure of collaborating compo-

nents from sequential to parallel for better performance.
In this paper, we propose a new model-based self-adaptation

approach that combines requirements and architectural adap-
tations and supports complex architectural adaptations us-
ing model transformation techniques. We assume that re-
quirements are available at runtime as goal models, archi-
tectural design decisions are available at runtime as design
decisions models expressed as decision trees, and these mod-
els are consistent with each other.

Our approach periodically searches for a better architec-
tural design solution using the design decisions model. If
no solution exists given the constraints of current require-
ments and contexts, goal-oriented requirements reasoning
is conducted to find a better goal specification within the
constraints of quality expectations, and then the related
design decisions are reconsidered to find a design solution
reflecting the adapted goal specification. In either case, ar-
chitectural adaptations are achieved by executing the auto-
matically generated model transformation scripts in QVT-R
(Query/View/Transformation-Relations) [4] that incremen-
tally transform the current runtime architecture model into
an adapted one. Given the adapted architecture model, the
actual system reconfigurations can be delegated to any exist-
ing architecture-based management middleware (e.g., [40]).

We conducted a case study using an online shopping bench-
mark to evaluate the proposed approach. The results show
promise that our approach can further improve the effec-
tiveness of adaptation (e.g. system throughput in this case
study) and offer more adaptation flexibility than requirements-
driven or architecture-based self-adaptation approaches.

The rest of this paper is structured as follows. Section 2
motivates our work through a running example. Section 3 in-
troduces some preliminaries required before Section 4 presents
our proposed approach. Section 5 evaluates our proposal.
Section 6 introduces and compares some related work be-
fore Section 7 draws our conclusions.

2. A MOTIVATING EXAMPLE
An online shopping company has a business department in

charge of marketing strategies and a technical department in
charge of development and maintenance of the IT systems.
Suppose a sales promotion is launched for celebrating the
New Year. It is anticipated that the system may suffer per-
formance degradation due to the payload of a large number
of concurrent requests. Without adaptation to the increased
load, the response time and failure rate of order processing
could increase, resulting in customer dissatisfaction.

Now consider the following two adaptation scenarios.
Scenario A: Jack, the chief architect of the technical de-

partment, is notified of the problem and finds out that the
bottleneck lies in the order verification process, which has
been implemented by several components including order
information checking, credit checking and fraud checking.
After reconsidering the design decisions of the current ar-
chitecture, Jack decides to adapt the interaction structure
of the order checking components from sequential to paral-
lel processing for a better performance. This architectural
adaptation resolves the problem and the whole adaptation
process is made transparent to the business department.

Scenario B: Jack is notified and reconsiders the design
decisions but cannot find any architectural design alterna-
tive to alleviate the problem. He raises the problem as an
issue to Bob, the manager of the business department. After

reconsidering the business decisions that led to the current
requirements specification, Bob decides to adapt the order
verification process to involve only order information and
credit checking, and skip fraud checking, even though he is
aware of the potential loss due to higher risks. This business
adaptation may help accelerate the order processing process
at the cost of a higher risk of malicious orders. Following this
business requirement change, Jack can adapt the technical
architecture accordingly. To this end, Jack first identifies the
components that are influenced by this requirement change,
and then removes the components that were introduced for
the eliminated functionalities. Since the implementation of
a requirement may be scattered across different parts of the
architecture, such architectural adaptations often crosscut
multiple architectural elements.

The above analogy of the business and technical depart-
ments helps explain the following two observations. First,
runtime adaptations often involve both requirements and ar-
chitectural decisions where different concerns (e.g., business
versus technical) require different knowledge (e.g., require-
ments versus architectural design). Second, mappings from
requirements to architecture are non-trivial, which involves
complex traceability from requirements to architectural ele-
ments and architects’ knowledge about design decisions.

Model-based self-adaptation can thus be regarded as an
automation of these adaptation processes at runtime, based
on the runtime representations of requirements and archi-
tectural design knowledge.

3. PRELIMINARIES
This section briefly introduces the preliminaries, i.e. goal-

oriented requirements and architectural design decisions.

3.1 Goal-oriented requirements
In goal-oriented requirements analysis, typically functional

requirements are modelled as hard goals, and quality require-
ments are modelled as softgoals [33]. A preference is speci-
fied for each softgoal to indicate its relative importance [30].
Goals can be refined into subgoals through AND/OR de-
composition links until the leaves of the decomposition hier-
archy as tasks that can be accomplished by either software
or human agents. To satisfy an AND/OR-decomposed goal,
all/at least one of its subgoals must be satisfied. Further-
more, goals can relate to each other through the weighted
contribution links w+ and w− where the normalized weight
w is in the range of [0, 1] [24]. A + or − sign indicates re-
spectively that the satisfaction of the source goal contributes
to w-level satisfaction or denial of the target goal.

The top part of Figure 1 presents the requirements goal
model of a simplified online shopping system as a graph. The
system is used as a running example throughout the paper.
In this graph, hard goals, softgoals and tasks are syntacti-
cally shaped as rounded rectangles, clouds and hexagons,
respectively. The semantics of the model are illustrated
as follows. The goal Order be strictly verified is sat-
isfied if all of its AND-decomposed subgoals Check info,
Check credit and Check fraud are satisfied. The goal Or-
der be verified can be satisfied by any one of the two
OR-decomposed subgoals Order be simply verified and
Order be strictly verified.

3.2 Architectural design decisions
Architectural design decisions manifest themselves in the

Products be sold

Order be

verified

AND

AND

t7 Check

info

OR

AND

Order be strictly

verified

t6 Pay

order

0.9+
0.8-

Order be

checked out
AND

Product be

chosen

t1 Search

product

t4 Add

to cart

t2 View in

multimedia

AND AND AND

t5 Place

order

AND

AND

Security

be high

t9 Check

fraud

AND

Risk

be low

Cost be

low

AND

AND

t0 Log

0.9+

0.5+

0.6-

0.8-

Performance

be high

Logging
Order

verification

Sequential Parallel

Payment

protocol

Synchro

nous

Asynch

ronous
Partial Full

Check

response be

quick

0.6+
0.5- 0.5-

0.7+
0.8-

0.6+ 0.8+
0.6-

Order be simply

verified

t8 Check

credit

OR

ANDAND

0.8-
0.9+

Strict

Strict

verification

Simple

Simple

verification

Payment

response be

quick

Resources

be low

[requestCurrency > 90]

MM

Viewing

MM Textual

Details be

viewed

t3 View

in text

OR OR

Textual

Viewing

Usability

be good

Browse

response be

quick

0.8+ 0.7-

0.7-

0.7+

AND

Figure 1: Requirements goal model and design decisions of a simplified online shopping system

Adapted Goal

Specification

Adaptation Request

[Quality Expectations]

