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The origins of Euler’s early work on continued fractions

Rosanna Cretney

The Open University

Abstract

In this paper, I examine Euler’s early work on the elementary properties of
continued fractions in the 1730s, and investigate its possible links to previ-
ous writings on continued fractions by authors such as William Brouncker.
By analysing the content of Euler’s first paper on continued fractions, ‘De
fractionibus continuis dissertatio’ (1737, published 1744) I conclude that,
contrary to what one might expect, Euler’s work on continued fractions ini-
tially arose not from earlier writings on continued fractions, but from a wish
to solve the Riccati differential equation.

Keywords: Euler, continued fractions, Riccati equation, 18th-century,
Bernoulli, mathematics
2000 MSC: 01A50, 34A03, 01A45, 26A03

1. Introduction

With the exception of a few isolated results which appeared in the six-
teenth and seventeenth centuries, most of the elementary theory of continued
fractions was developed in a single paper written in 1737 by Leonhard Euler.
In this paper, ‘De fractionibus continuis dissertatio’ (‘Essay on continued
fractions’,2 E71 in Gustav Eneström’s 1913 index of Euler’s works), Euler
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2The paper, as with almost all of Euler’s published works, is available from http:

//www.eulerarchive.org/. There also exists a complete English translation of E71: see
Wyman and Wyman [1985]. However, the translation given there does contain a few



presented continued fractions as an alternative to infinite series or products
for representing irrational and transcendental quantities.3 He established
most of the basic properties of continued fractions, briefly examined certain
special cases, and then used the properties of continued fractions to arrive
at the result for which the paper is arguably best known: namely, the first
known proof that the regular continued fraction expansion of e continues
infinitely. It follows from this fact (though Euler does not explicitly say so)
that e is irrational.4

It is not immediately clear why Euler wrote E71, and existing commen-
taries on the paper have not fully explored this puzzle [Sandifer, 2007a,b;
Baltus, 2007]. It is known that Euler was well-acquainted with John Wal-
lis’s 1656 book Arithmetica infinitorum [Knobloch, 1989, 279; Calinger, 1996,
124]. The Arithmetica contains some of the earliest results in the theory of
continued fractions, obtained by William Brouncker and published by Wallis
as part of their efforts to find exact expressions for 4/π. At first glance it
might, therefore, be tempting to look to the Arithmetica as the source of
Euler’s interest in the subject of continued fractions. However, though Eu-
ler clearly had the Arithmetica infinitorum in mind when writing E71, the
focus of his own paper is completely different. Apart from a brief mention
of Wallis and Brouncker at the beginning of the paper, along with a note
that Brouncker’s derivation of his continued fraction representation of 4/π
remained lost, there are seemingly no connections between the Arithmetica
infinitorum and E71. Euler did eventually make several attempts to recover
Brouncker’s missing proof, but the first of these did not occur until 1739, in
‘De fractionibus continuis observationes’ (‘Observations on continued frac-
tions’, E123), Euler’s second paper on continued fractions.

For this reason, we must look elsewhere for the stimulus or stimuli that
drove Euler to write E71. In this paper, I will propose that this stimulus

misprints and so all translations from Latin or French in the present paper are my own.
3The notion of an ‘irrational’ quantity as used by Euler is equivalent to the modern

notion: an irrational quantity is one which cannot be written as a quotient of two whole
numbers [Euler, 1771, 54–55]. However, his notion of ‘transcendental’ quantities is some-
what different to the modern sense of the word: see [Petrie, 2012].

4As will be discussed below, the denominators of the regular continued fraction expan-
sion of e form an interpolated arithmetic progression. This was known to Roger Cotes in
1714; however, he only observed that the progression seemed to continue indefinitely, and
did not prove that it actually did so [Cotes, 1714, 11]. For more details, see Fowler [1999,
Chapter 9].
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came not from the work of Wallis and Brouncker, but from some early work
of Daniel Bernoulli on ordinary differential equations, via some of the letters
Euler exchanged with Christian Goldbach in the early 1730s. To do this, I will
first outline some seventeenth century results in the basic theory of continued
fractions, including work by Rafael Bombelli, Pietro Antonio Cataldi, Daniel
Schwenter, John Pell, John Wallis, and William Brouncker. Then, I will
briefly explain the content of E71, showing that it has little in common with
any of these earlier works. Finally, I will discuss some of the contents of
Daniel Bernoulli’s 1724 book Exercitationes quaedam mathematicae, and a
letter which Euler wrote to Christian Goldbach on 25 November 1731, and
argue that in fact it was these writings which prompted the main result of
E71.

2. Earlier works on continued fractions

2.1. Bombelli’s L’algebra (1572) and Cataldi’s Trattato del modo brevissimo
(1613)

One of the earliest instances of a continued fraction-related method in
western mathematics is in the work of Rafael Bombelli. His L’algebra parte
maggiore dell’aritmetica was published in Bologna in 1572; a second edition
followed in 1579. The text is best known now for its treatment of complex
numbers. However, it also includes an approximation method for square roots
which produces what we now interpret as a continued fraction.5 It consists of
finding an integer approximation to the square root, and then finding values
which alternately over- and under-approximate the non-integer part, which
when written out in full form a continued fraction. Though Bombelli did not
explicitly write out the continued fraction (and, indeed, he used no symbolic
notation at all) it is clear that his method does produce convergents of a
periodic continued fraction, and that he was aware that these could be used
to approximate the root as closely as was desired.