Model Transformation

Scripts

Requirements

Goal Model

Requirements

Adaptation Manager

Requirements Layer

Architecture Layer

Design

Decisions Model

Design Decisions

Adaptation Manager

Architecture

Transformer

Transformation

Generator

Adapted Design

Solution

Running

System

Runtime Architecture

Modeli

Runtime Architecture

Modeli+1

Current Model Adapted Model

Execution

Engine

Analyzer

Engine

A
d
ap
ta
ti
o
n
R
eq
u
es
t

[Q
u
al
it
y
E
x
p
ec
ta
ti
o
n
s,

C
o
n
te
x
t
V
al
u
es
]

Runtime

Data Reconfigurations

Planner

Figure 2: Overview of our approach.

system’s architecture for assuring the satisfaction of the sys-
tem’s quality and business requirements [14]. Every decision
has one issue describing the problem and some options de-
scribing the alternative solutions. Each option has some
applicable contexts that have to be met for the option to be
considered, some pros and cons for the quality requirements
to record its impact on them, and some architectural modi-
fications to realize the solution in the architecture [25]. For
instance, to realize order payment in online shopping, dif-
ferent message protocols such as asynchronous protocol or
synchronous protocol can be used. The former has a quicker
response but needs more resources than the latter. However,
due to its complexity, asynchronous protocol is considered
only when the message concurrency is high.

4. OUR APPROACH
After an overview of our approach (Figure 2), this sec-

tion introduces the adaptations of requirements and design
decisions, and the generated architecture transformations.

4.1 The overall framework
Following the MAPE-K (Monitor, Analyze, Plan, Execute-

Knowledge) control loop [26], our framework consists of an

Analyzer Engine, a Planner and an Execution Engine. This
control loop is periodically executed. Specifically, the An-
alyzer Engine aggregates quality values and context values
based on the collected data during runtime monitoring. Us-
ing the aggregated and expected quality values, it tunes
the expectations of quality requirements through a feedback
controller proposed in our earlier work [36]. Expectations ∈
[-1, 1] are used to indicate the expected satisfaction levels
of quality requirements, which are different under different
situations and thus need to be tuned. The expected qual-
ity values can be specified in advance or updated at runtime
(e.g., by taking the average of the last n monitored samples).

The Design Decisions Adaptation Manager searches for
the optimal design solution as a set of design options that
best satisfy a given set of requirements and contexts using
the design decisions model. If such a solution can be found,
the Transformation Generator generates the model trans-
formation scripts in QVT-R that incrementally transform
the current runtime architecture model into an adapted one
through the Architecture Transformer. On the other hand,
if such a solution cannot be found, the Requirements Adap-
tation Manager is responsible for selecting the optimal goal
specification as a set of tasks that best meet the quality ex-
pectations. No adaptation will be performed when no such
goal specification can be found.

The Execution Engine reconfigures the running system ac-
cording to the differences between the architecture models
before and after adaptations. These system reconfigurations
are currently supported by reflective component models such
as Fractal [8] and OpenCOM [15], service-oriented adapta-
tion techniques such as AO4BPEL [9] and VxBPEL [27], or
architecture-based management middleware [40].

The steps of the self-adaptation are illustrated as follows.

1. Analyzer Engine periodically tunes quality expectations
and aggregates context values, and then raises an adap-
tation request to Design Decisions Adaptation Manager;

2. Design Decisions Adaptation Manager tries to find an op-
timal design solution based on the design decisions model;

3. If a solution can be found, Transformation Generator
generates the model transformation scripts, and Archi-
tecture Transformer incrementally executes them on the
current architecture model;

4. If no solution can be found, an adaptation request is
raised to Requirements Adaptation Manager, and then

it tries to find an optimal goal specification based on the
goal model;

5. If a specification can be found, Design Decisions Adap-
tation Manager finds an optimal design solution that re-
flects the changed requirements, and triggers Step 3;

6. If no specification can be found, no adaptation is needed,
which means that the current goal specification and de-
sign solution are already optimal;

7. Execution Engine reconfigures the running system based
on the differences between the current and adapted ar-
chitecture models.

Depending on the different possible outcomes, there can be
three adaptation loops 1-2-3-7, 1-2-4-5-7, and 1-2-4-6, cor-
responding to successful architectural adaptation, success-
ful requirements adaptation, and no adaptation respectively.
Although it is also possible to directly raise an adaptation
request to Requirements Adaptation Manager, i.e. 1-4-5-7,
which could have bypassed the architectural adaptation in
step 2, we do not choose that path because most of fine-
grained adaptations could already be handled transparently
to the fixed requirements through architectural adaptation.

To apply our approach, application-specific Analyzer En-
gine and Execution Engine are plugged in respectively to
obtain quality values and context values, and to achieve ac-
tual system reconfigurations. As an input, three application-
specific models; i.e., a goal model, a design decisions model
and an initial architecture model, are required.

4.2 Requirements adaptations
We use requirements goal models as the business abstrac-

tion of a running system. Goal models capture the space of
alternative specifications (i.e. a set of leaf-level tasks) satis-
fying high-level goals in the form of OR-decompositions. For
instance, there are 4 possible goal specifications for satisfy-
ing Products be sold in Figure 1. Further, each goal spec-
ification is often better in satisfying certain quality require-
ments but worse in satisfying some others. For instance, one
possible goal specification GS is [t0, t1, t2, t4, t5, t6, t7, t8, t9]
in Figure 1, and it is better in Usability be good (+0.91)
and Risk be low (+0.9) but worse in Browse response be

quick (−0.8) and Check response be quick (−0.8).
The Requirements Adaptation Manager focuses on business-

driven decisions, and receives an adaptation request only if
no design solution can be found. If requested, it will per-
form a goal reasoning process, which takes as input the goal
model and the tuned quality expectations, and finds among
all the possible goal specifications the optimal one that best
satisfies the quality expectations.

Traditionally the optimal goal specification is the one with
the highest weighted sum of the satisfaction levels of all soft-
goals [47]. This strategy tries to achieve the overall quality
satisfaction as high as possible. As a result, some poorly-
satisfied softgoals will be hidden under the well-satisfied
ones, and it is unknown if these hidden softgoals meet their
expectations. Therefore, here we adopt another strategy,
which tries to meet as many softgoals’ expectations as pos-
sible. In detail, we compute for each softgoal a satisfaction
delta, which is the difference between its satisfaction level
and its expectation. A positive/negative satisfaction delta
means a softgoal does/does not meet its expectation. Then

1+/− indicates the negative/positive satisfaction level cal-
culated by label propagation algorithms [24]

Design

Issue

Design

Option

1..*

1

Architectural

Modification

Intention Softgoal

1

1..*

Dependency

Link

Impact

Link

Motivation

Link
1..**

0..* 0..*

Hard

Goal
Task

Interference

Link

0..*

0..*

Context

10..*

* *

Figure 3: Metamodel of design decisions.

we compute for each goal specification a weighted sum of the
negative satisfaction deltas (i.e. N Score) and a weighted
sum of the positive satisfaction deltas (i.e. P Score). Fi-
nally, the goal specification with the highest N Score is the
optimal one that best satisfies the expectations; if multiple
goal specifications have the same highest N Score, one of
them that has the highest P Score is the optimal one.

For instance, if the expectations for Browse response be

quick, Usability be good, Check response be quick and
Risk be low are respectively −0.2, +0.6, −0.2 and +0.6,
their satisfaction deltas with goal specification GS are re-
spectively (−0.8) − (−0.2) = −0.6, (+0.9) − (+0.6) = 0.3,
(−0.8) − (−0.2) = −0.6 and (+0.9) − (+0.6) = 0.3. If the
preferences for all softgoals are specified to 5, N Score is 5
× (−0.6) + 5 × (−0.6) = −6.0, and P Score is 5 × 0.3 +
5 × 0.3 = 3.0. Given these quality preferences and expec-
tations, GS is actually the optimal goal specification, which
configures the OR-decomposed goals (i.e. business-driven
decisions) Details be viewed and Order be verified to
View in multimedia and Order be strictly verified.

In general, of course, our approach is independent of the
choice of such strategies. Specific strategies can be inte-
grated according to specific adaptation objectives.

4.3 Design decisions adaptations
We introduce an architectural design decisions model to

capture system architectural design and its candidate solu-
tions. Figure 3 shows the metamodel of architectural design
decisions we adopted. For a design decision, a design issue
is related to certain requirements (intentions, which can be
hard goals, softgoals or tasks [48]) through motivation links
to indicate its motivation (i.e. to solve what problem or to
meet what requirements), and has multiple design options
for solving the problem or meeting the requirements. Multi-
ple design issues can be motivated by multiple requirements.
In addition, a design option has some applicable contexts for
the option to be considered, contributes to certain quality
requirements (softgoals) positively or negatively by impact
links, and has some architectural modifications to realize at
the architectural level.

The bottom part of Figure 1 shows the design decisions
of the simplified online shopping system. Design issues and
options are visually shaped as octagons and ellipses respec-
tively. The issue Logging (i.e. what interactions should be
logged) is to meet task Log. Its option Full (i.e. log all
interactions) has a higher positive impact to softgoal Secu-
rity be high but also a higher negative impact to softgoal
Performance be high than option Partial (i.e. only log
database interactions). The issue Payment protocol is to
meet task Pay order. Its options Synchronous and Asyn-

Order

verification

Sequential Parallel

Textual

viewing

TextualFull

MM

viewing

MM

Logging

Partial
Asynchr

onous

Payment

protocol

Synchro

nous

Strict

verificationS

StrictS

Simple

verificationS

SimpleS

Strict

verificationP

StrictP

Simple

verificationP

SimpleP

[requestCurrency > 90]

Figure 4: Design decisions model of the simplified
online shopping system.

chronous have reverse impacts to softgoals Resources be

low and Payment response be quick. The applicable con-
text of option Asynchronous is when the request currency
is larger than 90. The issue Order verification (i.e. what
structure can be used to perform order information check-
ing, customer credit checking and fraud checking) is to meet
goal Order be verified. Its options Sequential and Par-

allel have reverse impacts to softgoals Cost be low and
Check response be quick.

Furthermore, design decisions are often intertwined and
crosscutting with each other [25] with respect to the decision-
making process and architectural modification process. To
model such relationships, we introduce dependency and in-
terference links to relate design issues and options. Depen-
dency links indicate that only if a set of design decisions
are made together can the structure or behavior of certain
part of a system be determined. For instance, issues Order

verification, Simple verification and Strict verifi-

cation have to work together to determine the behavior
and structure of order verification. Interference links ex-
press the interferences among different design options when
performing their architectural modifications, which will be
introduced in Section 4.4.2.

To represent such intertwined design decisions and facili-
tate their decision-making process, we model them in deci-
sion trees. Figure 4 gives the design decisions model of the
simplified online shopping system with each decision tree
representing a set of intertwined design decisions. Subscripts
are used to differentiate the design options with the same
name but different architectural modifications under differ-
ent decision-making process. For instance, following the dif-
ferent options of Order verification, options StrictS or
StrictP will result in architectural modifications that re-
spectively structure the checking components to sequential
or parallel processing. For clarity, we only show the de-
pendency links (lines with an arrow) in Figure 4, and omit
the motivation and contribution links that are shown in Fig-
ure 1. For the pairs of issues Textual viewing and MM view-

ing, and Simple verification and Strict verification,
only one of them will be considered in the decision-making
process because they are exclusive to each other from the
requirements perspective. Hence, Figure 4 shows the deci-
sion trees reflecting the goal specification GS by indicating
the decisions that should not be considered by dashed lines.

Through motivation and impact links, the gap between re-
quirements and architectural designs are narrowed. On the
one hand, following motivation links, requirements changes

Architecture

Model

Element

Element

Type

Connector

Type

Component

Type

ComponentConnector

Parameter Interface
Provided

Interface

Required

Interface

Structure

Link

1..*

1..*

*

* 1 1

* 1..*

1 1

Figure 5: Metamodel of component-based architec-
ture model.

(i.e. a new goal specification) will influence the set of de-
sign decisions that need consideration. For instance, if goal
Details be viewed is reconfigured from View in text to
View in multimedia, issue Textual viewing will not be
considered while issue MM viewing should be considered.

On the other hand, using impact links sourced from design
options to quality requirements, tuned quality expectations
and monitored context values, the Design Decisions Adap-
tation Manager finds among all design solutions the optimal
one, i.e. a set of design options that meet their applica-
ble contexts and have the highest N Score as introduced in
Section 4.2. For instance, given the goal specification GS, if
expectations for Performance be high, Security be high,
Resources be low, Payment response be quick, Cost be

low and Check response be quick are respectively +0.6,
−0.2, +0.6, −0.2, +0.6 and −0.2, preferences for them are
all specified to 5, and option Asynchronous does not satisfy
its applicable context, then the optimal design solution DS
is [Partial, Synchronous, MM, Sequential, StrictS] with
N Score being −10.5 and P Score being 3.5.

4.4 Architecture transformations
To realize the changes of design solutions into the architec-

ture, we propose a set of primitive adaptation operations to
express the architectural modification of each design option,
and then introduce the incremental and generative model
transformations to execute the architectural modifications.

4.4.1 Expressing architectural adaptations
We use component-based architecture models as the de-

sign abstraction of the running system. Figure 5 gives the
metamodel of architecture model we adopted. Components
(i.e. computational elements and data stores) and connec-
tors (i.e. interactions between components) are respectively
instances of component and connector types that express the
common behaviors. They have provided interfaces to specify
the services they offer, and/or required interfaces to specify
the services they need, and can have parameters to express
their changeable characteristics. A link is a connection from
a required interface to a provided interface. In addition, this
metamodel could be extended to include application-specific
properties for components and connectors.