This method later appeared in Pietro Antonio Cataldi’s Trattato del modo
brevissimo di trovare la radice quadra delli numeri, published in 1613, also
in Bologna.6 It is not known whether Cataldi had read Bombelli’s work,

5Bombelli’s exposition of this method is reproduced in [Smith, 1959, 80–82].
6Cataldi’s continued fraction method from the Trattato del modo brevissimo has been

reproduced in English translation in [Smith, 1959, 82–84]; there is a partial facsimile of
the relevant page of the Trattato in [Fowler, 1994, 734–735].
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but one important way in which the two differ is that Cataldi’s work con-
tained the first hint of modern continued fraction notation. Having found
an approximation to

√
18 as a continued fraction (which he called rotti di

rotti, fractions of fractions), Cataldi exhibited it using the natural ‘diagonal’
notation. However, as this was (and still is) difficult to typeset, from that
point onward on he wrote

4.&
2

8
.&

2

8
.&

2

8
.

This is strikingly similar to the shorthand

4 +
2

8+

2

8+

2

8+

which is still used in many modern texts. However, since his aim here was
to approximate square roots, Cataldi was more interested in finding the con-
vergents of the expansion than in the continued fraction itself, and so he did
not dwell on the new mathematical object he had created.

2.2. Brouncker’s continued fraction for 4/π, 1655

Continued fractions first became an object of study in their own right
in work which was completed in 1655 by Viscount William Brouncker and
published by his friend John Wallis in his Arithmetica infinitorum [1656].
Wallis had set out to find an exact expression for the ratio of the area of a
square to that of its inscribed circle. After a long process of interpolating
between the rows and columns of a table of figurate numbers, he eventually
arrived [Wallis, 1656, 179] at the infinite product

4

π
=

1× 3× 3× 5× 5× 7× · · ·
2× 2× 4× 4× 6× 6× · · ·

and when Brouncker saw this, he somehow converted it to the form

4

π
= 1 +

1

2 +
9

2 +
25

2 +
49

2 +
. . .

.

Unfortunately, Brouncker did not give the method by which he had obtained
this result. Wallis was unable to reconstruct it, although his efforts to do
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so can be found in a Scholium following Proposition 191 of the Arithmetica
infinitorum.7 The discussion there concluded with a method for approxi-
mating 4/π using the convergents of the continued fraction. Notably, this
discussion contained the first example of a general algebraic continued frac-
tion, and showed that Brouncker and Wallis were aware of several of its basic
properties, including the recursion method for finding successive convergents.

2.3. Approximation methods: Schwenter, Pell, Huygens and Wallis

A best rational approximation to a real number x is a rational number
p/q, with q > 0, such that |x− p/q| < |x− a/b| for any rational number
a/b such that 0 < b < q. It is well known that one may find the best
possible rational approximations to x by applying a method derived from the
Euclidean algorithm, which produces continued fractions [Fowler, 1999, 304–
310]. This method was known to several mathematicians in the seventeenth
century, and in E71 Euler attributed it to John Wallis. Such a method can
indeed be found in Chapters 10 and 11 of Wallis’s Treatise of algebra of 1685,
which Euler probably knew in the Latin edition of 1693; here, Wallis showed
how to find approximations to a rational quantity, and then applied the same
method to approximate π using rational numbers.8 However, he was by no
means the first to develop such a method.

Stedall [2002, 143–156] argues that it is highly likely that Wallis learned
of this method from John Pell, who used it to approximate π as early as 1636,
in an unpublished manuscript whose treatment of the problem bears striking
similarities to Wallis’s.9 Furthermore, a very similar method had been used
almost twenty years earlier by Daniel Schwenter, a professor of mathemat-
ics and Oriental languages at the University of Altdorf. In his Geometria
practica nova, Tractatus II, a text on surveying published in Nuremberg in
1617, Schwenter found rational approximations in small terms to 177/233,
using the same method that was later taken up by Pell and Wallis [Schwen-
ter, 1617, II, 69].10 It is not known whether Pell was aware of Schwenter’s

7Brouncker’s method certainly proved elusive; see [Euler, 1750] for Euler’s early at-
tempts to recover it, and [Stedall, 2000] for a modern treatment of the problem using
17th-century methods.

8For a detailed account of Wallis’s exposition of the method, see [Fowler, 1991].
9British Library Add. Ms. 4416, f. 31.

10The first edition of Geometria practica nova was published in three parts: Tractatus
II is dated 1617, and Tractatus I and III followed in 1618. Later editions also include a
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work. A collection of books which belonged to Pell has survived and is now
held at the Busby Library of Westminster School, London, and among these
there is indeed a copy of the 1623 edition of Schwenter’s Tractatus II.11 How-
ever, there is no evidence that Pell read the book or recognised Schwenter’s
approximation method as his own: unlike most of Pell’s books, the copy is
entirely free of annotations.12

What appears to have gone unnoticed by most of the authors who took up
this method is that the method naturally gives rise to a continued fraction,
and, moreover, none but Wallis realised that the truncations of that continued
fraction are the best possible rational approximations to the value of the origi-
nal quantity without using larger terms. As an example of this, we follow Pell
in finding rational approximations to π by taking x = 3.141592653589793.
This gives

x = 3 +
1

7 +
1

15 +
1

1 +
1

291 +
. . .

and, if we take the first and third convergents, we obtain the approximations
22/7 and 355/113, which are the approximations to π found by Archimedes
(c.250BCE) and Metius (1585) respectively. Neither can be improved upon
without increasing the denominator.

The first to explicitly relate this method to continued fractions was Chris-
tiaan Huygens when, in 1680, he used it to calculate gear ratios for a plane-
tarium [Huygens, 1888, XXI, 587–652]. Indeed, when Huygens read Wallis’s
Algebra a few years later, he recognised the method given there as a more
clumsy version of his own [Huygens, 1888, XX, 392–394].