Figure 6 shows the component-based architecture model
of the simplified online shopping system manifesting the de-
sign solution DS. Components, connectors, provided and re-
quired interfaces are visually shaped as rectangles, rounded
rectangles, solid and hollow circles respectively. Compo-
nents Logger are only connected to database-related com-
ponents Product and Order. Products details are viewed in
multimedia mode through connector getProdDetMM. Order
payment is realized using synchronous protocol. Order veri-

ckInfoffckInfo

getCart

List

getCart

List

setPaidsetPaidplaceOr

der

placeOr

der
addProd

ToCart

addProd

ToCart
getProd

DetMM

getProd

DetMM
getProd

List

getProd

List

payOrd

erSyn

payOrd

erSyn
searchP

rod

searchP

rod Main

Product Cart

Search

Order

Credit

check

Fraud

check

Syn

payment

Info

check

ckCreditckCreditckFraudckFraud

Loggerloglog Logger oglog

Figure 6: Architecture model of the simplified online
shopping system.

fication is performed in sequential structure. And we extend
components by including the property dbRelated to indicate
whether or not a component is database-related.

Based on this metamodel, we propose a set of primitive
adaptation operations to express the architectural modifica-
tion of each design option. These primitive adaptation oper-
ations are parsed to generate model transformation scripts
as will be shown in Section 4.4.2. These operations include

• create (component | connector) id name type ...
(interface id name type)+
(parameter id name type value)*
(when (component | connector) condition)?

• create link id name interface interface
(when (component | connector) condition)?

• remove (component | connector | link)

when condition

• tune parameter value when condition

with +, * and ? respectively indicate there is one or more,
zero or more, and zero or one of the preceding element.

For component/connector creation, default properties (e.g.,
id), extended properties (e.g., dbRelated), its provided or re-
quired interfaces, and its parameters should be specified. For
link creation, properties such as id, name, required interface
and provided interface should be specified. These creation
operations can also specify a crosscutting object (either com-
ponent or connector) and a crosscutting condition to indicate
that these operations are performed for every component or
connector that satisfies the condition.

Removal operations should specify the satisfying condition
of the to-be-removed component(s)/connector(s)/link(s). Pa-
rameter tuning operation should specified the new value and
the satisfying condition of the to-be-tuned parameter(s).

The condition can be expressed by operators such as =, <>,
>, <, >= and <= on the properties of components, connectors,
links or parameters. Besides, composite conditions are also
supported by using and and or.

With these operations, complex architectural adaptations
can be expressed by combinations. We associate each design
option with adaptation and revocation architectural modifi-
cations. The former indicates the modification (e.g., create
a component) when the option is selected and the latter in-
dicates the modification (e.g., remove a component) when
the option is deselected.

For instance, the adaptation architectural modification for
design option Full is shown as follows. For every component

that is neither a logger nor a database-related component,
it first creates a logger component, a logger connector and
two links to connect them.

create component logComp logComp logCompT false

interface logIntfL logIntf provided
when component type <> ‘logCompT’ and dbRelated = false

create connector logConn logConn logConnT
interface logIntf R logIntf required
interface logIntf P logIntf provided
when component type <> ‘logCompT’ and dbRelated = false

create link logLinkS logLinkS null logIntf P
when component type <> ‘logCompT’ and dbRelated = false

create link logLinkT logLinkT logIntf R logIntfL
when component type <> ‘logCompT’ and dbRelated = false

The property required interface of the first link is set to
null, which should be the crosscut components’ required in-
terface for logging. However, we cannot specify them here
because there are multiple crosscut components. To solve
this problem, we assume that one link’s required and pro-
vided interfaces have the same interface name so that the Ar-
chitecture Transformer will find this interface in the crosscut
components according to the interface name when perform-
ing model transformations.

Besides, its corresponding revocation architectural modifi-
cation is shown as follows. It removes the previously created
components and connectors. The previously created links
will be automatically removed because their referenced in-
terfaces are removed with the components and connectors.

remove component when name = ‘logComp’

remove connector when name = ‘logConn’

4.4.2 Executing architectural adaptations
The architectural modifications of design options may af-

fect the same part of the architecture and thus produce inter-
ferences. For instance, if option Full has been realized in the
architecture, and there happens a switch from option Syn-

chronous to option Asynchronous, the newly created com-
ponent Asyn payment will not be linked to a logger connec-
tor because option Asynchronous is not aware of the archi-
tectural modification of option Full and vice versa. To com-
pensate such interferences, the revocation and adaptation
architectural modification of Full should be re-performed
sequentially. Therefore, we introduce interference links to
indicate such a relationship in order to facilitate the transfor-
mation process. In the online shopping system, there exist
interference links sourced from Synchronous, Asynchronous,
Strict and Simple to Full. These interference links can be
manually constructed at design time by architects.

To ensure consistency, save efforts and reduce errors, we
use model transformations to automate the modifications of
architecture models. Besides, we use QVT-R as the language
for model transformations since it is expressive enough, it is
a standard defined by Object Management Group (OMG),
and it is the most widely used declarative language to spec-
ify the relation between two models. Furthermore, we use
mediniQVT [2] to execute model transformations because it
implements OMG’s QVT-R standard.

Specifically, the Transformation Generator is implemented
by using the Java template engine FreeMarker [1]. It takes
as input a new design solution and returns a set of ordered
QVT-R scripts. The generator first makes a copy of the

top relation M2M {

 varId, varName : String;

 enforce domain source sM : am::ArchitectureModel {

 id = varId, name = varName

 };

 enforce domain target tM : am::ArchitectureModel {

 id = varId, name = varName

 ...

 -- template of creating links

 <#if linkList?? && linkList?size != 0>

 <#list linkList as link>

 ,structure = ${"tLink" + link_index} : am::Link {

 parent = tM, id = '${link.id}', name = '${link.name}',

 interface1 = ${"tIntf1" + link_index} : am::RequiredInterface {

 id='${link.interface1.id}' },

 interface2 = ${"tIntf2" + link_index} : am::ProvidedInterface {

 id='${link.interface2.id}' }

 }

 </#list>

 </#if>

 ...

 };

}

top relation M2M {

 varId, varName : String;

 enforce domain source sM : am::ArchitectureModel {

 id = varId, name = varName

 };

 enforce domain target tM : am::ArchitectureModel {

 id = varId, name = varName

 ...

 ,structure = tLink0 : am::Link {

 parent = tM, id = 'payAsynLinkT', name = 'payAsynLinkT',

 interface1 = tIntf10 : am::RequiredInterface {

 id = 'payAsynIntf_R' },

 interface2 = tIntf20 : am::ProvidedInterface {

 id = 'payAsynIntfA' }

 }

 ...

 };

}

(a)

(b)

Figure 7: A relation in QVT-R: (a) a template of
creating links, (b) a script of create a link.

old/new design solution, and avoids redundant architectural
modifications by removing their same design options satis-
fying condition C that the design option is not the target
of an interference link, or is the target of an interference
link but its source is not in the design solution. This condi-
tion is to avoid the negative effect of interference on model
transformations. Then it has an iterative step to parse the
revocation/adaptation architectural modification of design
options, satisfying C, in the old/new design solution to gen-
erate a QVT-R script based on a template and remove corre-
sponding design options until all design options are removed.
Finally, it saves the new design solution to the old one.