We might wonder why Huygens was not driven to make any study of
continued fractions, as he certainly did spot those that arose from his own
approximations. I suspect that this was for the same reason that Cataldi
neglected to study the properties of his continued fraction for

√
18. Huy-

fourth treatise, which is a German translation of Curzio Casati’s ‘Geometricum problema’
(1602).

11Busby Library, Westminster School: pressmark I B 31.
12For a detailed discussion of Pell’s mathematics, see Malcolm and Stedall [2005, Part

II].
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gens was interested in the practical problem of best rational approximations.
Like Cataldi, his aim was to find the truncated fractions, and the continued
fractions themselves were of little or no interest, since they were merely a
byproduct of the solution he sought.

3. ‘De fractionibus continuis dissertatio’, 1737: Commentary

‘De fractionibus continuis dissertatio’ was first presented to the St Pe-
tersburg Academy of Sciences on 7 March 1737. Euler read the first half of it
to the Academy on 1 April, before submitting it for publication in the jour-
nal Commentarii academiae scientiarum imperialis petropolitanae, where it
filled 40 pages of the volume for 1737 (which was not published until 1744).
Euler’s motivation for writing the paper is at first unclear; here, I will analyse
it with a view to uncovering why he might have come to approach the topic
of continued fractions.

Euler opened the paper by stating that there are various ways by which
irrational and transcendental quantities could be represented. He began by
noting the two most commonly used types of representation by infinite se-
ries: those in which the terms were related by addition and subtraction, and
those in which the terms were related by multiplication. When searching for
such series, he continued, it was preferable that they should converge quickly
and require as few terms as possible to yield a good approximation to the
quantity. Then, he suggested a third kind of series for representing irra-
tional and transcendental quantities, in which the terms would be related by
divisio continua: continuing division. He called such series fractiones contin-
uae, perhaps echoing the use of the similar term fractiones continuae fractae
(continually broken fractions) by John Wallis in the Arithmetica infinitorum
[Wallis, 1656, 182]. Though fractiones continuae (continued fractions) were
less often used than the other two types of series, Euler noted that they
were very well suited for finding approximations, and lamented the fact that
apart from a few special cases, no theory or methods had been established
for dealing with them. This, he said, was what he intended to achieve in this
paper.

This introduction is the natural place to seek Euler’s reasons for writing
the paper: in particular, it is tempting to assume that the suitability of con-
tinued fractions for finding approximations was the main reason. However,
this does not explain why Euler came to consider them in the first place. In
Wallis’s exposition of the approximation algorithm, the continued fractions
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produced are not made explicit, and there is no evidence that Euler read any
of the works in which continued fractions were made explicit. Thus, I do
not believe that the use of continued fractions for producing approximations
was the a priori motivation for the paper; rather, it was a useful byproduct
found in the course of investigating a different problem.

After these introductory remarks, Euler began his investigation by writing
out a general continued fraction:

a+
α

b+
β

c+
γ

d+
δ

e+
ε

f + etc.

where a, b, c, . . . , α, β, γ, . . . are all non-negative.13 Here, we begin to see the
influence of Wallis’s Arithmetica infinitorum: Euler’s use of Roman letters
for denominators and Greek letters for numerators is identical to the notation
used for the general continued fraction presented there. Indeed, Euler imme-
diately went on to say that to the best of his knowledge, Brouncker’s work
in Wallis’s Arithmetica was the first presentation of a continued fraction in
this way. It is unclear whether Euler meant he knew of no earlier continued
fraction at all than Brouncker’s, or simply of no earlier general continued
fraction.

After a brief summary of Wallis’s attempt to reconstruct Brouncker’s
proof, Euler moved on to the question of how to approximate the quantity
represented by a continued fraction. Continuing to assume that all of the nu-
merators and denominators of the general continued fraction were positive,
he pointed out that an approximate value for the continued fraction could
be obtained by truncation, and that the successive truncations formed a se-
quence which alternated between over- and under-estimates and approached
the true value of the continued fraction as closely as desired.

Next, Euler calculated the values of the first few convergents as simple
fractions, and noted the recursion formula for calculating their numerators

13Recall that a regular continued fraction has all of its numerators, here represented by
Greek letters, equal to 1.
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and denominators, as first stated in Wallis’s Arithmetica infinitorum. By
taking differences between successive convergents, he converted the contin-
ued fraction into an infinite series, stating that this converged quickly and
was of great use for approximating the value of the continued fraction. In-
deed, by studying the series representation of the continued fraction, Euler
noted that the general continued fraction given above converges fastest when
its numerators α, β, γ, . . . are small and its denominators a, b, c, . . . are large.
Since he had already found a way to replace fractional numerators or de-
nominators with integers,14 he was able to assume without loss of generality
that all numerators and denominators are non-negative integers. This al-
lowed him to deduce that the fastest rate of convergence was to be obtained
by setting all of the numerators equal to 1 and making the denominators as
large as possible. After ensuring that the denominators could be required to
be whole numbers while the numerators were equal to 1, Euler noted that
doing this created an easy way to distinguish between rational and irrational
numbers:

Moreover, every finite fraction whose numerator and denomina-
tor are finite whole numbers is transformed in this way into a
continued fraction which is somewhere broken off; on the other
hand, any fraction whose numerator and denominator are in-
finitely large numbers, such as those given for irrational and tran-
scendental numbers, will go over to a truly continued fraction that
extends to infinity.15

In other words, a quantity is rational if and only if its continued fraction
has finite length. As we shall see, this result became crucial later on in the
paper.