For instance, DS1 and DS2 are respectively the old and
new design solutions. First, the options with a strike-through
line are the same options and thus are removed. Then, the
options with a straight underline are the first set of options
satisfying c. Finally, the options with a wave underline are
the second set of options satisfying c. Therefore, two QVT-
R scripts are generated. Figure 7 (a) shows a template of
creating links in a relation that copies the id and name of an
architecture model, and Figure 7 (b) gives part of the first
generated script that adds a link between a connector and
a component for asynchronous payment.

DS1 [
::::
Full, Synchronous, Textual, Sequential, StrictS]

DS2 [
::::
Full, Asynchronous, MM, Sequential, SimpleS]

The Architecture Transformer is implemented by using
the model transformation tool mediniQVT [2]. It takes as
input the generated QVT-R scripts and the current architec-
ture model, and returns an adapted architecture model. The
scripts are executed incrementally in the order as they are
generated: the first script is executed on the given architec-
ture model, and then the following scripts are executed on
the transformed architecture model of the previous script.

vrfOff rde

rPar

vrfOrde

rPar

getCart

List

getCart

List

setPaidsetPaidplaceOr

der

placeOr

der
addProd

ToCart

addProd

ToCart
getProd

DetT

getProd

DetT
getProd

List

getProd

List

payOrd

erAsyn

payOrd

erAsyn
searchP

rod

searchP

rod Main

Product Cart

Search

Order

Asyn

payment

Credit

check

Info

check

Loggerloglog Logger loglog

Figure 8: Architecture model after adaptation (the
dashed rectangles indicate the modifications).

For instance, Figure 8 shows the architecture model after
performing the 1-2-4-5-7 adaptation loop on Figure 6. The
requirements adaptations include switching from multime-
dia mode and strict verification to textual mode and sim-
ple verification, and the architectural adaptations include
changing synchronous payment and sequential verification
to asynchronous payment and parallel verification.

5. CASE STUDY
To evaluate the proposed approach, we conducted a case

study to answer the following two questions:

• Q1: Can improvements be achieved by combining re-
quirements and architectural adaptations? (Section 5.2)

• Q2: Can the approach scale with the growth of re-
quirements and architecture models? (Section 5.3)

5.1 Experimental setup
Stress testing tool JMeter was used to simulate concurrent

accesses and Badboy was used to record the test plan. The
experiments were conducted on a ThinkPad E430c laptop
with Intel Core i3 2.40 GHz processor and 4GB RAM.

The experiments were conducted on the online shopping
benchmark, which is implemented in Java. Its requirements
and architectural design decisions are illustrated in Figure 1
and Figure 4. The preferences for the softgoals in Figure 1
were all specified to 5, and the initial expectations for soft-
goals Security be high, Performance be high, Usability
be good, Browse response be quick, Cost be low, Risk

be low, Check response be quick, Resources be low and
Payment response be quick were respectively set to +0.6,
−0.2, +0.6, −0.2, +0.6, +0.6, −0.2, +0.6 and −0.2, and
such tradeoffs have to be made because soft goals often can-
not be all fully satisfied. The system was initially configured
to the design solution [Full, Synchronous, MM, Sequential,
StrictS] that best satisfies these quality expectations.

The system workload varied in the experiments as fol-
lows to simulate dynamic environments. The workload first
increased from zero users to 100 concurrent users in 10 min-
utes, i.e. adding a user every 6 seconds; then held for 4 min-
utes; finally decreased back to zero users in 10 minutes, i.e.
removing a user every 6 seconds. The adaptation interval
was set to one minute; i.e., the adaptation mechanism was
periodically performed every one minute, which is enough
for the adaptation process in this case study. For other ap-
plications, the interval should be accordingly specified.

In the experiments, the quality values such as performance
(i.e. the time taken to process a request), browse response,

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

T
h

ro
u

g
h

p
u

t
(#

/m
in

)

Time (min)

Static

Req

Arch

ReqArch
Full Partial

Partial Full

Sequential Parallel
 MM Textual

Strict Simple
Synchronous

Asynchronsous
Asynchronous

Synchronsous

Textual MM

 Simple Strict

Strict Simple

Simple Strict

Parallel Sequential

Full Partial

Partial Full

Sequential Parallel

Synchronous

Asynchronsous

Asynchronous

Synchronsous
Parallel Sequential

Simple Strict

 MM Textual

Strict Simple Textual MM

Figure 9: The adaptation process of the approaches with self-adaptation.

payment response, check response, and cost (i.e. the money
paid to verify an order) were obtained by system log analysis,
and resources (i.e. the memory consumed to complete an
order payment) were measured by memory analysis.

However, to measure security, risk and usability, it often
involves complex security analysis, risk analysis and cus-
tomer feedback analysis. To simulate such real-life analysis,
for simplicity, here we assumed that security was a random
value between 88% and 92% with full logging and between
83% and 87% with partial logging since full logging can of-
ten achieve a higher security than partial logging. Similarly,
risk was a random value between 9% and 13% with strict
verification and between 14% and 18% with simple verifi-
cation; and usability was a random value between 89% and
93% with multimedia mode and between 84% and 88% with
textual mode. Such ranges of values were specified by the
domain experts according to their experience.

For each of the following four approaches, we conducted
the experiments using the same experimental settings.

• Static: the approach without self-adaptation
• Req: the requirements-driven self-adaptation approach
• Arch: the architecture-based self-adaptation approach
• ReqArch: the proposed self-adaptation approach

Specifically, Req only involves the proposed requirements
adaptations and architectural adaptations are simply mapped
to architectural elements. Arch assumes a static goal spec-
ification and only involves the proposed architectural adap-
tations.

5.2 Effectiveness evaluation (Q1)
To compare the effectiveness of different approaches, we

measured the system throughput (i.e. the successfully fin-
ished orders in one minute), which is the key performance
indicator of this application. The higher the overall through-
put, the more effective the adaptation is considered to be.

Figure 9 shows the adaptation process of the self-adapta-
tion approaches (Req, Arch and ReqArch) to visually il-
lustrate the differences of our approach from requirements-
driven and architecture-based approaches. In Figure 9, the
X axis denotes time intervals of one minute and the Y axis
denotes system throughput in each time interval. The adap-
tations generated by each approach are respectively marked
on the curves.

For Static, it can be observed that the system suffered a
throughput loss when the workload increased to 60 concur-
rent users at time 6, and continuously had a low throughput

until the workload decreased to 30 concurrent users at time
22. This is because the system suffered performance degra-
dation due to the increasing workload.