Euler then gave a brief exposition of the now standard algorithm for con-
verting a simple fraction into a continued fraction, noting that it arose as a
corollary of the Euclidean algorithm for finding the greatest common divi-
sor of the numerator and denominator. For converting irrational quantities

14See [Euler, 1744b, 107].
15‘Omnis autem fractio finita, cuius numerator et denominator sunt numeri integri finiti

in huiusmodi fractionem continuam transformatur, quae alicubi abrumpitur; fractio autem
cuius numerator et denominator sunt numeri infinite magni, cuiusmodi dantur pro quan-
titatibus irrationalibus et transcendentibus, in fractionem vere continuam et in infinitum
excurrentem transibit.’ [Euler, 1744b, 108]
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into continued fractions, he recommended approximating them by rational
numbers: for example, by taking a finite decimal fraction. Then, he com-
bined this algorithm with his earlier observation that truncating a continued
fraction gives an approximation to its true value, and pointed out that this
provided a convenient solution to a problem which had been worked on, and
solved, albeit in a laborious way, by John Wallis.16 He illustrated this result
with two examples: first, he applied it to the quantity 355/113, and second,
he applied it to the problem of determining how often leap years should oc-
cur in order to make the calendar stay aligned with the movements of the
planets.

Having determined that 97 years out of every 400 should be declared leap
years (as is indeed the case in the Gregorian calendar), Euler changed the
subject slightly. He calculated a continued fraction expansion of

√
2, and

showed that all of the denominators except the first had the value 2. Upon
further investigation, it became apparent to him that similar patterns could
be found for other integer square roots, and so he began an investigation
of (in modern terminology) periodic continued fractions. He gave a simple
method for calculating the exact value of any periodic continued fraction, and
proved that every such continued fraction is the root of a quadratic equation.

Euler then took the natural step of looking at continued fractions whose
denominators displayed other types of patterns. He opened this investigation

16As mentioned above, Wallis’s treatment of the problem can be found in Chapters X
and XI of his De algebra tractatus of 1693, in which the problem is stated as follows: ‘Given
any Fraction (or Ratio), to exhibit a number as closely as possible equal to it, in numbers
no greater than the given one, and in minimal terms.’ (‘Data Fractione (seu Ratione)
quavis, ei quam potest proxime aequalem exhibere, in numeris dato non majoribus, & in
minimis terminis.’ [Wallis, 1693, 40])
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by observing that the quantity e has a continued fraction expansion beginning

e = 2 +
1

1 +
1

2 +
1

1 +
1

1 +
1

4 +
1

1 +
1

1 +
1

6 +
1

1 + etc.

.

He noted that the denominators in every third place formed an arithmetic
progression which appears to continue infinitely; the infinitude of this pro-
gression, he promised, would be proved later on in the paper. For the time
being, by investigating other powers of e, he found that their continued frac-
tion representations exhibited similar patterns. With the possible exception
of the first few denominators of each continued fraction, their denominators
formed arithmetic progressions; for some fractions these progressions were
‘interrupted’ by constant quantities (as in the expansion of e given above),
and for others they were uninterrupted. Through some straightforward al-
gebraic manipulations, Euler found that he could transform interrupted pro-
gressions into uninterrupted progressions, and vice versa.

Here we come to what is now considered the most important result of the
paper: Euler’s derivation of the continued fraction expansions of e and its
powers, from which we now deduce the irrationality of those quantities. He
did this by starting with an ordinary differential equation in x and y, and
reducing it to a separable equation in p and q via a substitution which, he
claimed, takes the form of a continued fraction. He used this substitution
to write the solution of the separable differential equation as a continued
fraction in terms of p, x, and y. When this fraction is allowed to continue
infinitely, the terms in x and y vanish, and so he obtained a continued fraction
for

e
2p
a + 1

e
2p
a − 1

,

11



which, after a little rearrangement, could be rearranged to give a continued
fraction for e2p/a. Euler proceeded as follows.

Acknowledging the ‘peculiar’ nature of the proof, he opened by stating
that it hinged on the reduction of the equation

a dy + y2 dx = x
−4n
2n+1 dx

to the separable equation

a dq + q2 dp = dp.

Euler claimed that this could be done by setting

p = (2n+ 1)x
1

2n+1

and then, he said, he had found that taking

q = a
p

+
1

3a
p

+
1

5a
p

+
1

7a
p

+
1

. . .

+
1

(2n−1)a
p

+
1

x
2n

2n+1y

.

would reduce the equation to the separable case as desired. This statement
is not at all trivial, but Euler made no attempt to justify it. We will revisit
this omission later in the present paper.

Next, Euler allowed n to become infinite, and hence obtained an infinite
continued fraction with denominators in arithmetic progression:

q =
a

p
+

1

3a
p

+
1

5a
p

+
1

7a
p

+ etc.

.
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Moreover, he claimed, this continued fraction satisfies the equation a dq +
q2 dp = dp. But Euler could easily find the general solution of this equation
by separating variables and integrating, deducing that

a

2
log

1 + q

1− q
= p+ C

where C is a constant of integration which Euler found to be zero by requiring
q to become infinite when p = 0, as is the case for the continued fraction
form of q. Hence, he obtained

q =
e

2p
a + 1

e
2p
a − 1

and so

e
2p
a = 1 +

2

q − 1
= 1 +

2

a−p
p

+
1

3a
p

+
1

5a
p

+
1

7a
p

+
1

9a
p

+ etc.

.

By setting a/2p = s and applying the results he had obtained earlier in
the paper when considering interrupted and uninterrupted progressions of
denominators, Euler concluded that

e
1
s = 1 +

1

s− 1 +
1

1 +
1

1 +
1

3s− 1 +
1

1 +
1

1 +
1

5s− 1 +
1

1 + etc.

.