For Req, the system also suffered a throughput loss at
time 6 when check response and browse response were very
slow. Unlike Static, Req increased the expectations of
check response and browse response, and thus reconfigur-
ing the system from multimedia mode and strict order veri-
fication to textual mode and simple order verification for a
better response. As a result, Req achieved a higher through-
put than Static at the following time, but risk and usability
were low achieving and their expectations were increased.
When the workload decreased to 80 concurrent users, check
response and browse response got better and their expec-
tations were decreased. As a result, Req reconfigured the
system to strict order verification and multimedia mode at
time 17 and 18.

For Arch, the system suffered a performance degradation
at time 4, which was not handled in the case of Req since
the solution was out of the business-level adaptation space.
But Arch reconfigured the system from full logging to par-
tial logging for a better performance at the price of security.
After a time interval, Arch reconfigured the system back to
full logging because security was now more expected than
performance. At time 6, check response was very slow, and
Arch increased its expectation, and thus reconfiguring the
system from sequential verification to parallel verification.
At time 10, the applicable context of asynchronous payment
was satisfied and the expectation of payment response was
increased, and thus Arch reconfigured the system to asyn-
chronous payment. When the workload decreased, Arch
reconfigured the system back to synchronous payment and
sequential verification at time 16 and 18. It can be seen
that Arch achieved a higher throughput than Static but a
lower throughput than Req from time 8, which means that
in this case the solutions in the design-level adaptation space
is less effective in terms of throughput than the ones in the
business-level adaptation space.

For ReqArch, when design-level adaptation is not enough,
business-level adaptation is involved; e.g., at time 7, 18, 19
and 20. As a result, as visually shown in Figure 9 and nu-
merically shown in Figure 10, ReqArch achieved the high-
est maximum and average throughput. This shows that by
combining requirements and architectural adaptations, our
approach is promising to offer more adaptation flexibility
and further improve the effectiveness of adaptation.

In addition, Table 1 reports the average results of quality

Table 1: Average results of the four approaches in terms of quality values.
App. Secu. (%) Perf. (ms) Usab. (%) bRes. (ms) Risk (%) Cost ($) cRes. (ms) Reso. (B) pRes. (ms)

Static 89.99 1451.92 91.01 3721.98 11.02 0.34 4473.24 449.98 3797.45

Req 90.03 915.13 88.50 1877.36 13.29 0.32 2657.14 450.06 2036.87

Arch 89.78 888.28 90.98 2052.48 10.98 0.34 2919.15 462.44 2282.54

ReqArch 89.81 682.46 88.73 1477.01 13.49 0.32 2103.00 462.49 1466.79

Static Req Arch ReqArch

Max 89 96 110 115

Min 8 7 7 8

Avg 51 65 62 72

0

20

40

60

80

100

120

T
h

ro
u

g
h

p
u

t
(#

/m
in

)

Figure 10: Throughput of the four approaches.

values per interval of the four approaches. Columns 2–10
respectively list the results of security, performance, usabil-
ity, browse response, risk, cost, check response, resources
and payment response. It can be observed that, compared
with the other three approaches, our approach was better in
performance-related quality dimensions but worse in others.
In other words, with the changing workload, our approach
can achieve a better performance, which is always expected
under high workload to improve throughput, with the ac-
ceptable sacrifice of other quality dimensions.

In summary, the observations from Table 1 and Figure 9
and 10 answer Q1 positively that our approach is promising
to further improve the effectiveness of adaptation in terms of
system throughput in this case study and offer more adap-
tation flexibility than requirements-driven or architecture-
based self-adaptation approaches with acceptable sacrifice
of less expected quality dimensions.

5.3 Performance evaluation (Q2)
The performance of our approach is determined by Re-

quirements Adaptation Manager, Design Decisions Adapta-
tion Manager, Transformation Generator and Architecture
Transformer, whose time complexities are respectively ex-
ponential time with the size of OR-decomposed goals, ex-
ponential time with the size of design decisions, linear time
with the size of primitive adaptation operations and linear
time with the size of architecture model.

We conducted a set of experiments to evaluate the perfor-
mance of our approach. Table 2 reports the experiment re-
sults. The first, third, fifth and seventh columns respectively
list the size of OR-decomposed goals, design decisions, prim-
itive adaptation operations and architecture model. And the
other columns list the performance in milliseconds.

The Requirements Adaptation Manager takes around 1.1
seconds on the goal model with 18 OR-decomposed goals
(with 46656 goal specifications), which is feasible in our ap-
proach, and returns an“out of memory”error when the num-
ber of OR-decomposed goals climbs to 24 (with 1679616 goal
specifications). The Design Decisions Adaptation Manager
takes around 3.7 seconds on the design decisions model with
17 design decisions (with 131072 design solutions), which is

Table 2: Performance of our approach.
RAM DDAM TG AT

OR(#) P.(ms) DD(#) P.(ms) Op.(#) P.(ms) AM(#) P.(ms)

3 1 5 1 200 79 150 163

6 2 7 15 400 92 300 224

9 24 9 31 600 105 450 315

12 78 11 78 800 114 600 400

15 203 13 202 1000 120 750 600

18 1108 15 577 1200 125 900 702

21 22480 17 3620 1400 131 1050 977

24 out 19 out 1600 136 1200 1249

feasible in our approach, and returns an “out of memory” er-
ror with 19 design decisions (with 524388 design solutions).
The Transformation Generator takes less than 0.2 seconds
with 1600 primitive adaptation operations, and the Architec-
ture Transformer takes around 1.3 seconds with 1200 archi-
tectural elements. The above analysis answers Q2 positively
that our approach scales well with the growth of models and
can be applied to real-life medium-sized software systems.

6. RELATED WORK
Instead of enumerating the related work in the area of

self-adaptive systems, we refer readers to [12] and [29] for an
introduction to the state-of-the-art. Here we only discuss the
most related studies in three areas: requirements-driven self-
adaptation, architecture-based self-adaptation, and earlier
work that combines them.

6.1 Requirements-driven self-adaptation
Approaches have been proposed to use requirements mod-

els as the knowledge for self-adaptation. Dalpiaz et al. [16]
propose a conceptual architecture that provides systems with
self-reconfiguration capabilities. Wang et al. [47] propose a
requirements monitoring and diagnosing framework to pro-
vide systems with self-repairing capabilities. Elkhodary et
al. [18] propose a feature-oriented self-adaptation framework
FUSION that can learn the impact of adaptation decisions.
Baresi et al. [6] present FLAGS to facilitate requirements-
driven adaptations. Peng et al. [36] propose a requirements-
driven self-tuning approach through dynamic quality trade-
off and value-based feedback loop. Chen et al. [10, 11] pro-
pose requirements-driven approaches for survivability assur-
ance of Web systems and optimization of composite services.
Fu et al. [21] propose a stateful requirements monitoring
approach for self-repairing socio-technical systems. Salehie
et al. [38] propose a requirements-driven approach to sup-
port adaptive security for protecting variable assets. Souza
et al. [41] propose evolution requirements to define possible
changes to the requirements, which can be integrated into
our approach to provide richer requirements adaptations.