Letting s = 1 in this expression gives us a regular continued fraction expres-
sion for e; as Euler conjectured earlier in the paper, this expression continues

13



infinitely, and though Euler does not say so, by immediate corollary of this
fact, we may deduce that e is irrational. It is somewhat strange that Euler
did not explicitly point this out; it is possible that he thought the result
obvious or unimportant and did not wish to labour the point.

Euler ended the paper by using an intricate sequence of substitutions
to give a method for finding the value of any infinite continued fraction
whose denominators form an arithmetic progression. It has been suggested by
Sandifer [2007b, 190] that this final section, contained in paragraphs 31–35 of
Euler’s paper, was meant to constitute the promised proof that the continued
fraction for e continues infinitely. Sandifer suggested that since Euler did not

prove the reduction of the differential equation a dy + y2 dx = x
−4n
2n+1 dx, he

did not intend paragraphs 28–30 to be a proof that the expansion for e1/s

continues infinitely. However, I find this extremely unlikely. The last few
words of paragraph 30 seem unambiguous [Euler, 1744b, 133]:

From these formulae all those found above, by which we have ex-
pressed some powers of e by continued fractions, result; therefore
the progression, which was earlier merely observed, is understood
to be necessarily true.17

In contradiction to Sandifer, I believe that Euler thought the gap in the proof
an ‘easy exercise’ for the reader. In the following section, we shall see that
this could indeed have been an easy exercise for a reader familiar with the
mathematical literature of the decades preceding the writing of E71.

4. Daniel Bernoulli’s Exercitationes mathematicae (1724) and the
Euler–Goldbach correspondence (1731)

None of the theorems Euler proved on continued fractions in E71 seems to
have been the spark that made him write the paper, and none of them seems
to relate strongly to earlier work on continued fractions; though Wallis’s pub-
lications are mentioned in passing, one would think that if Wallis’s work was
the stimulus for E71, then the latter would surely have featured Brouncker’s
continued fraction more prominently. We must, therefore, look elsewhere

17‘Ex his vero formulis fluunt omnes supra inventae, quibus potestates quasdam ip-
sius e per fractiones continuas expressimus; ex quo necessitas progressionis ante tantum
observatae intelligitur.’
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for Euler’s reason for studying continued fractions. The major achievement
of the paper is the derivation of the infinite continued fraction for e; it is
natural, therefore, to wonder where this came from, especially in light of the
‘peculiar way’ in which Euler came to it, via differential equations.

Hence, we must examine work done in the 1720s and 1730s on ordinary
differential equations: in particular, we will look at the Riccati equation, of
which both of the equations Euler uses in E71 are particular cases.18 As one
of the major areas of research arising from the new calculus, differential equa-
tions were an area of great interest for much of the mathematical community
in the early eighteenth century. Until around 1730, no systematic methods
of solution were known other than separation of variables, and so nearly all
studies on differential equations until that time focused on the search for
transformations to make equations separable.

In the years before he wrote E71, Euler wrote several papers on the so-
lution of differential equations: ‘Nova methodus innumerabiles aequationes
differentiales secundi gradus reducendi ad aequationes differentiales primi
gradus’ (‘A new method for reducing innumerable second order differen-
tial equations to first order differential equations’, E10), presented to the
Academy in 1728, was the first of these. It was followed in 1733 by three
papers on the construction of particular differential equations:19 ‘Construc-
tio aequationum quarundam differentialium, quae indeterminatarum separa-
tionem non admittunt’ (‘Construction of certain differential equations which
do not admit a separation of variables’, E11); ‘Specimen de constructione ae-
quationum differentialium sine indeterminatarum separatione’ (‘Example of
the construction of differential equations without a separation of variables’,
E28); and ‘Constructio aequationis differentialis axndx = dy + y2dx’ (Con-
struction of the equation axndx = dy + y2dx, E31). Though these papers
contain considerable detail on the general Riccati equation, here Euler was
considering the impossibility of separation of variables in the general case,
rather than treating a specific separable case as in E71. Thus, it is unlikely
that the result from E71 has much to do with the contents of E10, E11, E28,

18For detailed accounts of the early history of various forms of the Riccati equation, see
[Bittanti, 1989] and [Bottazzini, 1996].

19A full discussion of the meaning of ‘construction’ here is outside the scope of the
present paper. Euler uses the word to mean the reduction of the differential equation to
a problem of quadrature or rectification [Euler, 1733a, 369]. For some more information
on the early history of differential equations, see [Archibald, 2003].
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and E31. The Riccati equation also appeared in two more of the papers Eu-
ler wrote prior to E71: ‘De constructione aequationum ope motus tractorii
aliisque ad methodum tangentium inversam pertinentibus’ (‘On the construc-
tion of equations using tractory motion, and of other things pertinent to the
inverse tangent method’, E51), written in 1735, and ‘De constructione aequa-
tionum’ (‘On the construction of equations’, E70), written in 1737. Again,
there is no hint of continued fractions in either of these; the latter is perhaps
notable in the present context because it was presented to the St Petersburg
Academy on 7 February 1737, only a month before E71, but it mentions the
Riccati equation only very briefly, at its very end.

Instead, we can find a more likely origin for the result on the contin-
ued fraction for e by turning to Euler’s correspondence: in particular, to
some of the earliest of a long sequence of letters he exchanged with Christian
Goldbach. Euler and Goldbach had met during the late 1720s when Euler ar-
rived at the St Petersburg Academy as an adjunct in physiology. He became
friends with Goldbach, then the recording secretary of the Academy, and
they remained friends until Goldbach’s death in 1764. The Euler–Goldbach
correspondence, which dates from 1729 until shortly before Goldbach’s death,
comprises around 200 extant letters, is rich in mathematical problems, and is
notable particularly for its enthusiastic discussion of number-theoretic prob-
lems in a period when number theory was largely regarded as trivial and
unimportant. It has been lauded as ‘a jewel in the history of science of the
eighteenth century’ [Fellmann, 2007, 36]; indeed, the editors of Euler’s Opera
omnia deemed it significant enough to merit translation into English in its
entirety, an honour not afforded to any other part of Euler’s correspondence
[Kleinert and Mattmüller, 2007]. One of the earliest letters written by Euler
to Goldbach is dated 25 November 1731, and contains the statement, with-
out proof, of a result which undoubtedly influenced the writing of E71 six
years later. In what follows, I will refer to this letter as R 729, after the
reference number it was allocated by the editors of the Euler correspondence
index [Juškevič et al., 1975]. The Opera omnia volume of Euler–Goldbach
has not yet been published, but most of the text of R 729 can be found in
the 1965 edition of the correspondence by A.P. Juškevič and E. Winter, or in
P.H. Fuss’s Correspondance mathématique et physique de quelques célèbres
géomètres du XVIIIème siècle, of which the Euler–Goldbach correspondence
occupies the whole of the first of two volumes [Juškevič and Winter, 1965,
50–53; Fuss, 1843, I, 56–60].

In R 729, Euler discussed a number of different and mostly unrelated
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subjects: integrals; composite numbers of the form 2n− 1; and the separable
Riccati differential equation a dq = q2 dp − dp. I shall focus here on the
few paragraphs dealing with the Riccati equation, which are particularly
noteworthy. Here, Euler stated:

Recently, considering separable cases of the Riccati equation, I
have uncovered the following universal substitution, by which the
equation a dq = q2 dp − dp may be restored to the form a dy =

y2 dx− x
−4n
2n+1 dx.20

This remark came seemingly unprompted; there is no hint of the Riccati
equation earlier in this letter or in those that precede it. Euler continued by

claiming that if one makes the substitution p = (2n+ 1)x
1

2n+1 , then it is easy
to determine that the substitution

q = −a
p

+
1

−3a
p

+
1

−5a
p

+
1

−7a
p

+
1

. . .

+
1

−(2n−1)a
p

+
1

x
2n

2n+1y

will give the desired form of the equation.
Reciprocally, he noted, one may transform the equation

a dy = y2 dx− x
−4n
2n+1 dx

back into the equation
a dq = q2 dp− dp

by simply reversing these transformations.

20‘Casus nuper formulae Riccatianae separabiles considerans, sequentem universalem
detexi substitutionem, qua aequatio a dq = q2 dp − dp ad hanc formam a dy = y2 dx −
x

−4n
2n+1 dx reduci potest’ [Fuss, 1843, I: 58; Juškevič and Winter, 1965, 52].
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This is a non-trivial result: it is far from obvious that q is the correct
substitution. In his editorial comments to E71 in Euler’s Opera omnia, Georg
Faber notes that the equation

a
dy

dx
+ y2 = x

−4n
2n+1 ,

which is the form used in E71, can be transformed to

a
dz

dp
= 1 +

2na

p
z − z2

by letting p = (2n + 1)x
1

2n+1 (as given by Euler) and taking z to be the
expression in the last partial denominator of the continued fraction, so z =

x
2n

2n+1y [Faber, 1935, IC]. Faber then notes that if one writes z∗ for a solution
of the same equation but with n replaced by n− 1, then one will have

z∗ =
(2n− 1)a

p
+

1

z
.

Composing substitutions of this form will give Euler’s continued fraction.
However, this is still not at all clear unless one has already seen the continued
fraction; Faber’s argument does not explain how Euler came to find the
continued fraction in the first place.

In the letter R 729, it is also curious that Euler was beginning with an
easily manageable separable equation and ‘restoring’ or ‘reducing’ it to a more
complicated form. Yet even though Euler gave neither a proof nor any further
explanation of the claim, Goldbach seemed to understand immediately, and
even extended the result a little in his reply (Opera omnia number OO730),
giving another type of equation that can easily be transformed into either
of the forms given by Euler [Fuss, 1843, I: 61; Juškevič and Winter, 1965,
54]. One might wonder if Goldbach was simply reluctant to admit that he
did not understand Euler. But this is unlikely: in the same letter, Goldbach
willingly confessed that he did not understand another claim that Euler had
made later on in the letter, and asked for clarification. Yet, he did not
question this one.

I therefore contend that Goldbach did understand why Euler’s claim was
true, and that his immediate understanding was based on a shared experi-
ence: some mutual prior knowledge, a previous discussion of this equation
that Euler knew Goldbach would recall. The correspondence between Euler
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and Goldbach prior to R 729 yields no evidence that the two had ever dis-
cussed this problem before. So, the shared knowledge that tacitly drove this
conversation must have come from another source.

There are at least two people with whom Goldbach had discussed the
Riccati equation prior to 1731: Nicolaus Bernoulli (1695–1726), and his
younger brother Daniel (1700–1782), the sons of Euler’s former tutor Jo-
hann Bernoulli (1667–1748). Goldbach corresponded with Nicolaus Bernoulli
during the early 1720s, and the two discussed various forms of the Riccati
equation. However, during this correspondence Goldbach’s primary concern
was to find cases of the equation which admitted an algebraic solution. While
Nicolaus Bernoulli did make some investigations into separable cases, notably
in his letter to Goldbach of 14 March 1722, the equation he studied has a
slightly different form to the one studied by Euler in 1731, and so the ex-
pressions he obtained for exponents in separable cases are also different and
the connection to Euler’s work is not clear [Fuss, 1843, II, 140–144].21 What
I find more plausible as a source of Goldbach’s prior knowledge is Daniel
Bernoulli’s 1724 book Exercitationes quaedam mathematicae: this contains a
treatment of the Riccati equation which is very clearly connected to Euler’s
treatment from 1731.