These approaches assume requirements (e.g., goals or fea-
tures) can be mapped to architectural elements directly (e.g.,
components or services) and thus largely neglect the com-

plexity and details in architectural design. In contrast, our
approach introduces a design decisions model as intermedi-
ary and uses incremental and generative model transforma-
tions to implement more complex architectural adaptations.

6.2 Architecture-based self-adaptation
Oreizy et al. [35] introduce the concept of architecture-

based runtime software adaptation and evolution manage-
ment. Garlan et al. [22] propose an architecture-based self-
adaptation framework Rainbow, which provides a reusable
infrastructure customizable for specific systems. Rainbow
executes system-specific adaptation strategies written in Stitch
language [13] after a violation of the invariant imposed by
the architecture model. Floch et al. [19] propose a mobility-
and adaptation-enabling middleware MADAM, which ex-
ploits architecture models for runtime adaptation of mobile
computing applications. Georgas and Taylor [23] propose
a policy-based approach to architectural adaptation man-
agement and establish the feasibility to apply the approach
to robotic architectures. Morin et al. [32] propose to use
model-level aspects to encapsulate variants and manage dy-
namic variability, and weave the corresponding aspects of
a selection of variants into a base model to produce a new
architecture model.

These approaches assume that requirements of self-adaptive
systems are well-understood at design time and unchanged
at runtime, thus are unable to support architectural adap-
tations resulting from requirements changes. Furthermore,
most of these approaches support simple architectural adap-
tations such as adding, removing or replacing components
but cannot support complex architectural adaptations such
as crosscutting adaptations and restructuring architectural
elements. The exceptions are Oreizy et al.’s restructur-
ing [35], Garlan et al.’s strategy writing [22], and Morin et
al.’s aspect weaving [32], however, these changes rely mostly
on human experts. Compared with them, our approach
further supports complex architectural adaptations such as
crosscutting and restructuring ones using model transforma-
tion techniques.

6.3 Combining requirements and architectural
evolution or adaptation

Nuseibeh [34] proposes to weave requirements and archi-
tectures for incremental software development and speedy
delivery. Sawyer et al. [39] call for combining requirements
and architectures at runtime for self-adaptive systems. Since
then, several advances have been made in this direction.

Kramer and Magee propose to combine requirements and
architectures for self-management, and propose a three-layer
reference model [28]: a goal management layer for delibera-
tive planning, a change management layer for reactive plan
execution, and a component control layer for application-
specific adaptation actions. As an instantiation, Sykes et
al. use a planning-as-model-checking technique to generate
plans [42], construct component configurations according to
the planned actions and the interface dependencies among
components [43], and choose the best one by utility func-
tions on quality properties [44]. Their approach constructs
a component configuration based on the functionality depen-
dencies, thus regarding the architectures as a set of function-
alities, neglecting the complexity of architectural design.

Tajalli et al. [45] propose a plan-based layered architec-
ture for software model-driven adaptation PLASMA, which

utilizes an architecture description language and a planning-
as-model-checking technique to enable dynamic re-planning.
It supports architectural adaptations resulting from require-
ments changes that are provided by architects at runtime.

Alferez et al. [5] propose a model-based framework that
supports the dynamic evolution of context-aware systems to
deal with unexpected context events. It uses goal and fea-
ture models to respectively represent the alternative space of
requirements and architectures. However, it also focuses on
the functionalities of the systems, and assumes each feature
can be directly mapped to an architectural element, thus
neglecting the complexity of architectural design.

Pimentel et al. [37] propose the STREAM-A approach, a
systematic process to generate architectural design models
from requirements models for adaptive systems using model
transformations. Their focus is on the design-time develop-
ment of adaptive-systems, whilst our approach focuses on
the runtime self-adaptation.

In brief, the main differences of our approach from these
approaches are that it further treats architectures as a set of
design decisions concerning how the functionalities are struc-
tured and interact with each other, it supports both require-
ments and architectural planning, and it addresses crosscut-
ting and restructuring adaptations using model transforma-
tion techniques.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed a model-based self-adaptation

approach that combines requirements and architectural adap-
tations. It uses architectural design decisions models to con-
sider not only the functionalities of architectures but also
their structures and behaviors. In addition, it treats require-
ments and architectural adaptations in a layered manner and
supports crosscutting and restructuring architectural adap-
tations using incremental and generative model transforma-
tions. Our case study using an online shopping benchmark
shows promise that our approach can further improve the ef-
fectiveness of model-based self-adaptation approaches (e.g.
system throughput in this case study) and offer more adap-
tation flexibility.

Currently our approach does not support adaptations re-
sulting from unanticipated changes; e.g., adding a new goal
or a new design option. A possible remedy is to provide ex-
plicit management interfaces for the administrators to up-
date relevant models at runtime. In addition, the interfer-
ence links in the design decisions model are created man-
ually, which could be difficult to understand and maintain
for large systems. It is our future work to automate the cre-
ation of these links. We also plan to extend our approach by
supporting widely-used architecture description languages
(e.g., xADL 2.0 [17]) and supporting more model transfor-
mation tools (e.g., MMT [3]), integrate our approach with
architecture-based management middleware (e.g., SM@RT [40]),
and apply our approach to more software systems to further
evaluate its effectiveness.

8. ACKNOWLEDGMENT
This work is supported by National Natural Science Foun-

dation of China under Grant No. 61361120097, National
High Technology Development 863 Program of China under
Grant No. 2013AA01A605, ERC Advanced Grant 291652 -
ASAP, and Science Foundation Ireland Grant 10/CE/I1855.

9. REFERENCES
[1] FreeMarker. http://freemarker.org/.

[2] mediniQVT. http://projects.ikv.de/qvt/wiki.

[3] MMT. http://wiki.eclipse.org/Model to Model -
Transformation - MMT.

[4] Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification, v1.0, 2008.
http://www.omg.org/spec/QVT/1.0/PDF/.

[5] G. H. Alférez and V. Pelechano. Dynamic evolution of
context-aware systems with models at runtime. In
MoDELS, pages 70–86, 2012.

[6] L. Baresi, L. Pasquale, and P. Spoletini. Fuzzy goals
for requirements-driven adaptation. In RE, pages
125–134, 2010.

[7] G. S. Blair, N. Bencomo, and R. B. France.
Models@run.time. Computer, 42(10):22–27, 2009.

[8] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma,
and J.-B. Stefani. The FRACTAL component model
and its support in Java: Experiences with
auto-adaptive and reconfigurable systems. Softw.
Pract. Exper., 36(11-12):1257–1284, 2006.

[9] A. Charfi and M. Mezini. AO4BPEL: An
aspect-oriented extension to BPEL. World Wide Web,
10(3):309–344, 2007.

[10] B. Chen, X. Peng, Y. Yu, and W. Zhao. Are your sites
down? Requirements-driven self-tuning for the
survivability of Web systems. In RE, pages 219–228,
2011.

[11] B. Chen, X. Peng, Y. Yu, and W. Zhao.
Requirements-driven self-optimization of composite
services using feedback control. IEEE Trans. Services
Computing, 2014. Accepted.

[12] B. H. Cheng, R. Lemos, H. Giese, and et al. Software
engineering for self-adaptive systems: A research
roadmap. In Software Engineering for Self-Adaptive
Systems, pages 1–26. Springer-Verlag, 2009.

[13] S.-W. Cheng and D. Garlan. Stitch: A language for
architecture-based self-adaptation. J. Syst. Softw.,
85(12):2860–2875, 2012.

[14] P. Clements, F. Bachmann, L. Bass, D. Garlan,
J. Ivers, R. Little, R. Nord, and J. Stafford.
Documenting Software Architectures: Views and
Beyond. Addison-Wesley, 2002.

[15] G. Coulson, G. Blair, P. Grace, F. Taiani, A. Joolia,
K. Lee, J. Ueyama, and T. Sivaharan. A generic
component model for building systems software. ACM
Trans. Comput. Syst., 26(1):1:1–1:42, 2008.

[16] F. Dalpiaz, P. Giorgini, and J. Mylopoulos. An
architecture for requirements-driven
self-reconfiguration. In CAiSE, pages 246–260, 2009.

[17] E. Dashofy, A. van der Hoek, and R. Taylor. A
highly-extensible, xml-based architecture description
language. In WICSA, pages 103–112, 2001.

[18] A. Elkhodary, N. Esfahani, and S. Malek. FUSION: A
framework for engineering self-tuning self-adaptive
software systems. In FSE, pages 7–16, 2010.

[19] J. Floch, S. Hallsteinsen, E. Stav, F. Eliassen,
K. Lund, and E. Gjorven. Using architecture models
for runtime adaptability. IEEE Softw., 23(2):62–70,
2006.

[20] R. France and B. Rumpe. Model-driven development

of complex software: A research roadmap. In FOSE,
pages 37–54, 2007.

[21] L. Fu, X. Peng, Y. Yu, J. Mylopoulos, and W. Zhao.
Stateful requirements monitoring for self-repairing
socio-technical systems. In RE, pages 121–130, 2012.

[22] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl,
and P. Steenkiste. Rainbow: Architecture-based
self-adaptation with reusable infrastructure.
Computer, 37(10):46–54, 2004.

[23] J. C. Georgas and R. N. Taylor. Policy-based
self-adaptive architectures: a feasibility study in the
robotics domain. In SEAMS, pages 105–112, 2008.

[24] P. Giorgini, J. Mylopoulos, E. Nicchiarelli, and
R. Sebastiani. Reasoning with goal models. In ER,
pages 167–181, 2002.

[25] A. Jansen and J. Bosch. Software architecture as a set
of architectural design decisions. In WICSA, pages
109–120, 2005.

[26] J. O. Kephart and D. M. Chess. The vision of
autonomic computing. Computer, 36(1):41–50, 2003.

[27] M. Koning, C.-a. Sun, M. Sinnema, and P. Avgeriou.
VxBPEL: Supporting variability for web services in
BPEL. Inf. Softw. Technol., 51(2):258–269, 2009.

[28] J. Kramer and J. Magee. Self-managed systems: An
architectural challenge. In FOSE, pages 259–268, 2007.

[29] R. Lemos, H. Giese, H. Müller, and et al. Software
engineering for self-adaptive systems: A second
research roadmap. In Software Engineering for
Self-Adaptive Systems. Schloss Dagstuhl, 2011.

[30] S. Liaskos, S. A. McIlraith, S. Sohrabi, and
J. Mylopoulos. Integrating preferences into goal
models for requirements engineering. In RE, pages
135–144, 2010.

[31] B. Morin, O. Barais, J.-M. Jezequel, F. Fleurey, and
A. Solberg. Models@run.time to support dynamic
adaptation. Computer, 42(10):44–51, 2009.

[32] B. Morin, O. Barais, G. Nain, and J.-M. Jezequel.
Taming dynamically adaptive systems using models
and aspects. In ICSE, pages 122–132, 2009.

[33] J. Mylopoulos, L. Chung, and B. Nixon. Representing
and using nonfunctional requirements: A
process-oriented approach. IEEE Trans. Softw. Eng.,
18(6):483–497, 1992.

[34] B. Nuseibeh. Weaving together requirements and
architectures. Computer, 34(3):115–117, 2001.

[35] P. Oreizy, N. Medvidovic, and R. N. Taylor.
Architecture-based runtime software evolution. In
ICSE, pages 177–186, 1998.

[36] X. Peng, B. Chen, Y. Yu, and W. Zhao. Self-tuning of
software systems through dynamic quality tradeoff
and value-based feedback control loop. J. Syst. Softw.,
85(12):2707–2719, 2012.

[37] J. Pimentel, M. Lucena, J. Castro, C. Silva, E. Santos,
and F. Alencar. Deriving software architectural
models from requirements models for adaptive
systems: the stream-a approach. Requirements Eng.,
17(4):259–281, 2012.

[38] M. Salehie, L. Pasquale, I. Omoronyia, R. Ali, and
B. Nuseibeh. Requirements-driven adaptive security:
Protecting variable assets at runtime. In RE, pages
111–120, 2012.

[39] P. Sawyer, N. Bencomo, J. Whittle, E. Letier, and
A. Finkelstein. Requirements-aware systems: A
research agenda for RE for self-adaptive systems. In
RE, pages 95–103, 2010.

[40] H. Song, G. Huang, F. Chauvel, Y. Xiong, Z. Hu,
Y. Sun, and H. Mei. Supporting runtime software
architecture: A bidirectional-transformation-based
approach. J. Syst. Softw., 84(5):711–723, 2011.

[41] V. Souza, A. Lapouchnian, K. Angelopoulos, and
J. Mylopoulos. Requirements-driven software
evolution. Comput. Sci. Res. Dev., 28(4):311–329,
2013.

[42] D. Sykes, W. Heaven, J. Magee, and J. Kramer.
Plan-directed architectural change for autonomous
systems. In SAVCBS, pages 15–21, 2007.

[43] D. Sykes, W. Heaven, J. Magee, and J. Kramer. From
goals to components: A combined approach to
self-management. In SEAMS, pages 1–8, 2008.

[44] D. Sykes, W. Heaven, J. Magee, and J. Kramer.
Exploiting non-functional preferences in architectural
adaptation for self-managed systems. In SAC, pages
431–438, 2010.

[45] H. Tajalli, J. Garcia, G. Edwards, and N. Medvidovic.
PLASMA: A plan-based layered architecture for
software model-driven adaptation. In ASE, pages
467–476, 2010.

[46] H. van Vliet. Software Engineering: Principles and
Practice. Wiley, third edition, 2008.

[47] Y. Wang and J. Mylopoulos. Self-repair through
reconfiguration: A requirements engineering approach.
In ASE, pages 257–268, 2009.

[48] E. S. K. Yu. Towards modeling and reasoning support
for early-phase requirements engineering. In RE, pages
226–235, 1997.