Daniel Bernoulli published his first work on the Riccati equation in the
Actorum eruditorum supplementa of 1724. In this paper, titled ‘Notata in
praecedens schediasma Ill. Co. Jacobi Riccati’ (‘Note on the preceding sketch
by the illustrious Count Jacopo Riccati’), Bernoulli took up the challenge
issued by Jacopo Riccati in the paper printed immediately before his own:
to find infinitely many n for which the equation axn dx + uu dx = b du is
separable [Bernoulli, 1724b]. He succeeded, but in the ‘Notata’ he gave the
solution only in the form of an obscure anagram, saying he wanted to stake
a priority claim for the first solution while still leaving the problem open for
others. It was not until he wrote Exercitationes quaedam mathematicae, his
first major mathematical book, later in the same year, that he revealed his
method. The book consists of six chapters on various topics: recurrent series
and their application to the card game ‘Pharaon’; the behaviour of a fluid
flowing from a container; the Riccati equation; and the quadrature of lunes.22

21Nicolaus Bernoulli studied the equation axm dx + by2xp dx = dy, and found that if
it is separable in the case m = p then it is also separable when m = −3p − 4 and when
m = (−p− 4)/3.

22For a detailed commentary on Exercitationes quaedam mathematicae, see [Bottazzini,
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Several of these topics appear in Bernoulli’s correspondence with Goldbach
in the two years prior to the publication of the Exercitationes.23

In the chapter on the Riccati equation, titled ‘Auctoris explanatio nota-
tionum suarum . . . una cum ejusdem solutione problematis Riccatiani’ (‘Ex-
planation by the author of his ‘Notata’ . . . together with a solution of the
problem of Riccati’), Bernoulli gave a way of finding infinitely many n for
which the equation

axn dx+ uu dx = b du (1)

is separable. This method relies upon two lemmas. In the first of these
(Lemma primum, [Bernoulli, 1724a, 78]) he noted that if one begins with

equation (1) and applies the substitutions u = y−1 and x = s
1

n+1 , then the
resulting equation in y and s is

1

a
s

−n
n+1 ds+ y2 ds =

−b(n+ 1)

a
dy.

This has the same form as the original equation (1), but with new constant
coefficients, and with the exponent n replaced by −n

n+1
. Therefore, if equation

(1) is separable in the case n = m, it is also separable in the case n =
−m
m+1

. The second lemma (Lemma secundum, [Bernoulli, 1724a, 78]) gives a
similar result: once again beginning with equation (1), one can apply the
substitutions u = −bx−1 + x−2y and x = s−1 to obtain

as−n−4 ds+ y2 ds = −b dy.

This equation in y and s has the same form as the original equation (1),
with different constant coefficients; this time, the exponent n is replaced by
−n− 4. Hence, if equation (1) is separable in the case n = m, then it is also
separable in the case n = −m− 4.

The two lemmas mean that if the differential equation (1) is separable in
the case n = m, then it is also separable in the cases n = −m

m+1
and n = −m−4.

But since the equation is clearly separable when n = 0, Bernoulli could apply
the two lemmas alternately to obtain infinitely many more separable cases.24

1996].
23See the correspondence between Daniel Bernoulli and Christian Goldbach in [Fuss,

1843, II], and commentary on its links with the Exercitationes in [Bottazzini, 1996].
24Both of the maps f : m 7→ −m−4 and g : m 7→ −m

m+1 are self-inverse, so two consecutive
applications of either f or g will give a value of m already obtained. In order to produce
a new value of m each time, we must apply f and g alternately.
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Indeed, doing this gives the sequence

0,

−0− 4 = −4,

−(−4)

−4 + 1
= −4

3
,

−
(
−4

3

)
− 4 = −8

3

−
(
−8

3

)
−8

3
+ 1

= −8

5
,

−
(
−8

5

)
− 4 = −12

5
,

. . . ,

or n = −4m
2m±1

, where m may be any non-negative integer. These cases are
almost exactly those considered by Euler and Goldbach seven years later.

It remains to show how this result is linked to the continued fraction
Euler found in R 729. The mathematics underlying this is simple, though
the process is somewhat cumbersome. Here, we use subscript notation for
added clarity, though this was not yet in common use in the 1720s and 1730s.
We begin with the separable equation a dq = q2 dp − dp. This is the form
used by Euler in R 729; it is a particular case of equation (1), with n = 0.
As suggested by Bernoulli, we apply the two Lemmas alternately. Applying
Lemma primum, the substitutions are q = y−1 and p = s; these give the same
equation, but with y instead of q. Applying Lemma secundum to the original
equation, the relevant substitutions are q = −ap−1 + p−2q1 and p = p−1

1 , and
we obtain the equation

−a dq1 = (q21 − p−4
1 ) dp1.

If we now apply Lemma primum starting with this equation, then the sub-

stitutions are q1 = q−1
2 and p1 = p

− 1
3

2 , and the new equation is

3a dq2 = (q22 − p
− 4

3
2 ) dp2.

Starting from this equation, the substitutions from Lemma secundum are
q2 = −3ap−1

2 + p−2
2 q3 and p2 = p−1

3 , and the new equation is

−3a dq3 = (q23 − p
− 8

3
3 ) dp3.
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If we once again apply Lemma primum, the substitutions are q3 = q−1
4 and

p3 = p
− 3

5
4 , and we obtain the equation

5a dq4 = (q24 − p
− 8

5
4 ) dp4.

Applying Lemma secundum again, the substitutions are q4 = −5ap−1
4 +p−2

4 q5
and p4 = p−1

5 ; this gives the equation

−5a dq5 = (q25 − p
− 12

5
5 ) dp5.

We could continue in this vein. But instead, we merely note that by
composing the substitutions we have produced so far, we obtain

p = p−1
1 = p

1
3
2 = p

− 1
3

3 = p
1
5
4 = p

− 1
5

5

and

q = −ap−1 + p−2q1

= −ap−1 + p−2q−1
2

= −ap−1 +
1

p2(−3ap−1
2 + p−2

2 q3)

= −ap−1 +
1

−3ap2p−1
2 + p2p−2

2 q−1
4

= −ap−1 +
1

−3ap2p−1
2 +

1

p−2p22(−5ap−1
4 + p−2

4 q5)

.

Rewriting each of the terms in p2 and p4 in terms of the original variable p,
we obtain

q = −ap−1 +
1

−3ap−1 +
1

−5ap−1 + p−6q5

and if we continue in this way, clearly we will obtain the same continued
fraction that Euler found in R 729.

If we now re-examine the continued fraction in R 729 in the light of its
possible connection to Daniel Bernoulli’s Exercitationes, it becomes less sur-
prising that Euler was ‘restoring’ or ‘reducing’ a separable equation to one
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that is more difficult to deal with: he was not trying to reduce one equation
to another simpler one, but rather, he was rewriting Bernoulli’s result on sep-
arable forms of the Riccati equation, by composing the substitutions given
in the two Lemmas. What is more, there is strong circumstantial evidence
that the Exercitationes was indeed in the minds of both Euler and Goldbach
in 1731. Euler would certainly have known the book, given his close con-
nection with the Bernoulli family: indeed, at the time he wrote the letter he
and Daniel Bernoulli were living in St Petersburg Academy accommodation,
and the two often worked closely together on mathematical problems. Gold-
bach had been in regular correspondence with Bernoulli at the time when
Exercitationes quaedam mathematicae was published; it is clear from these
letters that he was well aware of the book’s existence and would have been
familiar with its contents.25 It is, therefore, undoubtable that both Euler
and Goldbach would have been intimately familiar with the contents of the
Exercitationes.

Thus, I suggest that in R 729, Euler was tacitly applying the method
used by Bernoulli, secure in the knowledge that Goldbach would understand
the implicit reference to the Exercitationes even though Bernoulli had not
written down the composition of the substitutions. It is this result that he
returned to in 1737, when he saw that it could be extended to prove that the
regular continued fraction for e does indeed continue infinitely. It was this
realisation, I suggest, and not any previous writings on continued fractions,
that provided the stimulus for Euler to write E71.

5. Conclusions

As we have seen, there are several 17th-century appearances of continued
fractions which, given the right circumstances, could have led Euler directly
to the study of continued fractions. Instead, it transpires that he came to
study continued fractions by an altogether more surprising route: he started
from Daniel Bernoulli’s work on differential equations, and returned to the
topic later via a letter to Goldbach. This is an excellent example both of the
startling connections that can be unveiled within mathematics, and of Euler’s
rare talent for spotting them. Moreover, it raises questions about the role
of correspondence in Euler’s working practices, and about the ways in which

25See, for example, the mentions of the Exercitationes in various letters exchanged
between Bernoulli and Goldbach during 1724 and 1725 [Fuss, 1843, II, 211–239].
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other mathematicians influenced Euler to take up certain topics. For exam-
ple, it is curious that there was a gap of six years between the first appearance
of the continued fraction in R 729, and its reappearance in E71. Several other
papers written around the same time as E71 also treat topics that Euler dis-
cussed in correspondence with Goldbach in the early 1730s: for example, as
mentioned above, ‘De constructione aequationum’ (E70), presented to the
Academy a month before E71, touches upon the Riccati equation, and ‘So-
lutio problematis geometrici circa lunulas a circulis formatas’ (‘Solution to a
geometrical problem about lunes formed from circles’, E73) was presented a
few months after E71 and deals with geometrical problems similar to some
which Euler discussed with Goldbach in 1730. There is, therefore, a small
cluster of papers written in 1737 whose topics all appear to have Euler’s cor-
respondence with Goldbach as their common origin. Further work is needed
to determine whether any of Euler’s contact with Goldbach prompted Euler
to extend the contents of these letters into full-length papers.26 It would also
be worthwhile to investigate how other correspondence influenced Euler’s
publishing activities.

Finally, I note that while E71 was not itself motivated by questions re-
lating to the theory of continued fractions, it did open the door for Euler,
and later others, to ask more questions concerning continued fractions. He
returned to the subject several times during his career: in 1738, a year after
he wrote E71, he wrote a paper titled ‘De fractionibus continuis observa-
tiones’ (‘Observations on continued fractions’, E123) in which he returned
to Brouncker’s continued fraction for π, which he had mentioned in passing
in E71. Much later, in the late 1750s, he explored the connection between
continued fractions and the Pell equation in ‘De specimen algorithmi sin-
gularis’ (‘On an example of a singular algorithm’, E281) and ‘De usu novi
algorithmi in problemate Pelliano solvendo’ (‘On the use of a new algorithm
in solving Pell’s equation’, E323). This work was later taken up by Lagrange
in his work on the solution of numerical equations in the late 1760s. Thus, by
developing the basic theory of continued fractions in E71 and demonstrating
their usefulness, Euler allowed them to be put to more significant uses than
simply as approximations or as curious representations of irrational numbers,

26Goldbach returned to St. Petersburg when the Russian court moved there from
Moscow in 1732, and resumed his duties as secretary to the St. Petersburg Academy,
so it is possible that such a discussion could have occurred face-to-face.
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and turned them into a useful tool in analysis.
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